Analysis of the Microbiome on the Surface of Corroded Titanium Dental Implants in Patients with Periimplantitis and Diode Laser Irradiation as an Aid in the Implant Prosthetic Treatment: An Ex Vivo Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Materials
2.2. Material for Microbiological Tests
2.3. Material for the Surface Structure Study
3. Methods
3.1. Photographs of Dental Implants
3.2. Microbiological Contamination of Titanium Implants
3.2.1. Culture-Dependent Method
3.2.2. MALDI TOF Method
3.2.3. Metagenomic Sequencing Method
Total DNA Extraction
Amplification of 16S rRNA Gene Fragment
Sequencing
3.3. Bioinformatic Analysis
3.4. Laser Irradiation
3.5. Statistical Analysis
3.6. Analysis of the Surface Morphology of the New Titanium Implants and Those Withdrawn from the Oral Cavity
3.6.1. Optical Microscopy
3.6.2. Optical Profilometers
4. Results
4.1. Image of Dental Implants, Both New and Removed after 8 and 25 Years, Taken from Patients with Periimplantitis
4.2. Microorganisms Isolated from the Surfaces of Dental Implants Used by Patients with Full-Blown Peri-implantitis Identified Using the MALDI TOF Technique
4.3. Metagenes on the Corroded Dental Implant
4.4. Reduction of Microorganisms on the 8 and 25 old Year Implants after Using 2 Dose Variants of Diode Laser
4.5. Analysis of the Implants Surface before and after the Laser Irradiation
4.5.1. Optical and Confocal Microscopy
4.5.2. Optical Profilometry
5. Discussion
6. Conclusions
- Anaerobic bacteria dominate among the microorganisms inhabiting dental implants in patients with periimplantitis
- Diode laser irradiation of the abutment surface and endosseouses fixture at optimised doses effectively reduces the number of microorganisms. Microbial reduction in abutment is greater than on endosseous fixture.
- Properly selected doses of the diode laser effectively reduce microorganisms and they do not deteriorate the surface roughness of titanium implants.
- The amount of corrosion of dental implants in patients with peri-implantitis is mainly influenced by the time of exposure to the environmental factors of the oral cavity, and to a lesser extent by the time of use.
7. Significance
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schwarz, F.; Derks, J.; Monje, A.; Wang, H.-L. Peri-implantitis. J. Periodontol. 2018, 89, S267–S290. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, S.; Berglundh, T.; Genco, R.; Aass, A.M.; Demirel, K.; Derks, J.; Figuero, E.; Giovannoli, J.L.; Goldstein, M.; Lambert, F. Primary prevention of peri-implantitis: Managing peri-implant mucositis. J. Clin. Periodontol. 2015, 42, S152–S157. [Google Scholar] [CrossRef] [PubMed]
- Kamachi Mudali, U.; Sridhar, T.M.; Raj, B. Corrosion of bio implants. Sadhana 2003, 28, 601–637. [Google Scholar] [CrossRef]
- Trepanier, C.; Ramakrishna, V.; Pelton, A.R. Corrosion Resistance and Biocompatibility of Passivated NiTi. In Shape Memory Implants; Yahia, L., Ed.; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar] [CrossRef]
- Sharan, D. The problem of corrosion in orthopedic implant materials. Orthop. Update 1999, 9, 1–5. [Google Scholar]
- Pettersson, M.; Kelk, P.; Belibasakis, G.N.; Bylund, D.; Molin Thorén, M.; Johansson, A. Titanium ions form particles that activate and execute interleukin-1β release from lipopolysaccharide-primed macrophages. J. Periodontal Res. 2017, 52, 21–32. [Google Scholar] [CrossRef]
- Alrabeah, G.O.; Brett, P.; Knowles, J.C.; Petridis, H. The effect of metal ions released from different dental implant-abutment couples on osteoblast function and secretion of bone resorbing mediators. J. Dent. 2017, 66, 91–101. [Google Scholar] [CrossRef]
- Johansson, C.B.; Han, C.H.; Wennerberg, A.; Albrektsson, T. A quantative comparison of machined commercially pure titanium and titanium–aluminium–vanadium implants in rabbit bone. Int. J. Oral Maxillofac. Implant. 1998, 13, 315. [Google Scholar]
- Han, C.H.; Johansson, C.B.; Wennerberg, A.; Albrektsson, T. Quantative and qualitative investigations of surface enlarged titanium and titanium alloy implants. Clin. Oral Implant. Res. 1998, 9, 1–10. [Google Scholar] [CrossRef]
- do Nascimento, C.; Pita, M.S.; Santos, E.D.; Monesi, N.; Pedrazzi, V.; de Albuquerque, R.F.; Ribeiro, R.F. Microbiome of titanium and zirconia dental implants abutments. Dent. Mater. 2015, 32, 93–101. [Google Scholar] [CrossRef]
- Cortés-Acha, B.; Figueiredo, R.; Seminago, R.; Roig, F.J.; Llorens, C.; Valmaseda-Castellon, E. Microbiota analysis of biofilms on experimental abutments mimicking dental implants: An in vivo model. J. Periodontol. 2017, 88, 1090–1104. [Google Scholar] [CrossRef]
- Xie, H.; Cook, G.S.; Costerton, J.W.; Bruce, G.; Rose, T.M.; Lamont, R.J. Intergeneric communication in dental plaque biofilms. J. Bacteriol. 2000, 182, 7067–7069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Periasamy, S.; Kolenbrander, P.E. Mutualistic biofilm communities develop with Porphyromonas gingivalis and initial, early, and late colonizers of enamel. J. Bacteriol. 2009, 191, 6804–6811. [Google Scholar] [CrossRef]
- Beech, I.B.; Sunner, J.A.; Arciola, C.R.; Cristiani, P. Microbially-influenced corrosion: Damage to prostheses, delight for bacteria. Int. J. Artif. Organs 2006, 29, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Whitfield, M.; Vliet, K.J. Beating the bugs: Roles of microbial biofilms in corrosion. Corros. Rev. 2013, 31, 73–84. [Google Scholar] [CrossRef]
- Rosenbaum, M.; Aulenta, F.; Villano, M.; Angenent, L.T. Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved? Bioresour. Technol. 2011, 102, 324–333. [Google Scholar] [CrossRef]
- Kalathil, S.; Khan, M.M.; Lee, J.; Cho, M.H. Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms. Biotechnol Adv. 2013, 31, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Pozhitkov, A.E.; Daubert, D.; Donimirski, A.B.; Ashley Brochwicz Goodgion, D.; Vagin, M.Y.; Leroux, B.G.; Hunter, C.M.; Flemmig, T.F.; Noble, P.A.; Bryers, J.D. Interruption of electrical conductivity of titanium dental implants suggests a path towards elimination of corrosion. PLoS ONE 2015, 10, e0140393. [Google Scholar] [CrossRef]
- Souza, J.C.M.; Henriques, M.; Teughels, W.; Ponthiaux, P.; Celis, J.-P.; Rocha, L.A. Wear and Corrosion Interactions on Titanium in Oral Environment: Literature Review. J. Bio-Tribo-Corros. 2015, 1, 13. [Google Scholar] [CrossRef]
- Noronha Oliveira, M.; Schunemann, W.V.H.; Mathew, M.T.; Henriques, B.; Magini, R.S.; Teughels, W.; Souza, J.C.M. Can degradation products released from dental implants affect peri-implant tissues? J. Periodontal Res. 2018, 53, 1–11. [Google Scholar] [CrossRef]
- Apaza-Bedoya, K.; Tarce, M.; Benfatti, C.; Henriques, B.; Mathew, M.T.; Teughels, W.; Souza, J.C.M. Synergistic interactions between corrosion and wear at titanium-based dental implant connections: A scoping review. J. Periodontal Res. 2017, 52, 946–954. [Google Scholar] [CrossRef]
- Groessner-Schreiber, B.; Hannig, M.; Dück, A.; Griepentrog, M.; Wenderoth, D.F. Do different implant surfaces exposed in the oral cavity of humans show different biofilm compositions and activities? Eur. J. Oral Sci. 2004, 112, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Groessner-Schreiber, B.; Teichmann, J.; Hannig, M.; Dorfer, C.; Wenderoth, D.F.; Ott, S. Modified implant surfaces show different biofilm compositions under in vivo conditions. Clin. Oral Implant. Res. 2009, 20, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Belém Novaes, A., Jr.; Scombatti de Souza, S.S.L.; de Barros, R.R.M.; Pereira, K.K.Y.; Iezzi, G.; Piatelli, A. Influence of Implant Surfaces on Osseointegration. Braz. Dent. J. 2010, 21, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Souza, J.C.; Ponthiaux, P.; Henriques, M.; Oliveira, R.; Teughels, W.; Celis, J.P.; Rocha, L.A. Corrosion behaviour of titanium in the presence of Streptococcus mutans. J. Dent. Res. 2013, 41, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, A.; Mayanagi, G.; Nakajo, K.; Sasaki, K.; Takahashi, N. Microbiologically induced corrosive properties of the titanium surface. J. Dent. Res. 2014, 93, 525–529. [Google Scholar] [CrossRef]
- Wawrzyk, A.; Łobacz, M.; Adamczuk, A.; Sofińska-Chmiel, W.; Rahnama, M. The efficacy of a diode laser on titanium implants for the reduction of microorganisms that cause periimplantitis. Materials 2021, 14, 7215. [Google Scholar] [CrossRef] [PubMed]
- Wawrzyk, A.; Łobacz, M.; Adamczuk, A.; Sofińska-Chmiel, W.; Rahnama, M. The Use of a Diode Laser for Removal of Microorganisms from the Surfaces of Zirconia and Porcelain Applied to Superstructure Dental Implants. Microorganisms 2021, 9, 2359. [Google Scholar] [CrossRef]
- Namour, M.; Verspecht, T.; El Mobadder, M.; Teughels, W.; Peremans, A.; Nammour, S.; Rompen, E. Q-Switch Nd:YAG Laser-Assisted Elimination of Multi-Species Biofilm on Titanium Surfaces. Materials 2020, 13, 1573. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, O.J.; Chung, H.J.; Kim, O.S. Effect of a Er, Cr:YSGG laser and a Er:YAG laser treatment on oral biofilm-contaminated titanium. J. Appl. Oral Sci. 2020, 28, e20200528. [Google Scholar] [CrossRef]
- Wawrzyk, A.; Rahnama, M.; Rybitwa, D.; Wilczyński, S.; Machoy, M.; Łobacz, M. Effective microbiological decontamination of dental healing abutments colonised with Rothia aeria by a diode laser as a helpful step towards successful implantoprosthetic therapy. Lasers Med. Sci. Res. 2020, 36, 875–887. [Google Scholar] [CrossRef]
- Kumar, P.S.; Mason, M.R.; Brooker, M.R.; O’Brien, K. Pyrosequencing reveals unique microbial signatures associated with healthy and failing dental implants. J. Clin. Periodontol. 2012, 39, 425–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; Xu, L.; Wang, Z.; Li, L.; Zhang, J.; Zhang, Q.; Chen, T.; Lin, J.; Chen, F. Subgingival microbiome in patients with healthy and ailing dental implants. Sci Rep. 2015, 5, 10948. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Martin, I.; Doolittle-Hall, J.; Teles, R.P.; Patel, M.; Belibasakis, G.N.; Hämmerle, C.H.F.; Jung, R.E.; Teles, F.R.F. Exploring the microbiome of healthy and diseased peri-implant sites using Illumina sequencing. J. Clin. Periodontol. 2017, 44, 1274–1284. [Google Scholar] [CrossRef] [PubMed]
- Moore, W.E.C.; Moore, L.V. The bacteria of periodontal diseases. Periodontology 2000, 5, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Gorbach, S.; Mayhew, J.W.; Bartlett, J.G.; Thadepalli, H.; Onderonk, A.B. Rapid diagnosis of anaerobic infections by direct gas-liquid chromatography of clinical specimens. J. Clin. Investig. 1976, 57, 478–484. [Google Scholar] [CrossRef]
- Kordjian, H.; Schultz Joyce, D.J.H.; Rosenvinge, F.; Moller, J.; Pedersen Rune, M. First clinical description of Eggerthia catenaformis bacteremia in a patient with dental abscess. Anaerobe 2015, 35, 38–40. [Google Scholar] [CrossRef]
- Tamura, N.; Ochi, M.; Miyakawa, H.; Nakazawa, F. Analysis of bacterial flora associated with peri-implantitis using obligate anaerobic culture technique and 16S rDNA gene sequence. Int. J. Oral Maxillofac. Implant. 2013, 28, 1521–1529. [Google Scholar] [CrossRef]
- Stingu, C.S.; Schaumann, R.; Jentsch, H.; Eschrich, K.; Brosteanu ORodloff, A.C. Association of periodontitis with increased colonization by Prevotella nigrescens. J. Investig. Clin. Dent. 2013, 4, 20–25. [Google Scholar] [CrossRef]
- Gautam, M.; Chopra, K.B.; Douglas, D.D.; Stewart, R.A.; Kusne, S. Streptococcus salivarius bacteremia and spontaneous bacterial peritonitis in liver transplantation candidates. Liver Transplant. 2007, 11, 1582–1588. [Google Scholar] [CrossRef]
- Öğrendik, M. Periodontal Pathogens in the Etiology of Pancreatic Cancer. Gastrointest. Tumors 2017, 3, 125–127. [Google Scholar] [CrossRef]
- Al-Ahmad, A.; Wiedmann-Al-Ahmad, M.; Faust, J.; Bachle, M.; Follo, M.; Wolkewitz, M.; Hannig, C.; Hellwig, E.; Carvalho, C.; Kohal, R. Biofilm formation and composition on different implant materials in vivo. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 95, 101–109. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Neto, O.M.D.; do Nascimento, C.; de Oliveira Silva, T.S.D.; Macedo, A.P.; Ribeiro, R.F.; Watababe, I.S.; Issa, J.P.M. Genomic evaluation of formed biofilm on dental implants with different surface treatments associated with zirconia or titanium abutments: An in vitro study. Int. J. Oral Maxillofac. Implant. 2020, 35, 888–899. [Google Scholar] [CrossRef]
- Rakic, M.; Grusovin, M.G.; Canullo, L. The microbiologic profile associated with Peri-Implantitis in humans: A systematic review. Interantional J. Oral Maxillofac. Implant. 2016, 31, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, S.; Wilson, T.G.; Palmer, K.L.; Valderrama, P.; Mathew, M.T.; Prasad, S.; Jacobs, M.; Gindri, I.M.; Rodrigues, D.C. In vitro investigation of the effect of oral bacteria in the surface oxidation of dental implants. Clin. Implant. Dent. Relat. Res. 2015, 17, e562–e575. [Google Scholar] [CrossRef]
- Tzanakakis, E.; Evangelos, S.; Eudoxie, P.; Petros, K.; Tzoutzas, I.G. The Use of Lasers in Dental Materials: A Review. Materials 2021, 14, 3370. [Google Scholar] [CrossRef] [PubMed]
- Luke, A.M.; Mathew, S.; Altawash, M.M.; Madan, B.M. Lasers: A Review with Their Applications in Oral Medicine. J. Lasers Med. Sci. 2019, 10, 324–329. [Google Scholar] [CrossRef]
- Mohamadi, Z. Laser applications in endodontics: An update review. Int. Dent. J. 2009, 59, 35–46. [Google Scholar]
- David, C.M.; Gupta, P. Lasers in Dentistry: A Review. Int. J. Adv. Health Sci. 2015, 2, 7–13. [Google Scholar]
- Salvi, G.E.; Stahli, A.; Schmidt, J.C.; Ramseier, C.A.; Sculean, A.; Walter, C. Adjunctive laser or antimicrobial photodynamic therapy to non-surgical mechanical instrumentation in patients with untreated periodontitis: A systematic review and meta-analysis. J. Clin. Periodontol. 2020, 47, 176–198. [Google Scholar] [CrossRef]
- Mailoa, J.; Lin, G.H.; Chan, H.L.; MacEachern, M.; Wang, H.L. Clinical outcomes of using lasers for peri-implantitis surface detoxification: A systematic review and meta-analysis. J. Periodontol. 2014, 85, 1194–1202. [Google Scholar] [CrossRef]
- Lin, G.H.; Suárez López Del Amo, F.; Wang, H.L. Laser therapy for treatment of peri-implant mucositis and peri-implantitis: An American Academy of Periodontology best evidence review. J. Periodontol. 2018, 89, 766–782. [Google Scholar] [PubMed]
- Kotsakis, G.; Konstantinidis, I.; Karoussis, I.K.; Xiaoye, M.; Haitao, C. Systematic review and Meta-Analysis of the effect of various laser wavelengths in the treatment of periimplantitis. J. Periodontol. 2014, 85, 1203–1213. [Google Scholar] [CrossRef]
- Wawrzyk, A.; Rahnama, M.; Sofińska-Chmiel, W.; Wilczyński, S.; Łobacz, M. The Use of the Diode Laser against the Microbiome on Composites Closing the Screw Access Hall (Sah) in the Reconstruction of Dental Implants: Ex Vivo Studies. Int. J. Environ. Res. Public Health 2022, 19, 7494. [Google Scholar] [CrossRef] [PubMed]
- Rybitwa, D.; Wawrzyk, A.; Rahnama, M. Application of a Medical Diode Laser (810 nm) for Disinfecting Small Microbiologically Contaminated Spots on Degraded Collagenous Materials for Improved Biosafety in Objects of Exceptional Historical Value From the Auschwitz-Birkenau State Museum and Protection of Human Health. Front Microbiol. 2020, 18, 596852. [Google Scholar] [CrossRef]
- Rybitwa, D.; Wawrzyk, A.; Wilczyński, S.; Łobacz, M. Irradiation with medical diode laser as a new method of spot-elimination of microorganisms to preserve historical cellulosic objects and human health. Int. Biodeter. Biodegr. 2020, 154, 105055. [Google Scholar] [CrossRef]
- Subramani, K.; Jung, R.; Molenberg, A. Hammerle Ch. Biofilm on dental implants: A review of the literature. Int. J. Oral Maxillofac. Implant. 2009, 24, 616–626. [Google Scholar]
- Teughels, W.; Van Assche, N.; Sliepen, I.; Quirynen, M. Effect of material characteristics and/or surface topography on biofilm development. Clin. Oral Implant. Res. 2006, 17 (Suppl. S2), 68–81. [Google Scholar] [CrossRef]
Primer Name | 16S rRNA Region | Primer Sequence (5′-3′) |
---|---|---|
Bac341F | V3 | CCTACGGGNGGCWGCAG |
Bac806R | V4 | GACTACHVGGGTATCTAATCC |
Microorganisms | |
---|---|
Species of Bacteria | |
Implant after 8 Years of Use (Patient 2) | Implant after 25 Years of Use (Patient 1) |
Citrobacter koseri | Carnobacterium divergens |
Enterobacter cloacae | Klebsiella oxytoca |
Erwinia perscinia | Lactococcus lactis |
Lactococcus lactis | Serratia marcescens |
Lactobacillus sakei | Staphylococcus capitis |
Neisseria mucosa | Streptococcus constellatus |
Staphylococcus capitis | Streptococcus massiliensis |
Staphylococcus haemolyticus | Streptococcus sanguinis |
Streptococcus constellatus | |
Streptococcus pneumonie | |
Streptococcus oralis | |
Veillonella parvula | |
Species of fungi | |
Candida parapsilosis | Candida dubliniensis |
Candida guilliermondii |
Microorganisms | |||
---|---|---|---|
Gram-Positive Bacteria | Gram-Negative Bacteria | Anaerobic Bacteria | Bacteria with Corrosive Potential |
Bifidobacterium dentium | Anaeroglobus geminatus | Anaeroglobus geminatus | Bifidobacterium dentium |
Bifidobacterium longum | Alloprevotella rava | Alloprevotella rava | Bifidobacterium longum |
Clostridiales bacterium | Alloprevotella tannerae | Alloprevotella tannerae | Porphyromonas gingivalis |
Denitrobacterium detoxificans | Capnocytophaga sputigena | Bifidobacterium dentium | Prevotella nigrescens |
Eubacterium infirmum | Klebsiella oxytoca | Bifidobacterium longum | Streptococcus anginosus |
Eubacterium brachy | Dialister pneumosintes | Clostridiales bacterium | Streptococcus constellatus |
Eubacterium minutum | Neisseria oralis | Denitrobacterium detoxificans | Streptococcus gordonii |
Eubacterium nodatum | Porphyromonas gingivalis | Dialister pneumosintes | Streptococcus mutans |
Mogibacterium timidum | Prevotella denticola | Eubacterium infirmum | Streptococcus salivarius |
Peptoniphilus lacrimalis | Prevotella nigrescens | Eubacterium brachy | Streptococcus sobrinus |
Streptococcus anginosus | Prevotella pallens | Eubacterium minutum | Tannerella forsythia |
Streptococcus constellatus | Prevotella baroniae | Eubacterium nodatum | Treponema denticola |
Streptococcus gordonii | Prevotella genomosp | Mogibacterium timidum | |
Streptococcus mutans | Prevotella melaninogenica | Peptoniphilus lacrimalis | |
Streptococcus salivarius | Prevotella oralis | Phocaeicola abscessus | |
Streptococcus sobrinus | Prevotella salivae | Porphyromonas gingivalis | |
Pyramidobacter piscolens | Prevotella denticola | ||
Tannerella forsythia | Prevotella nigrescens | ||
Treponema denticola | Tannerella forsythia | ||
Treponema maltophilum | Treponema denticola | ||
Treponema pectinovorum | Treponema maltophilum | ||
Treponema socranskii | Treponema pectinovorum | ||
Veillonella atypica | Treponema socranskii | ||
Veillonella atypica |
Microorganisms | Type of Sample | |||||||
---|---|---|---|---|---|---|---|---|
Surface Irradiated | Irradiation Time | |||||||
25 Years Old Implant | 8 Years Old Implant | |||||||
Unirradiated | 2 × 15 s | 3 × 15 s | Unirradiated | 2 × 15 s | 3 × 15 s | |||
Average Number of Microorganisms [CFU/mL] | Reduction [%] | Average Number of Microorganisms [CFU/mL] | Reduction [%] | |||||
Gram-negative bacteria | Klebsiella oxytoca | Abutment | 1.2 × 106 ± 5.5 × 104 | 100.00 * | 100.00 * | 1.4 × 106 ± 3.5 × 104 | 95.24 * | 99.42 * |
Endosseous fixture | 96.00 * | 100.00 * | 94.04 * | 94.23 * | ||||
Escherichia coli ATTC 25922 | Abutment | 1.9 × 106 ± 5.7 × 105 | 100.00 * | 100.00 * | 2.9 × 106 ± 2.7 × 105 | 98.87 * | 99.00 * | |
Endosseous fixture | 100.00 * | 100.00 * | 93.10 * | 98.00 * | ||||
Gram-positive bacteria | Streptococcus constellatus | Abutment | 1.2 × 106 ± 1.3 × 105 | 100.00 * | 100.00 * | 1.1 × 106 ± 1.3 × 104 | 89.83 * | 98.02 * |
Endosseous fixture | 95.00 * | 100.00 * | 88.85 * | 93.10 * | ||||
Staphylococcus aureus ATTC 29213 | Abutment | 5.8 × 106 ± 6.2 × 104 | 100.00 * | 100.00 * | 4.6 × 106 ± 2.2 × 104 | 100.00 * | 100.00 * | |
Endosseous fixture | 100.00 * | 100.00 * | 94.95 * | 100.00 * | ||||
Fungi | Candida guilliermondii | Abutment | 3.6 × 105 ± 2.8 × 104 | 100.00 * | 100.00 * | 2.6 × 106 ± 2.6 × 103 | 88.05 * | 96.77 * |
Endosseous fixture | 97.82 * | 98.90 * | 87.75 * | 93.10 * | ||||
Candida albicans ATTC 10231 | Abutment | 8.1 × 105 ± 5.6 × 103 | 100.00 * | 100.00 * | 6.1 × 106 ± 5.6 × 103 | 93.80 * | 99.15 * | |
Endosseous fixture | 95.20 * | 96.15 * | 93.20 * | 95.00 * |
Surface | New Implant | Implant after | Implant after |
---|---|---|---|
8 Years of Use | 25 Years of Use | ||
Endosseous fixture | Ra = 38.471 | Ra = 22.639 | Ra = 37.034 |
Rq = 45.842 | Rq = 29.681 | Rq = 240.811 | |
Rt = 210.589 | Rt = 241.486 | Rt = 401.369 | |
Endosseous fixture after the laser irradiation | Ra = 40.532 | Ra = 13.539 | Ra = 16.411 |
2 × 15 s | Rq = 47.296 | Rq = 101.438 | Rq = 22.87 |
Rt = 210.425 | Rt = 180.654 | Rt = 243.292 | |
Endosseous fixture after the laser irradiation | Ra = 40.758 | Ra = 30.477 | Ra = 34.311 |
3 × 15 s | Rq = 47.176 | Rq = 37.385 | Rq = 43.103 |
Rt = 197.443 | Rt = 389.476 | Rt = 371.761 | |
Abutment | Ra = 12.673 | Ra = 7.896 | Ra = 15.76 |
Rq = 19.781 | Rq = 11.301 | Rq = 20.285 | |
Rt = 430.766 | Rt = 219.145 | Rt = 215.504 | |
Abutment after the laser irradiation 2 × 15 s | Ra = 7.315 | Ra = 4.575 | Ra = 0.838 |
Rq = 10.032 | Rq = 6.071 | Rq = 82.387 | |
Rt = 316.254 | Rt = 127.71 | Rt = 129.033 | |
Abutment after the laser irradiation 3 × 15 s | Ra = 2.313 | Ra = 4.471 | Ra = 0.691 |
Rq = 4.826 | Rq = 5.519 | Rq = 58.673 | |
Rt = 190.445 | Rt = 238.824 | Rt = 125.867 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wawrzyk, A.; Rahnama, M.; Sofińska-Chmiel, W.; Wilczyński, S.; Gutarowska, B.; Konka, A.; Zeljas, D.; Łobacz, M. Analysis of the Microbiome on the Surface of Corroded Titanium Dental Implants in Patients with Periimplantitis and Diode Laser Irradiation as an Aid in the Implant Prosthetic Treatment: An Ex Vivo Study. Materials 2022, 15, 5890. https://doi.org/10.3390/ma15175890
Wawrzyk A, Rahnama M, Sofińska-Chmiel W, Wilczyński S, Gutarowska B, Konka A, Zeljas D, Łobacz M. Analysis of the Microbiome on the Surface of Corroded Titanium Dental Implants in Patients with Periimplantitis and Diode Laser Irradiation as an Aid in the Implant Prosthetic Treatment: An Ex Vivo Study. Materials. 2022; 15(17):5890. https://doi.org/10.3390/ma15175890
Chicago/Turabian StyleWawrzyk, Anna, Mansur Rahnama, Weronika Sofińska-Chmiel, Sławomir Wilczyński, Beata Gutarowska, Adam Konka, Dagmara Zeljas, and Michał Łobacz. 2022. "Analysis of the Microbiome on the Surface of Corroded Titanium Dental Implants in Patients with Periimplantitis and Diode Laser Irradiation as an Aid in the Implant Prosthetic Treatment: An Ex Vivo Study" Materials 15, no. 17: 5890. https://doi.org/10.3390/ma15175890
APA StyleWawrzyk, A., Rahnama, M., Sofińska-Chmiel, W., Wilczyński, S., Gutarowska, B., Konka, A., Zeljas, D., & Łobacz, M. (2022). Analysis of the Microbiome on the Surface of Corroded Titanium Dental Implants in Patients with Periimplantitis and Diode Laser Irradiation as an Aid in the Implant Prosthetic Treatment: An Ex Vivo Study. Materials, 15(17), 5890. https://doi.org/10.3390/ma15175890