Experimental Investigation and Comparative Analysis of Aluminium Hybrid Metal Matrix Composites Reinforced with Silicon Nitride, Eggshell and Magnesium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aluminium 6082
2.2. Silicon Nitride
2.3. Eggshell
2.4. Magnesium
2.5. Preparation of Composite
2.6. Experimentation
3. Results and Discussion
3.1. Evaluation of Mechanical Properties
3.2. Mechanical Characterisations
3.2.1. Tensile Test
3.2.2. Hardness Test
3.3. Statistical Analysis
3.3.1. Taguchi Analysis: Machining Time versus SPEED, FEED, DOC
3.3.2. General Linear Model: Machining Time versus Spindle Speed, Feed, Depth of Cut
3.3.3. Taguchi Analysis: RA versus SPEED, FEED, DOC
3.3.4. General Linear Model: RA versus Spindle Speed, Feed, Depth of Cut
3.3.5. Taguchi Analysis: MRR versus SPEED, FEED, DOC
3.3.6. General Linear Model: MRR versus Spindle Speed, Feed, Depth of Cut
3.3.7. Analysis of Stresses and Displacements for UTM Outcomes
3.4. Interpretation of Results
4. Conclusions
- Better surface quality of about 1.217 μm roughness was obtained during the turning operation. It is noted that the minimum surface roughness was obtained for the depth of cut of 0.50 mm, spindle speed of 1500 RPM, and feed rate of 0.02 mm/rev, respectively.
- Less machining time of 76 s was achieved at the spindle speed of 1500 RPM, depth of cut of 0.75 mm, and feed rate of 0.04 mm/rev, respectively.
- A higher material removal rate of about 0.069 gm/cc was obtained for the depth of cut of 0.75 mm, spindle speed of 1750 RPM, and feed rate of 0.02 mm/rev, respectively.
- Feed rate has considered the most dominant factor for all output responses. The highlighted values are identified with the percentage of contribution of feed rate on surface roughness as 80%, the machining timing as 40% and the material removal rate contributed as 37%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaithanyasai, A.; Vakchore, P.R.; Umasankar, V. The Micro Structural and Mechanical Property Study of Effects of EGG SHELL Particles on the Aluminum 6061. Procedia Eng. 2014, 97, 961–967. [Google Scholar] [CrossRef]
- Arun, L.R.; Kulkarni, D.S.K.N.; Kuldeep, B. Characteristic Studies on Aluminium Based Silicon Carbide and Fly Ash Particulate Metal Matrix Composite. Int. J. Eng. Res. Technol. 2013, 2, 181–2278. [Google Scholar]
- Dey, D.; Bhowmik, A.; Biswas, A. Effect of SiC Content on Mechanical and Tribological Properties of Al2024-SiC Composites. Silicon 2020, 14, 1–11. [Google Scholar] [CrossRef]
- Khan, A.; Ko, D.-K.; Lim, S.C.; Kim, H.S. Structural Vibration-Based Classification and Prediction of Delamination in Smart Composite Laminates Using Deep Learning Neural Network. Compos. Part B Eng. 2019, 161, 586–594. [Google Scholar] [CrossRef]
- Hassan, S.B.; Aigbodion, V.S. Effects of Eggshell on the Microstructures and Properties of Al--Cu--Mg/Eggshell Particulate Composites. J. King Saud Univ. Sci. 2015, 27, 49–56. [Google Scholar] [CrossRef]
- Ahmad, I.; Mahanwar, P.A. Mechanical Properties of Fly Ash Filled High Density Polyethylene. J. Miner. Mater. Charact. Eng. 2010, 9, 183. [Google Scholar] [CrossRef]
- Agunsoye, J.O.; Bello, S.A.; Adekunle, A.Y.; Raheem, I.A.; Awe, O.I. Effects of Reinforcement Particle Sizes on Mechanical Properties of Aluminium/Egg Shell Composites. UNILAG J. Med. Sci. Technol. 2016, 4, 133–143. [Google Scholar]
- Pawar, P.B.; Utpat, A.A. Development of Aluminium Based Silicon Carbide Particulate Metal Matrix Composite for Spur Gear. Procedia Mater. Sci. 2014, 6, 1150–1156. [Google Scholar] [CrossRef]
- Pruthviraj, R.D. Wear Characteristics of Chilled Zinc-Aluminium Alloy Reinforced with Silicon Carbide Particulate Composites, Res. J. Chem. Sci 2011, 1, 17–24. [Google Scholar]
- Shamim, S.; Singh, H.; Sasikumar, C.; Yadav, D.K. Microstructures and Mechanical Properties of Al-Si-Mg-Ti/Egg Shell Particulate Composites. Mater. Today Proc. 2017, 4, 2887–2892. [Google Scholar] [CrossRef]
- Kumar, S.; Dwivedi, V.K.; Dwivedi, S.P. Waste Material Produced from Industry and Its Utilization in Development of Green Composite Material: A Review. Mater. Today Proc. 2021, 43, 490–496. [Google Scholar] [CrossRef]
- Sivaram, A.R.; Krishnakumar, K.; Rajavel, D.R.; Sabarish, R. Experimental Investigation of Creep Behaviour of Aluminium Alloy (LM25) and Zirconium DI-Oxide (ZR02) Particulate MMC. Int. J. Mech. Eng. Technol. 2015, 6, 126–138. [Google Scholar]
- Bose, S.; Pandey, A.; Mondal, A. Comparative Analysis on Aluminum-Silicon Carbide Hybrid Green Metal Matrix Composite Materials Using Waste Egg Shells and Snail Shell Ash as Reinforcements. Mater. Today Proc. 2018, 5, 27757–27766. [Google Scholar] [CrossRef]
- Verma, V.; Nishant, M.G.; GILL, M.M. Effects of Waste Eggshells and Silicon Carbide Addition in the Synthesis of Aluminium Alloy 6061 Hybrid Green Metal Matrix Composite. Int. Res. J. Eng. Technol. 2018, 5, 1413–1419. [Google Scholar]
- Kumar, V.; Gupta, R.D.; Batra, N.K. Comparison of Mechanical Properties and Effect of Sliding Velocity on Wear Properties of Al 6061, Mg 4%, Fly Ash and Al 6061, Mg 4%, Graphite 4%, Fly Ash Hybrid Metal Matrix Composite. Procedia Mater. Sci. 2014, 6, 1365–1375. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, H.M. Microstructural and Corrosion Behavior of Al/SiC Metal Matrix Composites. Ain Shams Eng. J. 2014, 5, 831–838. [Google Scholar] [CrossRef]
- Mistry, J.M.; Gohil, P.P. Experimental Investigations on Wear and Friction Behaviour of Si3N4p Reinforced Heat-Treated Aluminium Matrix Composites Produced Using Electromagnetic Stir Casting Process. Compos. Part B Eng. 2019, 161, 190–204. [Google Scholar] [CrossRef]
- Hima Gireesh, C.; Durga Prasad, K.G.; Ramji, K. Experimental Investigation on Mechanical Properties of an Al6061 Hybrid Metal Matrix Composite. J. Compos. Sci. 2018, 2, 49. [Google Scholar] [CrossRef]
- Bhuvaneswari, V.; Rajeshkumar, L.; Ross, K.N.S. Influence of Bioceramic Reinforcement on Tribological Behaviour of Aluminium Alloy Metal Matrix Composites: Experimental Study and Analysis. J. Mater. Res. Technol. 2021, 15, 2802–2819. [Google Scholar] [CrossRef]
- Prakash, D.S.; Balaji, V.; Rajesh, D.; Anand, P.; Karthick, M. Experimental Investigation of Nano Reinforced Aluminium Based Metal Matrix Composites. Mater. Today Proc. 2022, 54, 852–857. [Google Scholar] [CrossRef]
- Singh, S.; Gangwar, S.; Yadav, S. A Review on Mechanical and Tribological Properties of Micro/Nano Filled Metal Alloy Composites. Mater. Today Proc. 2017, 4, 5583–5592. [Google Scholar] [CrossRef]
- Mohanavel, V.; Ravichandran, M. Experimental Investigation on Mechanical Properties of AA7075-AlN Composites. Mater. Test. 2019, 61, 554–558. [Google Scholar] [CrossRef]
- Senthilkumar, G.; Manoharan, S.; Balasubramanian, K.; Dhanasakkaravarthi, B. An Experimental Investigation of Metal Matrix Composites of Aluminium (Lm6), Boroncarbide and Flyash. Aust. J. Basic Appl. Sci. 2016, 10, 137–144. [Google Scholar]
- Abedinzadeh, R.; Norouzi, E.; Toghraie, D. Experimental Investigation of Machinability in Laser-Assisted Machining of Aluminum-Based Nanocomposites. J. Mater. Res. Technol. 2021, 15, 3481–3491. [Google Scholar] [CrossRef]
- Joseph, O.O.; Babaremu, K.O. Agricultural Waste as a Reinforcement Particulate for Aluminum Metal Matrix Composite (AMMCs): A Review. Fibers 2019, 7, 33. [Google Scholar] [CrossRef] [Green Version]
Weight % | Al | Si | Fe | Cu | Mn | Cr | Mg | Zn | Ti | Other Each | Others Total |
---|---|---|---|---|---|---|---|---|---|---|---|
6082 | Bal | 0.7–1.3 | 0.50 max | 0.10 max | 0.40–1.00 | 0.25 max | 0.06–1.20 | 0.20 max | 0.10 max | 0.05 max | 0.15 max |
Ratio | AL 6082 Wt (%) | Si3N4 Wt (%) | ES Wt (%) | Mg Wt (%) |
---|---|---|---|---|
1 | 100% | 0 | 0 | 0 |
2 | 92% | 5% | 2% | 1% |
Levels | Machining Parameters | ||
---|---|---|---|
Spindle Speed (N) (RPM) | Feed (mm/Rev) | DOC (mm) | |
1 | 1250 | 0.02 | 0.25 |
2 | 1500 | 0.04 | 0.50 |
3 | 1750 | 0.06 | 0.75 |
S. No | Spindle Speed (N) (RPM) | Feed (mm/Rev) | DOC (mm) |
---|---|---|---|
1 | 1250 | 0.02 | 0.25 |
2 | 1250 | 0.04 | 0.50 |
3 | 1250 | 0.06 | 0.75 |
4 | 1500 | 0.02 | 0.50 |
5 | 1500 | 0.04 | 0.75 |
6 | 1500 | 0.06 | 0.25 |
7 | 1750 | 0.02 | 0.75 |
8 | 1750 | 0.04 | 0.25 |
9 | 1750 | 0.06 | 0.50 |
Sample | YL (kN) | YS (N/mm2) | TL (kN) | TS (N/mm2) | IGL (mm) | FGL (mm) | % E | FD | % RA |
---|---|---|---|---|---|---|---|---|---|
R1—Al6082-100% | 14.57 | 74.47 | 17.46 | 89.24 | 50.00 | 51.24 | 2.48 | 15.06 | 8.92 |
R2—92% Al6082 + 5% Si3N4 + 2% Eggshell + 1% Magnesium | 15.92 | 78.95 | 20.57 | 102.01 | 50.00 | 51.34 | 2.68 | 15.41 | 7.47 |
Sample | Compression Load, kN | Compressive Strength, N/mm2 |
---|---|---|
R1—Al6082-100% | 58.96 | 252.47 |
R2—92% Al6082 + 5% Si3N4 + 2% Eggshell + 1% Magnesium | 64.29 | 311.40 |
Sample | HRB |
---|---|
R1—Al6082-100% | 76 |
R2—92% Al6082 + 5% Si3N4 + 2% Eggshell + 1% Magnesium | 87 |
Sl. No. | Speed (A) | Feed (B) | DOC (C) | Machining Time | Ra | MRR | S/N Ratio for Machining Time | S/N Ratio for Ra | S/N Ratio for MRR |
---|---|---|---|---|---|---|---|---|---|
(RPM) | (mm/Rev) | mm | SEC | Micron | gm/cc | ||||
1 | 1250 | 0.02 | 0.25 | 107 | 1.588 | 0.044 | −40.5877 | −4.01701 | −27.1309 |
2 | 1250 | 0.04 | 0.5 | 96 | 1.328 | 0.064 | −39.6454 | −2.46396 | −23.8764 |
3 | 1250 | 0.06 | 0.75 | 83 | 2.479 | 0.066 | −38.3816 | −7.88553 | −23.6091 |
4 | 1500 | 0.02 | 0.5 | 94 | 1.217 | 0.051 | −39.4626 | −1.70581 | −25.8486 |
5 | 1500 | 0.04 | 0.75 | 76 | 1.669 | 0.066 | −37.6163 | −4.44913 | −23.6091 |
6 | 1500 | 0.06 | 0.25 | 83 | 2.056 | 0.068 | −38.3816 | −6.26046 | −23.3498 |
7 | 1750 | 0.02 | 0.75 | 88 | 1.563 | 0.069 | −38.8897 | −3.87918 | −23.223 |
8 | 1750 | 0.04 | 0.25 | 79 | 1.661 | 0.062 | −37.9525 | −4.40739 | −24.1522 |
9 | 1750 | 0.06 | 0.5 | 89 | 2.197 | 0.063 | −38.9878 | −6.8366 | −24.0132 |
Response Table for Signal to Noise Ratios | Response Table for Means | ||||||
---|---|---|---|---|---|---|---|
Smaller Is Better | |||||||
Level | SPEED | FEED | DOC | Level | SPEED | FEED | DOC |
1 | −39.54 | −39.65 | −38.97 | 1 | 95.33 | 96.33 | 89.67 |
2 | −38.49 | −38.4 | −39.37 | 2 | 84.33 | 83.67 | 93 |
3 | −38.61 | −38.58 | −38.3 | 3 | 85.33 | 85 | 82.33 |
Delta | 1.05 | 1.24 | 1.07 | Delta | 11 | 12.67 | 10.67 |
Rank | 3 | 1 | 2 | Rank | 2 | 1 | 3 |
Source | DF | Seq SS | Contribution | Adj SS | Adj MS | F Value | p Value |
---|---|---|---|---|---|---|---|
Spindle Speed | 2 | 173.25 | 25.85% | 173.25 | 86.63 | 6.07 | 0.141 |
Feed | 2 | 268.45 | 40.05% | 268.45 | 134.23 | 9.41 | 0.096 |
Depth of Cut | 2 | 199.99 | 29.84% | 199.99 | 99.99 | 7.01 | 0.125 |
Error | 2 | 28.54 | 4.26% | 28.54 | 14.27 | ||
Total | 8 | 670.23 | 100.00% |
Response Table for Signal to Noise Ratios | Response Table for Means | ||||||
---|---|---|---|---|---|---|---|
Smaller Is Better | |||||||
Level | SPEED | FEED | DOC | Level | SPEED | FEED | DOC |
1 | −4.789 | −3.201 | −4.895 | 1 | 1.798 | 1.456 | 1.768 |
2 | −4.138 | −3.773 | −3.669 | 2 | 1.647 | 1.553 | 1.581 |
3 | −5.041 | −6.994 | −5.405 | 3 | 1.807 | 2.244 | 1.904 |
Delta | 0.903 | 3.794 | 1.736 | Delta | 0.16 | 0.788 | 0.323 |
Rank | 3 | 1 | 2 | Rank | 3 | 1 | 2 |
Source | Seq SS | Contribution | Adj SS | Adj MS | F Value | p Value |
---|---|---|---|---|---|---|
Spindle Speed | 0.007014 | 3.71% | 0.007014 | 0.003507 | 1.04 | 0.49 |
Feed | 0.150814 | 79.73% | 0.150814 | 0.075407 | 22.39 | 0.043 |
Depth of Cut | 0.024601 | 13.01% | 0.024601 | 0.012301 | 3.65 | 0.215 |
Error | 0.006737 | 3.56% | 0.006737 | 0.003368 | ||
Total | 0.189166 | 100.00% |
Response Table for Signal to Noise Ratios | Response Table for Means | ||||||
---|---|---|---|---|---|---|---|
Higher Is Better | |||||||
Level | SPEED | FEED | DOC | Level | SPEED | FEED | DOC |
1 | −24.87 | −25.40 | −24.88 | 1 | 0.05800 | 0.05467 | 0.05800 |
2 | −24.27 | −23.88 | −24.58 | 2 | 0.06167 | 0.06400 | 0.05933 |
3 | −23.80 | −23.66 | −23.48 | 3 | 0.06467 | 0.06567 | 0.06700 |
Delta | 1.08 | 1.74 | 1.4 | Delta | 0.00667 | 0.011 | 0.009 |
Rank | 3 | 1 | 2 | Rank | 3 | 1 | 2 |
Source | DF | Seq SS | Contribution | Adj SS | Adj MS | F Value | p Value |
---|---|---|---|---|---|---|---|
Spindle Speed | 2 | 0.000067 | 11.87% | 0.000067 | 0.000033 | 0.46 | 0.684 |
Feed | 2 | 0.000211 | 36.83% | 0.000211 | 0.000105 | 1.46 | 0.407 |
Depth of Cut | 2 | 0.000142 | 26.43% | 0.000142 | 0.000071 | 0.98 | 0.506 |
Error | 2 | 0.000145 | 24.87% | 0.000145 | 0.000072 | ||
Total | 8 | 0.000564 | 100.00% |
Material/Mechanical Properties | Young’s Modulus (GPa) | Density (gm/cc) | Poisson Ratio | Pressure (N/mm2) | |
---|---|---|---|---|---|
Al6082-100% | 71 | 2.71 | 0.33 | Tensile | 23.1216 |
Compressive | 6.847059 | ||||
92% Al6082 + 5% Si3N4 + 2% Eggshell + 1% Magnesium | 81.131 | 2.7179 | 0.326 | Tensile | 25.2118 |
Compressive | 8.0666 |
Samples | Compression Test | Tensile Test | ||
---|---|---|---|---|
Nodal Stress (MPa) | Elemental Stress (MPa) | Nodal Stress (MPa) | Elemental Stress (MPa) | |
Al6082-100% | 79.7721 | 82.8612 | 23.7527 | 25.1513 |
92% Al6082 + 5% Si3N4 + 2% Eggshell + 1% Magnesium | 87.1174 | 90.4706 | 28.0332 | 29.6448 |
Difference | 8.43 | 8.41 | 15.27 | 15.16 |
Samples | Compression Test Displacement (mm) | Tensile Test Displacement (mm) |
---|---|---|
Al6082-100% | 0.41778 | 0.021002 |
92% Al6082 + 5% Si3N4 + 2% eggshell + 1% magnesium | 0.039901 | 0.021664 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohan, D.; Chinnasamy, B.; Naganathan, S.K.; Nagaraj, N.; Jule, L.; Badassa, B.; Ramaswamy, K.; Kathirvel, P.; Murali, G.; Vatin, N.I. Experimental Investigation and Comparative Analysis of Aluminium Hybrid Metal Matrix Composites Reinforced with Silicon Nitride, Eggshell and Magnesium. Materials 2022, 15, 6098. https://doi.org/10.3390/ma15176098
Mohan D, Chinnasamy B, Naganathan SK, Nagaraj N, Jule L, Badassa B, Ramaswamy K, Kathirvel P, Murali G, Vatin NI. Experimental Investigation and Comparative Analysis of Aluminium Hybrid Metal Matrix Composites Reinforced with Silicon Nitride, Eggshell and Magnesium. Materials. 2022; 15(17):6098. https://doi.org/10.3390/ma15176098
Chicago/Turabian StyleMohan, Dhanenthiran, Balamurugan Chinnasamy, Senthil Kumar Naganathan, Nagaprasad Nagaraj, LetaTesfaye Jule, Bayissa Badassa, Krishnaraj Ramaswamy, Parthiban Kathirvel, Gunasekaran Murali, and Nikolai Ivanovich Vatin. 2022. "Experimental Investigation and Comparative Analysis of Aluminium Hybrid Metal Matrix Composites Reinforced with Silicon Nitride, Eggshell and Magnesium" Materials 15, no. 17: 6098. https://doi.org/10.3390/ma15176098
APA StyleMohan, D., Chinnasamy, B., Naganathan, S. K., Nagaraj, N., Jule, L., Badassa, B., Ramaswamy, K., Kathirvel, P., Murali, G., & Vatin, N. I. (2022). Experimental Investigation and Comparative Analysis of Aluminium Hybrid Metal Matrix Composites Reinforced with Silicon Nitride, Eggshell and Magnesium. Materials, 15(17), 6098. https://doi.org/10.3390/ma15176098