Evaluation of CNTs and SiC Whiskers Effect on the Rheology and Mechanical Performance of Metakaolin-Based Geopolymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Precursors
2.2. Alkaline Solution (A.S)
2.3. Additions
2.4. CNT and SCW Dispersion
2.5. Samples Preparation
2.6. Test Methods
3. Results and Discussions
3.1. Zeta potential of SCW and CNT Aqueous Dispersions
3.2. Rheological Tests
3.3. Isothermal Calorimetry
3.4. Compressive Strength
3.5. Microestruture: XRD Results and FTIR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silvestro, L.; Ruviaro, A.; Lima, G.; de Matos, P.; de Azevedo, A.R.G.; Monteiro, S.N.; Gleize, P. Influence of Ultrasonication of Functionalized Carbon Nanotubes on the Rheology, Hydration, and Compressive Strength of Portland Cement Pastes. Materials 2021, 14, 5248. [Google Scholar] [CrossRef] [PubMed]
- Silvestro, L.; dos Santos Lima, G.T.; Ruviaro, A.S.; de Matos, P.R.; Mezalira, D.Z.; Gleize, P.J.P. Evaluation of Different Organosilanes on Multi-Walled Carbon Nanotubes Functionalization for Application in Cementitious Composites. J. Build. Eng. 2022, 51, 104292. [Google Scholar] [CrossRef]
- De Azevedo, N.H.; Gleize, P.J.P. Effect of Silicon Carbide Nanowhiskers on Hydration and Mechanical Properties of a Portland Cement Paste. Constr. Build. Mater. 2018, 169, 388–395. [Google Scholar] [CrossRef]
- Silvestro, L.; Spat Ruviaro, A.; Ricardo de Matos, P.; Pelisser, F.; Zambelli Mezalira, D.; Jean Paul Gleize, P. Functionalization of Multi-Walled Carbon Nanotubes with 3-Aminopropyltriethoxysilane for Application in Cementitious Matrix. Constr. Build. Mater. 2021, 311, 125358. [Google Scholar] [CrossRef]
- Huang, J.; Rodrigue, D.; Guo, P. Flexural and Compressive Strengths of Carbon Nanotube Reinforced Cementitious Composites as a Function of Curing Time. Constr. Build. Mater. 2022, 318, 125996. [Google Scholar] [CrossRef]
- Oualit, M.; Irekti, A. Mechanical Performance of Metakaolin-Based Geopolymer Mortar Blended with Multi-Walled Carbon Nanotubes. Ceram. Int. 2022, 48, 16188–16195. [Google Scholar] [CrossRef]
- Valente, M.; Sambucci, M.; Sibai, A. Geopolymers vs. Cement Matrix Materials: How Nanofiller Can Help a Sustainability Approach for Smart Construction Applications—a Review. Nanomaterials 2021, 11, 2007. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Zhang, K.; Burnham, T.; Kwon, E.; Yu, X. Integration and Road Tests of a Self-Sensing CNT Concrete Pavement System for Traffic Detection. Smart Mater. Struct. 2013, 22, 015020. [Google Scholar] [CrossRef]
- Ding, S.; Xiang, Y.; Ni, Y.; Thakur, V.K.; Wang, X.; Han, B.; Ou, J. In-Situ Synthesizing Carbon Nanotubes on Cement to Develop Self-Sensing Cementitious Composites for Smart High-Speed Rail Infrastructures. Nano Today 2022, 43, 101438. [Google Scholar] [CrossRef]
- Maho, B.; Sukontasukkul, P.; Sua-Iam, G.; Sappakittipakorn, M.; Intarabut, D.; Suksiripattanapong, C.; Chindaprasirt, P.; Limkatanyu, S. Mechanical Properties and Electrical Resistivity of Multiwall Carbon Nanotubes Incorporated into High Calcium Fly Ash Geopolymer. Case Stud. Constr. Mater. 2021, 15, e00785. [Google Scholar] [CrossRef]
- Saafi, M.; Andrew, K.; Tang, P.L.; McGhon, D.; Taylor, S.; Rahman, M.; Yang, S.; Zhou, X. Multifunctional Properties of Carbon Nanotube/Fly Ash Geopolymeric Nanocomposites. Constr. Build. Mater. 2013, 49, 46–55. [Google Scholar] [CrossRef]
- Silvestro, L.; Gleize, P.J.P. Effect of Carbon Nanotubes on Compressive, Flexural and Tensile Strengths of Portland Cement-Based Materials: A Systematic Literature Review. Constr. Build. Mater. 2020, 264, 120237. [Google Scholar] [CrossRef]
- Sheikh, T.M.; Anwar, M.P.; Muthoosamy, K.; Jaganathan, J.; Chan, A.; Mohamed, A.A. The Mechanics of Carbon-Based Nanomaterials as Cement Reinforcement—A Critical Review. Constr. Build. Mater. 2021, 303, 124441. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Cheng, C.; Wei, H.; Du, S.; Yan, J. Surface-Treated Carbon Nanotubes in Cement Composites: Dispersion, Mechanical Properties and Microstructure. Constr. Build. Mater. 2021, 310, 125262. [Google Scholar] [CrossRef]
- Meguro, K.; Ushida, T.; Hiraoka, T.; Esumi, K. Effects of Surfactants and Surface Treatment on Aqueous Dispersion of Silicon Carbide. Bull. Chem. Soc. Jpn. 1987, 60, 89–94. [Google Scholar] [CrossRef]
- Ma, C.; Bai, S.; Meng, Y.; Peng, X. Hydrophilic Control of Laser Micro-Square-Convexes SiC Surfaces. Mater. Lett. 2013, 109, 316–319. [Google Scholar] [CrossRef]
- Thanh, N.T.K.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chem. Rev. 2014, 114, 7610–7630. [Google Scholar] [CrossRef]
- Ndolomingo, M.J.; Bingwa, N.; Meijboom, R. Review of Supported Metal Nanoparticles: Synthesis Methodologies, Advantages and Application as Catalysts. J. Mater. Sci. 2020, 55, 6195–6241. [Google Scholar] [CrossRef]
- De Azevedo, A.R.G.; Cruz, A.S.A.; Marvila, M.T.; de Oliveira, L.B.; Monteiro, S.N.; Vieira, C.M.F.; Fediuk, R.; Timokhin, R.; Vatin, N.; Daironas, M. Natural Fibers as an Alternative to Synthetic Fibers in Reinforcement of Geopolymer Matrices: A Comparative Review. Polymers 2021, 13, 2493. [Google Scholar] [CrossRef]
- Górski, M.; Czulkin, P.; Wielgus, N.; Boncel, S.; Kuziel, A.W.; Kolanowska, A.; Jędrysiak, R.G. Electrical Properties of the Carbon Nanotube-Reinforced Geopolymer Studied by Impedance Spectroscopy. Materials 2022, 15, 3543. [Google Scholar] [CrossRef]
- Jia, D.; He, P.; Wang, M.; Yan, S. Geopolymers and Their Matrix Composites: A State-of-the-Art Review. In Geopolymer and Geopolymer Matrix Composites; Springer: Singapore, 2020; pp. 7–34. [Google Scholar]
- Reis, D.C.; Quattrone, M.; Souza, J.F.T.; Punhagui, K.R.G.; Pacca, S.A.; John, V.M. Potential CO2 Reduction and Uptake Due to Industrialization and Efficient Cement Use in Brazil by 2050. J. Ind. Ecol. 2021, 25, 344–358. [Google Scholar] [CrossRef]
- Wang, B.; Yan, L.; Fu, Q.; Kasal, B. A Comprehensive Review on Recycled Aggregate and Recycled Aggregate Concrete. Resour. Conserv. Recycl. 2021, 171, 105565. [Google Scholar] [CrossRef]
- Shobeiri, V.; Bennett, B.; Xie, T.; Visintin, P. A Comprehensive Assessment of the Global Warming Potential of Geopolymer Concrete. J. Clean. Prod. 2021, 297, 126669. [Google Scholar] [CrossRef]
- Pelisser, F.; Bernardin, A.M.; Michel, M.D.; da Luz, C.A. Compressive Strength, Modulus of Elasticity and Hardness of Geopolymeric Cement Synthetized from Non-Calcined Natural Kaolin. J. Clean. Prod. 2021, 280, 124293. [Google Scholar] [CrossRef]
- Ramos, G.A.; Pelisser, F.; Paul Gleize, P.J.; Bernardin, A.M.; Michel, M.D. Effect of Porcelain Tile Polishing Residue on Geopolymer Cement. J. Clean. Prod. 2018, 191, 297–303. [Google Scholar] [CrossRef]
- Somna, R.; Saowapun, T.; Somna, K.; Chindaprasirt, P. Rice Husk Ash and Fly Ash Geopolymer Hollow Block Based on NaOH Activated. Case Stud. Constr. Mater. 2022, 16, e01092. [Google Scholar] [CrossRef]
- Park, S.; Moges, K.A.; Wu, S.; Pyo, S. Characteristics of Hybrid Alkaline Cement Composites with High Cement Content: Flash Set and High Compressive Strength. J. Mater. Res. Technol. 2022, 17, 1582–1597. [Google Scholar] [CrossRef]
- Jithendra, C.; Dalawai, V.N.; Elavenil, S. Effects of Metakaolin and Sodium Silicate Solution on Workability and Compressive Strength of Sustainable Geopolymer Mortar. Mater. Today Proc. 2022, 51, 1580–1584. [Google Scholar] [CrossRef]
- Rifaai, Y.; Yahia, A.; Mostafa, A.; Aggoun, S.; Kadri, E.H. Rheology of Fly Ash-Based Geopolymer: Effect of NaOH Concentration. Constr. Build. Mater. 2019, 223, 583–594. [Google Scholar] [CrossRef]
- Jindal, B.B.; Sharma, R. The Effect of Nanomaterials on Properties of Geopolymers Derived from Industrial By-Products: A State-of-the-Art Review. Constr. Build. Mater. 2020, 252, 119028. [Google Scholar] [CrossRef]
- Pelisser, F.; Guerrino, E.L.; Menger, M.; Michel, M.D.; Labrincha, J.A. Micromechanical Characterization of Metakaolin-Based Geopolymers. Constr. Build. Mater. 2013, 49, 547–553. [Google Scholar] [CrossRef]
- Da Luz, G.; Gleize, P.J.P.; Batiston, E.R.; Pelisser, F. Effect of Pristine and Functionalized Carbon Nanotubes on Microstructural, Rheological, and Mechanical Behaviors of Metakaolin-Based Geopolymer. Cem. Concr. Compos. 2019, 104, 103332. [Google Scholar] [CrossRef]
- Kovářík, T.; Bělský, P.; Novotný, P.; Říha, J.; Savková, J.; Medlín, R.; Rieger, D.; Holba, P. Structural and Physical Changes of Re-Calcined Metakaolin Regarding Its Reactivity. Constr. Build. Mater. 2015, 80, 98–104. [Google Scholar] [CrossRef]
- Romero, P.; Garg, N. Evolution of Kaolinite Morphology upon Exfoliation and Dissolution: Evidence for Nanoscale Layer Thinning in Metakaolin. Appl. Clay Sci. 2022, 222, 106486. [Google Scholar] [CrossRef]
- San Nicolas, R.; Cyr, M.; Escadeillas, G. Characteristics and Applications of Flash Metakaolins. Appl. Clay Sci. 2013, 83–84, 253–262. [Google Scholar] [CrossRef]
- Avet, F.; Snellings, R.; Alujas Diaz, A.; Ben Haha, M.; Scrivener, K. Development of a New Rapid, Relevant and Reliable (R3) Test Method to Evaluate the Pozzolanic Reactivity of Calcined Kaolinitic Clays. Cem. Concr. Res. 2016, 85, 1–11. [Google Scholar] [CrossRef]
- Cao, Z.; Cao, Y.; Dong, H.; Zhang, J.; Sun, C. Effect of Calcination Condition on the Microstructure and Pozzolanic Activity of Calcined Coal Gangue. Int. J. Miner. Process. 2016, 146, 23–28. [Google Scholar] [CrossRef]
- De Siqueira, J.E.L.; Gleize, P.J.P. Effect of Carbon Nanotubes Sonication on Mechanical Properties of Cement Pastes. Rev. IBRACON Estruturas Mater. 2020, 13, 455–463. [Google Scholar] [CrossRef]
- Taborda-Barraza, M.; Pelisser, F.; Gleize, P.J.P. Thermal-Mechanical Properties of Metakaolin-Based Geopolymer Containing Silicon Carbide Microwhiskers. Cem. Concr. Compos. 2021, 123, 104168. [Google Scholar] [CrossRef]
- ASTM C1231/C1231M; Standard Practice for Use of Unbonded Caps in Determination of Compressive Strength of Hardened Cylindrical Concrete Specimens; American Society for Testing and Materials: West Conshohawken, PA, USA, 2015.
- Wei, T.; Zhao, H.; Ma, C. A Comparison of Water Curing and Standard Curing on One-Part Alkali-Activated Fly Ash Sinking Beads and Slag: Properties, Microstructure and Mechanisms. Constr. Build. Mater. 2021, 273, 121715. [Google Scholar] [CrossRef]
- Ge, X.; Duran, L.; Tao, M.; DeGroot, D.J.; Li, E.; Zhang, G. Characteristics of Underwater Cast and Cured Geopolymers. Cem. Concr. Compos. 2020, 114, 103783. [Google Scholar] [CrossRef]
- Liu, C.; Wang, W.; Zhu, L.; Cui, F.; Xie, C.; Chen, X.; Li, N. High-Performance Nanofiltration Membrane with Structurally Controlled PES Substrate Containing Electrically Aligned CNTs. J. Memb. Sci. 2020, 605, 118104. [Google Scholar] [CrossRef]
- Chen, T.; Xia, J.; Gu, J.; Lu, G.; Xue, Q.; Liu, C.; Yan, L.; Chen, T. Engineering Janus CNTs/OCS Composite Membrane at Air/Water Interface for Excellent Dye Molecules Screening. Chem. Eng. J. 2021, 417, 127947. [Google Scholar] [CrossRef]
- Raju, K.; Yu, H.W.; Park, J.Y.; Yoon, D.H. Fabrication of SiCf/SiC Composites by Alternating Current Electrophoretic Deposition (AC-EPD) and Hot Pressing. J. Eur. Ceram. Soc. 2015, 35, 503–511. [Google Scholar] [CrossRef]
- Zhai, C.; Niu, Y.; Liu, J.; Yang, T. Effect of Octadecylamine Polyoxyethylene Ether on the Adsorption Feature of Sodium Polystyrene Sulfonate on the SiC Surface and the Relevant Dispersion Stability of Slurry. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 633, 127799. [Google Scholar] [CrossRef]
- Srinivasan, S.; Barbhuiya, S.A.; Charan, D.; Pandey, S.P. Characterising Cement-Superplasticiser Interaction Using Zeta Potential Measurements. Constr. Build. Mater. 2010, 24, 2517–2521. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, Z.; Shi, C.; Li, N.; Jiao, D.; Yuan, Q. Rheology of Alkali-Activated Materials: A Review. Cem. Concr. Compos. 2021, 121, 104061. [Google Scholar] [CrossRef]
- Alvi, M.A.A.; Khalifeh, M.; Agonafir, M.B. Effect of Nanoparticles on Properties of Geopolymers Designed for Well Cementing Applications. J. Pet. Sci. Eng. 2020, 191, 107128. [Google Scholar] [CrossRef]
- Fernández-Jiménez, M.C.A.P.A.; Banfill, P.F.G.; Al, S. Alkali Activated Fly Ash: Effect of Admixtures on Paste Rheology. Rheol. Acta 2009, 48, 447–455. [Google Scholar] [CrossRef]
- Favier, A.; Hot, J.; Habert, G.; Roussel, N.; D’Espinose De Lacaillerie, J.B. Flow Properties of MK-Based Geopolymer Pastes. A Comparative Study with Standard Portland Cement Pastes. Soft Matter 2014, 10, 1134–1141. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Jing, R.; Yan, P. The Interaction of Sodium Citrate and Polycarboxylate-Based Superplasticizer on the Rheological Properties and Viscoelasticity of Cement-Based Materials. Constr. Build. Mater. 2021, 293, 123466. [Google Scholar] [CrossRef]
- Roussel, N.; Ovarlez, G.; Garrault, S.; Brumaud, C. The Origins of Thixotropy of Fresh Cement Pastes. Cem. Concr. Res. 2012, 42, 148–157. [Google Scholar] [CrossRef]
- Li, L.; Wei, Y.J.; Li, Z.; Farooqi, M.U. Rheological and Viscoelastic Characterizations of Fly Ash/Slag/Silica Fume-Based Geopolymer. J. Clean. Prod. 2022, 354, 131629. [Google Scholar] [CrossRef]
- Zhou, S.; Yang, Z.; Zhang, R.; Li, F. Preparation, Characterization and Rheological Analysis of Eco-Friendly Road Geopolymer Grouting Materials Based on Volcanic Ash and Metakaolin. J. Clean. Prod. 2021, 312, 127822. [Google Scholar] [CrossRef]
- Silvestro, L.; dos Santos Lima, G.T.; Ruviaro, A.S.; Mezalira, D.Z.; Gleize, P.J.P. Effect of Multiwalled Carbon Nanotube Functionalization with 3-Aminopropyltriethoxysilane on the Rheology and Early-Age Hydration of Portland Cement Pastes. J. Mater. Civ. Eng. 2022, 34, 1–12. [Google Scholar] [CrossRef]
- Zhang, Z.; Provis, J.L.; Wang, H.; Bullen, F.; Reid, A. Quantitative Kinetic and Structural Analysis of Geopolymers. Part 2. Thermodynamics of Sodium Silicate Activation of Metakaolin. Thermochim. Acta 2013, 565, 163–171. [Google Scholar] [CrossRef]
- Zhu, H.; Liang, G.; Zhang, Z.; Wu, Q.; Du, J. Partial Replacement of Metakaolin with Thermally Treated Rice Husk Ash in Metakaolin-Based Geopolymer. Constr. Build. Mater. 2019, 221, 527–538. [Google Scholar] [CrossRef]
- Lolli, F.; Thomas, J.J.; Kurtis, K.E.; Cucinotta, F.; Masoero, E. Early Age Volume Changes in Metakaolin Geopolymers: Insights from Molecular Simulations and Experiments. Cem. Concr. Res. 2021, 144, 106428. [Google Scholar] [CrossRef]
- Hu, Z.; Wyrzykowski, M.; Lura, P. Estimation of Reaction Kinetics of Geopolymers at Early Ages. Cem. Concr. Res. 2020, 129, 105971. [Google Scholar] [CrossRef]
- Firdous, R.; Stephan, D. Effect of Silica Modulus on the Geopolymerization Activity of Natural Pozzolans. Constr. Build. Mater. 2019, 219, 31–43. [Google Scholar] [CrossRef]
- Mohamed, R.; Abd, R.; Mustafa, M.; Bakri, A.; Zamree, S.; Abd, A.; Yuan-li, L.; Victor, A.; Wys, J.J. Heat Evolution of Alkali-Activated Materials: A Review on Influence Factors. Constr. Build. Mater. 2022, 314, 125651. [Google Scholar] [CrossRef]
- Assaedi, H.; Shaikh, F.U.A.; Low, I.M. Effect of Nano-Clay on Mechanical and Thermal Properties of Geopolymer. J. Asian Ceram. Soc. 2016, 4, 19–28. [Google Scholar] [CrossRef]
- Alomayri, T. Experimental Study of the Microstructural and Mechanical Properties of Geopolymer Paste with Nano Material (Al2O3). J. Build. Eng. 2019, 25, 100788. [Google Scholar] [CrossRef]
- Khater, H.M.; Abd El Gawaad, H.A. Characterization of Alkali Activated Geopolymer Mortar Doped with MWCNT. Constr. Build. Mater. 2016, 102, 329–337. [Google Scholar] [CrossRef]
- Sabziparvar, A.M.; Hosseini, E.; Chiniforush, V.; Korayem, A.H. Barriers to Achieving Highly Dispersed Graphene Oxide in Cementitious Composites: An Experimental and Computational Study. Constr. Build. Mater. 2019, 199, 269–278. [Google Scholar] [CrossRef]
- Long, W.; Ye, T.; Luo, Q.; Wang, Y.; Mei, L. Reinforcing Mechanism of Reduced Graphene Oxide on Flexural Strength of Geopolymers: A Synergetic Analysis of Hydration and Chemical Composition. Nanomaterials 2019, 9, 1723. [Google Scholar] [CrossRef]
- Kuenzel, C.; Neville, T.P.; Donatello, S.; Vandeperre, L.; Boccaccini, A.R.; Cheeseman, C.R. Influence of Metakaolin Characteristics on the Mechanical Properties of Geopolymers. Appl. Clay Sci. 2013, 83–84, 308–314. [Google Scholar] [CrossRef]
- Zejak, R.; Nikolić, I.; Đurović, D.; Mugoša, B.P.; Blečić, D.; Radmilović, V. Influence of Na2O/Al2O3 and SiO2/Al2O3 Ratios on the Immobilization of Pb from Electric Arc Furnace into the Fly Ash Based Geopolymers. In Proceedings of the 16th International Conference on Heavy Metals in the Environment, Rome, Italy, 23–27 September 2012; pp. 2–4. [Google Scholar]
- Juengsuwattananon, K.; Winnefeld, F.; Chindaprasirt, P.; Pimraksa, K. Correlation between Initial SiO2/Al2O3, Na2O/Al2O3, Na2O/SiO2 and H2O/Na2O Ratios on Phase and Microstructure of Reaction Products of Metakaolin-Rice Husk Ash Geopolymer. Constr. Build. Mater. 2019, 226, 406–417. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P.K.; Rangan, V.B. Early Age Properties of Low-Calcium Fly Ash Geopolymer Concrete Suitable for Ambient Curing. Procedia Eng. 2015, 125, 601–607. [Google Scholar] [CrossRef]
- Wei, X.; Ming, F.; Li, D.; Chen, L.; Liu, Y. Influence of Water Content on Mechanical Strength and Microstructure of Alkali-Activated Fly Ash/GGBFS Mortars Cured at Cold and Polar Regions. Materials 2020, 13, 138. [Google Scholar] [CrossRef] [Green Version]
- Öz, H.Ö.; Doğan-Sağlamtimur, N.; Bilgil, A.; Tamer, A.; Günaydin, K. Process Development of Fly Ash-Based Geopolymer Mortars in View of the Mechanical Characteristics. Materials 2021, 14, 2935. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Xie, S.; Zhang, F.; Tang, C.; Chen, L.; Law, W.; Tsui, C. Microstructure and Compressive Properties of Silicon Carbide Reinforced Geopolymer. Compos. Part B 2016, 105, 93–100. [Google Scholar] [CrossRef]
- Kun, P.; Tapaszto, O.; We, F.; Bala, C. Determination of Structural and Mechanical Properties of Multilayer Graphene Added Silicon Nitride-Based Composites. Ceram. Int. 2012, 38, 211–216. [Google Scholar] [CrossRef]
- Moshrefzadeh-sani, H.; Shokrieh, M.M. Strength Calculation of Graphene/Polymer Nanocomposites Using the Combined Laminate Analogy and Progressive Damage Model. Mech. Mater. 2018, 127, 48–54. [Google Scholar] [CrossRef]
- Provis, J.L.; van Deventer, J.S.J. Geopolymerisation Kinetics. 2. Reaction Kinetic Modelling. Chem. Eng. Sci. 2007, 62, 2318–2329. [Google Scholar] [CrossRef]
- Azevedo, A.G.S.; Strecker, K.; Barros, L.A.; Tonholo, L.F.; Lombardi, C.T. Effect of Curing Temperature, Activator Solution Composition and Particle Size in Brazilian Fly-Ash Based Geopolymer Production. Mater. Res. 2019, 22, 1–12. [Google Scholar] [CrossRef]
- Dai, S.; Wang, H.; An, S.; Yuan, L. Mechanical Properties and Microstructural Characterization of Metakaolin Geopolymers Based on Orthogonal Tests. Materials 2022, 15, 2957. [Google Scholar] [CrossRef]
Compound | SiO2 | Al2O3 | Fe2O3 | K2O | MnO | TiO2 | Fire Lost | SSA (m2/g) |
---|---|---|---|---|---|---|---|---|
MK1 | 56.27 | 42.40 | 0.44 | 0.67 | 0.01 | 0.02 | 0.59 | 29.02 |
MK2 | 51.28 | 38.27 | 7.18 | 1.04 | 0.17 | 1.63 | 3.00 | 8.65 |
Inside Diameter (nm) | Outside Diameter (nm) | Length (µm) | SSA (m2/g) | Purity | -COOH Content (%) |
---|---|---|---|---|---|
5–10 | 20–30 | 10–30 | 182.1 | 95% | 1.9–2.1% |
Diameter (µm) | Length (µm) | SSA (m2/g) | Carbon Free | Type Cristal |
---|---|---|---|---|
0.1–2.5 | 2–50 | 12.55 | ≤0.05% | β |
Name | Addition (gr) | SiO2/Al2O3 | Na2O/Al2O3 | Na2O/SiO2 | H2O/Na2O |
---|---|---|---|---|---|
R1 (MK1 + AS) | 0.00 | 3.70 | 0.68 | 0.18 | 14.75 |
R2 (MK2 + AS) | 0.00 | 3.88 | 0.76 | 0.20 | |
R1 + NW | 0.20 | 3.70 | 0.68 | 0.18 | |
R2 + NW | 0.20 | 3.88 | 0.76 | 0.20 | |
R1 + CNT | 0.20 | 3.70 | 0.68 | 0.18 | |
R2 + CNT | 0.20 | 3.88 | 0.76 | 0.20 |
Type of Vibration | Wavenumber (cm−1) | References | MK1 | R1 | R1 + SCW | R1 + CNT | MK2 | R2 | R2 + SCW | R2 + CNT |
---|---|---|---|---|---|---|---|---|---|---|
O-H stretching, H-O-H bending | 3460–3465,1640 | [31,38,55] | + | + | + | + | + | + | + | + |
C-O asymmetric stretching | 1400–1415, 875 | [64,80] | - | + | + | ++ | + | + | + | ++ |
Si-O-T asymmetric stretching (T = Al, Si) | 1200–900 | [29,36,51,52,54,67,77] | + | + | + | + | + | + | + | + |
Al-O stretching | 800–805, 620 | [71] | ++ | ++ | + | + | +/++ | -/+ | -/+ | -/+ |
Si-OH bending | 865–875 | [58] | - | + | + | ++ | - | - | - | - |
Si-O-Si, Al-O-Si symmetric stretching | 465–475 | [55,71] | ++ | + | + | + | ++ | + | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taborda-Barraza, M.; Padilha, F.; Silvestro, L.; Azevedo, A.R.G.d.; Gleize, P.J.P. Evaluation of CNTs and SiC Whiskers Effect on the Rheology and Mechanical Performance of Metakaolin-Based Geopolymers. Materials 2022, 15, 6099. https://doi.org/10.3390/ma15176099
Taborda-Barraza M, Padilha F, Silvestro L, Azevedo ARGd, Gleize PJP. Evaluation of CNTs and SiC Whiskers Effect on the Rheology and Mechanical Performance of Metakaolin-Based Geopolymers. Materials. 2022; 15(17):6099. https://doi.org/10.3390/ma15176099
Chicago/Turabian StyleTaborda-Barraza, Madeleing, Francine Padilha, Laura Silvestro, Afonso Rangel Garcez de Azevedo, and Philippe Jean Paul Gleize. 2022. "Evaluation of CNTs and SiC Whiskers Effect on the Rheology and Mechanical Performance of Metakaolin-Based Geopolymers" Materials 15, no. 17: 6099. https://doi.org/10.3390/ma15176099
APA StyleTaborda-Barraza, M., Padilha, F., Silvestro, L., Azevedo, A. R. G. d., & Gleize, P. J. P. (2022). Evaluation of CNTs and SiC Whiskers Effect on the Rheology and Mechanical Performance of Metakaolin-Based Geopolymers. Materials, 15(17), 6099. https://doi.org/10.3390/ma15176099