Carbonation Behavior of Engineered Cementitious Composites under Coupled Sustained Flexural Load and Accelerated Carbonation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Specimens
2.2. Determination of Flexural Load Bearing Capacity
2.3. Loading Conditions
2.4. Accelerated Carbonation Test
2.5. Microhardness Measurement
2.6. MIP Measurement
2.7. TG/DTD and XRD Test
3. Results
3.1. Carbonation Depth
3.2. Carbonation Depth Model
3.3. Mineral Phases
3.4. Porosity and Pore Size Distribution
3.5. Microhardness
4. Conclusions
- (1)
- The stress level had a more remarkable influence on the carbonation depth within a short period of accelerated carbonation compared with a long period. At the flexural stress level δT = 0.6 (S6-PD), the carbonation depths were 7.21 mm and 9.92 mm, respectively, after 7 d and 28 d carbonation. The carbonation depth was more than three times that in the unstressed condition at 7 d, and decreased twofold at 28 d;
- (2)
- In the carbonation depth model, an exponential relationship was observed between the stress influence coefficient and the flexural tensile stress level of ECC. This is different from the plain concrete, in which a linear relation is generally used. The determination coefficient corresponding to each carbonation period was above 0.9, confirming an agreement between the prediction and experiments;
- (3)
- Within the carbonation depth detected by the phenolphthalein solution, the change of absorbed CO2 content can be divided into three regimes, namely, highly carbonated, partly carbonated and uncarbonated. A sharp drop was observed in the partly carbonated area, while the content gradually decreased in the others;
- (4)
- Under the coupled sustained load and accelerated carbonation, the accelerated carbonation played an important role in refining the pores in the range of 0.1 to 10 μm. The sustained load mainly contributed to generating pores (flaws) larger than 10 μm. This effect was limited due to the presence of fibres;
- (5)
- Microhardness decreased from the exposed surface to the interior part. In general, areas with a greater carbonation degree showed greater microhardness, even under a large sustained load level, as the carbonation process refined the pore structure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bentur, A.; Mindess, S. Fibre Reinforced Cementitious Composites; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Huang, H.; Gao, X.; Teng, L. Fiber alignment and its effect on mechanical properties of UHPC: An overview. Constr. Build. Mater. 2021, 296, 123741. [Google Scholar] [CrossRef]
- Van Zijl, G.P.; Wittmann, F.H. On durability of SHCC. J. Adv. Concr. Technol. 2010, 8, 261–271. [Google Scholar] [CrossRef]
- Li, H.; Xu, S.; Leung, C.K.Y. Tensile and flexural properties of ultra high toughness cemontious composite. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2009, 24, 677–683. [Google Scholar] [CrossRef]
- Suthiwarapirak, P.; Matsumoto, T.; Kanda, T. Multiple Cracking and Fiber Bridging Characteristics of Engineered Cementitious Composites under Fatigue Flexure. J. Mater. Civ. Eng. 2004, 16, 433–443. [Google Scholar] [CrossRef]
- Yang, Y.; Lepech, M.D.; Yang, E.-H.; Li, V. Autogenous healing of engineered cementitious composites under wet–dry cycles. Cem. Concr. Res. 2009, 39, 382–390. [Google Scholar] [CrossRef]
- Qian, S.; Zhou, J.; de Rooij, M.; Schlangen, E.; Ye, G.; van Breugel, K. Self-healing behavior of strain hardening cementitious composites incorporating local waste materials. Cem. Concr. Compos. 2009, 31, 613–621. [Google Scholar] [CrossRef]
- Qian, S.; Zhou, J.; Schlangen, E. Influence of curing condition and precracking time on the self-healing behavior of Engineered Cementitious Composites. Cem. Concr. Compos. 2010, 32, 686–693. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, E.-H.; Li, V. Autogenous healing of engineered cementitious composites at early age. Cem. Concr. Res. 2011, 41, 176–183. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, J.; Ni, F.; Zhou, L. Fatigue Cracking Resistance of Engineered Cementitious Composites (ECC) under Working Condition of Orthotropic Steel Bridge Decks Pavement. Appl. Sci. 2019, 9, 3577. [Google Scholar] [CrossRef]
- Guan, Y.; Wu, J.; Sun, R.; Zhang, H.; Hu, Y.; Wang, F. Transverse Flexural Behaviour of Steel-Engineering Cementitious Composites (ECC) Composite Deck under Negative and Positive Bending Forces. KSCE J. Civ. Eng. 2021, 25, 2962–2973. [Google Scholar] [CrossRef]
- Kakuma, K.; Matsumoto, T.; Hayashikawa, T.; He, X. Fatigue Analysis of ECC-Steel Composite Deck under Wheel Trucking Load. In Proceedings of the Twelfth East Asia-Pacific Conference on Structural Engineering and Construction, Hong Kong, China, 26–28 January 2011; Fai, L.H., Ed.; Elsevier Science BV: Amsterdam, The Netherlands, 2011; Volume 14, pp. 1838–1844. [Google Scholar]
- Zhang, J.; Li, V. Monotonic and fatigue performance in bending of fiber-reinforced engineered cementitious composite in overlay system. Cem. Concr. Res. 2002, 32, 415–423. [Google Scholar] [CrossRef]
- Gao, P.; Chen, Y.; Huang, H.; Qian, Z.; Schlangen, E.; Wei, J.; Yu, Q. Investigation of drying-induced non-uniform deformation, stress, and micro-crack propagation in concrete. Cem. Concr. Compos. 2020, 114, 103786. [Google Scholar] [CrossRef]
- Maalej, M.; Li, V.C. Introduction of strain-hardening engineered cementitious composites in design of reinforced concrete flexural members for improved durability. ACI Struct. J. 1995, 92, 167–176. [Google Scholar]
- Huang, B.-T.; Li, Q.-H.; Xu, S.-L.; Zhang, L. Static and fatigue performance of reinforced concrete beam strengthened with strain-hardening fiber-reinforced cementitious composite. Eng. Struct. 2019, 199, 109576. [Google Scholar] [CrossRef]
- Mustafa, S.; Singh, S.; Hordijk, D.; Schlangen, E.; Luković, M. Experimental and numerical investigation on the role of interface for crack-width control of hybrid SHCC concrete beams. Eng. Struct. 2022, 251, 113378. [Google Scholar] [CrossRef]
- Luković, M.; Hordijk, D.; Huang, Z.; Schlangen, E. Strain Hardening Cementitious Composite (SHCC) for crack width control in reinforced concrete beams. Heron 2019, 64, 181. [Google Scholar]
- Lepech, M.D.; Li, V. Water permeability of engineered cementitious composites. Cem. Concr. Compos. 2009, 31, 744–753. [Google Scholar] [CrossRef]
- Sahmaran, M.; Li, M.; Li, V.C. Transport properties of engineered cementitious composites under chloride exposure. ACI Mater. J. 2007, 104, 604–611. [Google Scholar]
- Wang, K.; Jansen, D.C.; Shah, S.P.; Karr, A.F. Permeability study of cracked concrete. Cem. Concr. Res. 1997, 27, 381–393. [Google Scholar] [CrossRef]
- Ma, H.; Qian, S.; Zhang, Z. Effect of self-healing on water permeability and mechanical property of Medium-Early-Strength Engineered Cementitious Composites. Constr. Build. Mater. 2014, 68, 92–101. [Google Scholar] [CrossRef]
- Luo, J.; Cai, Z.; Yu, K.; Zhu, W.; Lu, Z. Temperature impact on the micro-structures and mechanical properties of high-strength engineered cementitious composites. Constr. Build. Mater. 2019, 226, 686–698. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Q.; Li, V.; Su, H.; Gu, C. Durability study on engineered cementitious composites (ECC) under sulfate and chloride environment. Constr. Build. Mater. 2017, 133, 171–181. [Google Scholar] [CrossRef]
- Sun, R.; Hu, X.; Ling, Y.; Zuo, Z.; Zhuang, P.; Wang, F. Chloride diffusion behavior of engineered cementitious composite under dry-wet cycles. Constr. Build. Mater. 2020, 260, 119943. [Google Scholar] [CrossRef]
- Yun, H.-D.; Kim, S.-W.; Lee, Y.-O.; Rokugo, K. Tensile behavior of synthetic fiber-reinforced strain-hardening cement-based composite (SHCC) after freezing and thawing exposure. Cold Reg. Sci. Technol. 2011, 67, 49–57. [Google Scholar] [CrossRef]
- Mo, L.; Panesar, D.K. Effects of accelerated carbonation on the microstructure of Portland cement pastes containing reactive MgO. Cem. Concr. Res. 2012, 42, 769–777. [Google Scholar] [CrossRef]
- Wu, H.-L.; Zhang, D.; Ellis, B.R.; Li, V.C. Development of reactive MgO-based Engineered Cementitious Composite (ECC) through accelerated carbonation curing. Constr. Build. Mater. 2018, 191, 23–31. [Google Scholar]
- Šavija, B.; Luković, M. Carbonation of cement paste: Understanding, challenges, and opportunities. Constr. Build. Mater. 2016, 117, 285–301. [Google Scholar]
- Hussain, S.; Bhunia, D.; Singh, S.B. Comparative study of accelerated carbonation of plain cement and fly-ash concrete. J. Build. Eng. 2017, 10, 26–31. [Google Scholar] [CrossRef]
- Borges, P.H.R.; Costa, J.O.; Milestone, N.B.; Lynsdale, C.J.; Streatfield, R.E. Carbonation of CH and C–S–H in composite cement pastes containing high amounts of BFS. Cem. Concr. Res. 2010, 40, 284–292. [Google Scholar]
- Ngala, V.; Page, C. Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes. Cem. Concr. Res. 1997, 27, 995–1007. [Google Scholar] [CrossRef]
- Morandeau, A.; Thiery, M.; Dangla, P. Investigation of the carbonation mechanism of CH and CSH in terms of kinetics, microstructure changes and moisture properties. Cem. Concr. Res. 2014, 56, 153–170. [Google Scholar]
- Liu, Z.; Heede, P.V.D.; De Belie, N. Effect of the Mechanical Load on the Carbonation of Concrete: A Review of the Underlying Mechanisms, Test Methods, and Results. Materials 2021, 14, 4407. [Google Scholar] [CrossRef]
- Francois, R.; Maso, J. Effect of damage in reinforced concrete on carbonation or chloride penetration. Cem. Concr. Res. 1988, 18, 961–970. [Google Scholar] [CrossRef]
- Song, H.-W.; Kwon, S.-J.; Byun, K.-J.; Park, C.-K. Predicting carbonation in early-aged cracked concrete. Cem. Concr. Res. 2006, 36, 979–989. [Google Scholar] [CrossRef]
- Carević, V.; Ignjatović, I. Influence of loading cracks on the carbonation resistance of RC elements. Constr. Build. Mater. 2019, 227, 116583. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, X.; Wang, S.; Yang, W.; Liu, W.; Xing, F.; Yang, K.; Basheer, P.A.M. Influence of axial loads on CO2 and Cl− transport in concrete phases: Paste, mortar and ITZ. Constr. Build. Mater. 2019, 204, 875–883. [Google Scholar]
- Liu, Y.; Ren, J.; Li, Z.; Gao, Q.; Zhao, S. Carbonization Resistance of Reinforced Concrete under Bending Load. Frat. Integrità Strutt. 2019, 13, 714–724. [Google Scholar] [CrossRef]
- Castel, A.; Francois, R.; Arliguie, G. Effect of loading on carbonation penetration in reinforced concrete elements. Cem. Concr. Res. 1999, 29, 561–565. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Q.; Huang, Z. New insights into the early reaction of NaOH-activated slag in the presence of CaSO4. Compos. Part B: Eng. 2020, 198, 108207. [Google Scholar]
- Zhuang, S.; Wang, Q. Inhibition mechanisms of steel slag on the early-age hydration of cement. Cem. Concr. Res. 2021, 140, 106283. [Google Scholar]
- Shubbar, A.A.; Jafer, H.; Dulaimi, A.; Hashim, K.; Atherton, W.; Sadique, M. The development of a low carbon binder produced from the ternary blending of cement, ground granulated blast furnace slag and high calcium fly ash: An experimental and statistical approach. Constr. Build. Mater. 2018, 187, 1051–1060. [Google Scholar] [CrossRef]
- Wu, H.-L.; Yu, J.; Zhang, D.; Zheng, J.-X.; Li, V.C. Effect of morphological parameters of natural sand on mechanical properties of engineered cementitious composites. Cem. Concr. Compos. 2019, 100, 108–119. [Google Scholar] [CrossRef]
- Paul, S.C.; van Zijl, G.P.A.G. Mechanically Induced Cracking Behaviour in Fine and Coarse Sand Strain Hardening Cement Based Composites (SHCC) at Different Load Levels. J. Adv. Concr. Technol. 2013, 11, 301–311. [Google Scholar]
- Shi, J.; Ming, J.; Sun, W.; Zhang, Y. Corrosion performance of reinforcing steel in concrete under simultaneous flexural load and chlorides attack. Constr. Build. Mater. 2017, 149, 315–326. [Google Scholar] [CrossRef]
- Lo, Y.; Lee, H. Curing effects on carbonation of concrete using a phenolphthalein indicator and Fourier-transform infrared spectroscopy. Build. Environ. 2002, 37, 507–514. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Y.; Gan, Y.; Chang, Z.; Schlangen, E.; Šavija, B. Combined experimental and numerical study of uniaxial compression failure of hardened cement paste at micrometre length scale. Cem. Concr. Res. 2019, 126, 105925. [Google Scholar] [CrossRef]
- Wang, W.; Lu, C.; Li, Y.; Yuan, G.; Li, Q. Effects of stress and high temperature on the carbonation resistance of fly ash concrete. Constr. Build. Mater. 2017, 138, 486–495. [Google Scholar] [CrossRef]
- Valcuende, M.; Parra, C. Natural carbonation of self-compacting concretes. Constr. Build. Mater. 2010, 24, 848–853. [Google Scholar] [CrossRef]
- Papadakis, V.G.; Vayenas, C.G.; Fardis, M.N. Fundamental modeling and experimental investigation of concrete carbonation. Mater. J. 1991, 88, 363–373. [Google Scholar]
- Hills, T.P.; Gordon, F.; Florin, N.H.; Fennell, P.S. Statistical analysis of the carbonation rate of concrete. Cem. Concr. Res. 2015, 72, 98–107. [Google Scholar] [CrossRef]
- Hyvert, N.; Sellier, A.; Duprat, F.; Rougeau, P.; Francisco, P. Dependency of C–S–H carbonation rate on CO2 pressure to explain transition from accelerated tests to natural carbonation. Cem. Concr. Res. 2010, 40, 1582–1589. [Google Scholar] [CrossRef]
- Monteiro, I.; Branco, F.; de Brito, J.; Neves, R. Statistical analysis of the carbonation coefficient in open air concrete structures. Constr. Build. Mater. 2012, 29, 263–269. [Google Scholar] [CrossRef]
- Tian, H.; Li, G.; Liu, J.; Wu, Y. Experimental Research on Carbonation of Forced Concrete Specimens. J. Tongji Univ. Nat. Sci. 2010, 38, 200–213. [Google Scholar]
- Tu, Y.; Lu, Z. Experiment and research of prestressed concrete structure in carbonation corrosive environments. J. Southeast Univ. 2003, 33, 573–576. [Google Scholar]
- Zheng, J.; Huang, L. Experimental Study on Carbonation of Self-compacting Concrete under Tensile and Compressive Stresses. J. Build. Mater. 2013, 16, 115–120. [Google Scholar]
- Wang, J.; Su, H.; Du, J. Influence of coupled effects between flexural tensile stress and carbonation time on the carbonation depth of concrete. Constr. Build. Mater. 2018, 190, 439–451. [Google Scholar] [CrossRef]
- Odler, I.; Abdul-Maula, S. Possibilities of quantitative determination of the AFt-(ettringite) and AFm-(monosulphate) phases in hydrated cement pastes. Cem. Concr. Res. 1984, 14, 133–141. [Google Scholar] [CrossRef]
- Zhang, D.; Ellis, B.R.; Jaworska, B.; Hu, W.-H.; Li, V.C. Carbonation curing for precast Engineered Cementitious Composites. Constr. Build. Mater. 2021, 313, 125502. [Google Scholar] [CrossRef]
- Zhang, D.; Li, V.C.; Ellis, B.R. Optimal Pre-hydration Age for CO2 Sequestration through Portland Cement Carbonation. ACS Sustain. Chem. Eng. 2018, 6, 15976–15981. [Google Scholar] [CrossRef]
- Morandeau, A.; Thiéry, M.; Dangla, P. Impact of accelerated carbonation on OPC cement paste blended with fly ash. Cem. Concr. Res. 2015, 67, 226–236. [Google Scholar] [CrossRef]
- Tonoli, G.H.D.; Carmello, G.F.; Fioroni, C.A.; Pereira, T.D.L.; Rocha, G.; de Souza, R.B.; John, V.M.; Savastano, H. Influence of the initial moisture content on the carbonation degree and performance of fiber-cement composites. Constr. Build. Mater. 2019, 215, 22–29. [Google Scholar] [CrossRef]
- Tu, L.Q.; Xu, W.B.; Chen, W. Carbonation of Fly Ash Concrete and Micro-Hardness Analysis. Adv. Mater. Res. 2012, 378–379, 56–59. [Google Scholar] [CrossRef]
- Kumar, R.; Bhattacharjee, B. Porosity, pore size distribution and in situ strength of concrete. Cem. Concr. Res. 2003, 33, 155–164. [Google Scholar] [CrossRef]
- Çopuroğlu, O.; Schlangen, E. Modeling of frost salt scaling. Cem. Concr. Res. 2008, 38, 27–39. [Google Scholar]
Cement | Fly Ash | Quartz Sand | Water | VMA | Fiber | W/b | Superplasticizer |
---|---|---|---|---|---|---|---|
563 | 676 | 450 | 372 | 4.50 | 26 | 0.30 | 5.58 |
Oxides | CaO | SiO2 | Al2O3 | Fe2O3 | MgO | SO3 | Na2O | K2O | TiO2 | MnO | P2O5 |
---|---|---|---|---|---|---|---|---|---|---|---|
Cement | 63.21 | 18.48 | 6.74 | 3.45 | 3.24 | 3.16 | 0.17 | 0.53 | 0.35 | 0.27 | 0.16 |
Fly ash | 3.43 | 49.66 | 35.97 | 5.77 | 0.63 | 1.12 | 0.62 | 0.93 | 0.99 | 0.04 | 0.28 |
Name | Load Level of Specimen | Position | δT |
---|---|---|---|
Reference | 0 | A | 0.000 |
S3-PB | 0.3 | B | 0.075 |
S3-PC | 0.3 | C | 0.150 |
S3-PD | 0.3 | D | 0.300 |
Reference | 0.6 | A | 0.000 |
S6-PB | 0.6 | B | 0.150 |
S6-PC | 0.6 | C | 0.300 |
S6-PD | 0.6 | D | 0.600 |
Load Level of Specimen | Position | δT | Carbonation Depth/mm | |||||
---|---|---|---|---|---|---|---|---|
7 d | Kks | 14 d | Kks | 28 d | Kks | |||
0 | C | 0.000 | 2.300 | 1.000 | 3.370 | 1.000 | 4.780 | 1.000 |
0.3 | A | 0.075 | 4.470 | 1.943 | 5.160 | 1.531 | 6.750 | 1.412 |
0.3 | B | 0.150 | 5.480 | 2.382 | 5.820 | 1.727 | 7.050 | 1.475 |
0.3 | C | 0.300 | 6.470 | 2.813 | 6.860 | 2.036 | 7.730 | 1.617 |
0.6 | A | 0.150 | 5.540 | 2.409 | 6.400 | 1.899 | 7.940 | 1.661 |
0.6 | B | 0.300 | 6.500 | 2.826 | 7.320 | 2.172 | 8.820 | 1.845 |
0.6 | C | 0.600 | 7.210 | 3.135 | 8.160 | 2.421 | 9.920 | 2.075 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Shao, Y.; Zhang, N.; Tawfek, A.M.; Guan, Y.; Sun, R.; Tian, C.; Šavija, B. Carbonation Behavior of Engineered Cementitious Composites under Coupled Sustained Flexural Load and Accelerated Carbonation. Materials 2022, 15, 6192. https://doi.org/10.3390/ma15186192
Zhang H, Shao Y, Zhang N, Tawfek AM, Guan Y, Sun R, Tian C, Šavija B. Carbonation Behavior of Engineered Cementitious Composites under Coupled Sustained Flexural Load and Accelerated Carbonation. Materials. 2022; 15(18):6192. https://doi.org/10.3390/ma15186192
Chicago/Turabian StyleZhang, Hongzhi, Yingxuan Shao, Ning Zhang, Abdullah M. Tawfek, Yanhua Guan, Renjuan Sun, Changjin Tian, and Branko Šavija. 2022. "Carbonation Behavior of Engineered Cementitious Composites under Coupled Sustained Flexural Load and Accelerated Carbonation" Materials 15, no. 18: 6192. https://doi.org/10.3390/ma15186192
APA StyleZhang, H., Shao, Y., Zhang, N., Tawfek, A. M., Guan, Y., Sun, R., Tian, C., & Šavija, B. (2022). Carbonation Behavior of Engineered Cementitious Composites under Coupled Sustained Flexural Load and Accelerated Carbonation. Materials, 15(18), 6192. https://doi.org/10.3390/ma15186192