Chromium(III) Removal from Nickel(II)-Containing Waste Solutions as a Pretreatment Step in a Hydrometallurgical Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus and Chemicals
2.2. Instrumentation
2.3. Adsorption Procedure
- − sorption capacity, qe in mg/g:
- − sorption capacity under non-equilibrium conditions, qt in mg/g:
- − percentage removal of Cr(III) ions, R:
- − Langmuir isotherm:
- − Freundlich isotherm:
- − Temkin isotherm:
- − The Dubinin–Radushkevich isotherm:
- − PFO:
- − PSO:
2.4. Precipitation Procedure
3. Results and Discussion
3.1. General Information about the Proposed Process
3.2. Cr(III) Removal by Adsorption
3.2.1. Batch Adsorption from One-Component Model Solutions
3.2.2. Kinetic and Isothermal Parameters of a One-Component Adsorption System
3.2.3. Batch Adsorption of Cr(III) from Multi-Component Solutions
3.2.4. Column Adsorption
3.3. Cr(III) Removal by Precipitation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Coefficient | 2 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ | 10 g/dm3_ | 10 g/dm3_ |
---|---|---|---|---|---|---|---|---|
30 mg_ | 50 mg_ | 100 mg_ | 250 mg_ | 500 mg_ | 2000 mg_ | 30 mg_ | 50 mg_ | |
pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | |
a | −2.00 × 10−4 | 12.7 | −5.10 × 10−4 | −9.09 × 10−6 | −9.72 × 10−6 | −8.31 × 10−6 | −9.51 | 0.156 |
b | −1.41 | 0.382 | −0.283 | −3.66 | −3.21 | −3.56 | −1.81 | 0.657 |
c | 10.5 | 0.808 | 10.6 | 10.9 | 10.6 | 8.16 | 1.06 | 6.36 |
d | 45.4 | −11.3 | 34.0 | 13.0 | 7.55 | 1.80 | 225 | −9.83 |
R2 | 0.953 | 0.861 | 0.991 | 0.865 | 0.996 | 0.955 | 0.975 | 0.951 |
10 g/dm3_ | 10 g/dm3_ | 10 g/dm3_ | 10 g/dm3_ | 40 g/dm3_ | 40 g/dm3_ | 40 g/dm3_ | 40 g/dm3_ | |
100 mg_ | 250 mg_ | 500 mg_ | 2000 mg_ | 30 mg_ | 50 mg_ | 100 mg_ | 250 mg_ | |
pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | |
a | 24.0 | −5.76 × 10−5 | −5.69 × 10−10 | −7.68 × 10−6 | 2.16 | 1.16 | −14.3 | −999 |
b | 0.593 | −3.65 | −24.2 | −4.09 | 0.760 | 0.936 | −1.73 | −6.88 |
c | 0.678 | 10.8 | 9.33 | 9.95 | 5.28 | 5.37 | 1.03 | −6.45 |
d | 3.66 | 37.2 | 17.8 | 6.78 | −11.0 | −10.6 | 267 | 105 |
R2 | 0.977 | 0.892 | 0.807 | 0.985 | 0.896 | 0.924 | 0.992 | 0.814 |
40 g/dm3_ | 40 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ | |
500 mg_ | 2000 mg_ | 250 mg_ | 500 mg_ | 2000 mg_ | 250 mg_ | 500_ | 2000_ | |
pH −0.5 | pH −0.5 | pH 2.2 | pH 2.2 | pH 2.2 | pH 4.4 | pH 4.4 | pH 4.4 | |
a | −118 | −1.19 × 10−5 | −1.20 × 10−4 | −3.09 × 10−6 | −6.05 | −228 | −3.21 × 10−6 | −7.11 × 10−6 |
b | −5.38 | −5.54 | −2.54 | −4.51 | −7.24 | −33.7 | −4.50 | −2.35 |
c | −4.02 | 10.4 | 8.70 | 10.5 | −8.40 | −22.7 | 10.3 | 8.39 |
d | 60.9 | 27.0 | 11.8 | 6.13 | 2.08 | 13.9 | 7.63 | 1.94 |
R2 | 0.879 | 0.973 | 0.970 | 0.966 | 0.955 | 0.969 | 0.984 | 0.962 |
Coefficient | 2 g/dm3_ | 2 g/dm3_ | 10 g/dm3_ | 10 g/dm3_ | 40 g/dm3_ | 40 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ |
---|---|---|---|---|---|---|---|---|---|---|
250 mg_ | 500 mg_ | 250 mg_ | 500 mg_ | 250 mg_ | 500 mg_ | 250 mg_ | 500 mg_ | 250 mg_ | 500 mg_ | |
pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | pH 2.2 | pH 2.2 | pH 4.4 | pH 4.4 | |
a | −3.86 × 10−5 | −1.35 × 10−5 | −1.50 × 10−4 | −2.00 × 10−4 | −1.60 × 10−4 | 12.3 | −1.50 × 10−4 | −7.73 × 10−5 | −1.90 × 10−4 | −2.30 × 10−4 |
b | −3.67 | −4.74 | −3.80 | −3.11 | −4.77 | 0.278 | −0.818 | −2.93 | −2.55 | −2.26 |
c | 9.71 | 9.64 | 10.0 | 9.30 | 10.6 | 1.47 | 10.2 | 9.23 | 9.01 | 8.48 |
d | 10.0 | 5.45 | 30.9 | 15.20 | 118 | −10.3 | 8.16 | 4.04 | 9.91 | 5.84 |
R2 | 0.730 | 0.951 | 0.976 | 0.960 | 0.923 | 0.610 | 0.680 | 0.967 | 0.983 | 0.976 |
References
- Worrell, E.; Reuter, M.A. Handbook of Recycling: State-of-the-Art for Practitioners, Analysts, and Scientists; Elsevier: Waltham, MA, USA, 2018; pp. 3–8, 17–25. [Google Scholar]
- Stainless Steel Melt Shop Production Worldwide 2005–2020. Statista Research Department. Available online: https://www.statista.com/statistics/223028/world-stainless-steel-production/ (accessed on 5 August 2022).
- 04 First Use of Nickel, 05 End use of Nickel; Nickel Institute. Available online: https://nickelinstitute.org/en/about-nickel-and-its-applications/#04-first-use-nickel (accessed on 5 August 2022).
- Ley, C. (Ed.) Ullmann’s Encyclopedia of Industrial Chemistry; The National Academies, Sciences, Engineering, Medicine: Washington, DC, USA, 2011; online edition; pp. 12226–12306. [Google Scholar]
- Battery Market Size, Share & Trends Analysis Report by Product (Lead Acid, Li-ion, Nickle Metal Hydride, Ni-Cd), By Application (Automotive, Industrial, Portable), By Region, And Segment Forecasts. Available online: https://www.grandviewresearch.com/industry-analysis/battery-market (accessed on 5 August 2022).
- Lota, K.; Swoboda, P.; Acznik, I.; Sierczyńska, A.; Mańczak, R.; Kolanowski, Ł.; Lota, G. Electrochemical properties of modified negative electrode for Ni-MH cell. Curr. Appl. Phys. 2020, 20, 106–113. [Google Scholar] [CrossRef]
- Graś, M.; Wojciechowski, J.; Lota, K.; Buchwald, T.; Ryl, J.; Lota, G. Correlation between partial inhibition of hydrogen evolution using thiourea and catalytic activity of AB5-type hydrogen storage alloy towards borohydride electrooxidation. J. Alloys Compd. 2020, 829, 154553. [Google Scholar] [CrossRef]
- Graś, M.; Lota, G. Control of hydrogen release during borohydride electrooxidation with porous carbon materials. RSC Adv. 2021, 11, 15639–15655. [Google Scholar] [CrossRef]
- Graś, M.; Kolanowski, Ł.; Chen, Z.; Lota, J.K.; Ryl, J.; Ni, B.; Lota, G. Partial inhibition of borohydride hydrolysis using porous activated carbon as an effective method to improve the electrocatalytic activity of the DBFC anode. Sus. Energy Fuels 2021, 5, 4401–4413. [Google Scholar] [CrossRef]
- Kadłubowicz, A.; Janiszewska, M.; Baraniak, M.; Lota, G.; Staszak, K.; Regel-Rosocka, M. Diffusion dialysis and extraction integrated system for recovery of cobalt(II) from industrial effluent. J. Water Proc. Eng. 2021, 39, 101754. [Google Scholar] [CrossRef]
- Brenner, A. Electrodeposition of Alloys. Principles and Practice; Academic Press: New York, NY, USA, 1963; Volume 1, pp. 44–121. [Google Scholar]
- Schlesinger, M.; Paunovic, M. (Eds.) Modern Electroplating, 5th ed.; Wiley: Hoboken, NJ, USA, 2014; pp. 1–32. [Google Scholar]
- Dianyi, Y. Chromium Toxicity, Case Studies in Environmental Medicine, WB 1466, Agency for Toxic Substances and Disease Registry, USA. 2008. Available online: https://www.atsdr.cdc.gov/csem/chromium/physiologic_effects_of_chromium_exposure.html (accessed on 6 August 2022).
- Kerur, S.S.; Bandekar, S.; Hanagadakar, M.S.; Nandi, S.S.; Ratnamala, G.M.; Hegde, P.G. Removal of hexavalent Chromium-Industry treated water and Wastewater: A review. Mater. Today Proc. 2021, 42, 1112–1121. [Google Scholar] [CrossRef]
- Kaźmierczak, B.; Molenda, J.; Swat, M. The adsorption of chromium(III) ions from water solutions on biocarbons obtained from plant waste. Environ. Technol. Innov. 2021, 23, 101737. [Google Scholar] [CrossRef]
- Gope, M.; Das, A.; Mondal, S.; Ghosh, A.R.; Saha, R. Immobilization of Cr(III) and Cr(VI) from contaminated aqueous solution by using sewage produced biochar: Affecting factors and mechanisms. Energy Sources Part A 2022, 44, 5812–5828. [Google Scholar] [CrossRef]
- Peng, H.; Guo, J. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: A review. Environ. Chem. Lett. 2020, 18, 2055–2068. [Google Scholar] [CrossRef]
- Ait Ouaissa, Y.; Chabani, M.; Amrane, A.; Bensmaili, A. Removal of Cr(VI) from model solutions by a combined electrocoagulation sorption process. Chem. Eng. Technol. 2013, 36, 147–155. [Google Scholar] [CrossRef]
- Shirani, M.; Salari, F.; Habibollahi, S.; Akbari, A. Needle hub in-syringe solid phase extraction based a novel functionalized biopolyamide for simultaneous green separation/preconcentration and determination of cobalt, nickel, and chromium(III) in food and environmental samples with micro sampling flame atomic absorption spectrometry. Microchem. J. 2020, 152, 104340. [Google Scholar]
- Bartyzel, A.; Cukrowska, E.M. Solid phase extraction method for the separation and determination of chromium(III) in the presence of chromium(VI) using silica gel modified by N,N’-bis-(α-methylsalicylidene)-2,2-dimethyl-1,3-propanediimine. Anal. Chim. Acta 2011, 707, 204–209. [Google Scholar] [CrossRef]
- Wu, Y.W.; Zhang, J.; Liu, J.F.; Chen, L.; Deng, Z.L.; Han, M.X.; Wei, X.S.; Yu, A.M.; Zhang, H.L. Fe3O4@ZrO2 nanoparticles magnetic solid phase extraction coupled with flame atomic absorption spectrometry for chromium(III) speciation in environmental and biological samples. App. Surf. Sci. 2012, 258, 6772–6776. [Google Scholar] [CrossRef]
- Hintermeyer, B.H.; Tavani, E.L. Chromium(III) recovery from tanning wastewater by adsorption on activated carbon and elution with sulfuric acid. Environ. Eng. Res. 2017, 22, 149–156. [Google Scholar] [CrossRef]
- Alguacil, F.J. The 2019 year review on chromium(III) adsorption from aqueous solutions. Des. Water Treat. 2020, 201, 228–239. [Google Scholar] [CrossRef]
- Alguacil, F.J.; Garcia-Diaz, I.; Lopez, F. The removal of chromium(III) from aqueous solution by ion exchange on Amberlite 200 resin: Batch and continuous ion exchange modelling. Des. Water Treat. 2012, 45, 55–60. [Google Scholar] [CrossRef]
- Alguacil, F.J.; Alonso, M.; Lozano, L.J. Chromium(III) recovery from waste acid solution by ion exchange processing using Amberlite IR-120 resin: Batch and continuous ion exchange modelling. Chemosphere 2004, 57, 789–793. [Google Scholar] [CrossRef]
- Ates, N.; Basak, A. Selective removal of aluminum, nickel and chromium ions by polymeric resins and natural zeolite from anodic plating wastewater. Int. J. Environ. Health Res. 2021, 31, 102–119. [Google Scholar] [CrossRef] [PubMed]
- Edebali, S.; Pehlivan, E. Evaluation of Cr(III) by ion-exchange resins from aqueous solution: Equilibrium, thermodynamics and kinetics. Des. Water Treat. 2014, 52, 7143–7153. [Google Scholar] [CrossRef]
- Islam, A.; Ahmad, A.; Laskar, M.A. Characterization of a Chelating Resin Functionalized via Azo Spacer and Its Analytical Applicability for the Determination of Trace Metal Ions in Real Matrices. J. Appl. Polymer Sci. 2011, 123, 3448–3458. [Google Scholar] [CrossRef]
- Li, T.; Yang, T.; Yu, Z.; Xu, G.; Han, Q.; Luo, G.; Du, J.; Guan, Y.; Guo, C. Trivalent chromium removal from tannery wastewater with low cost bare magnetic Fe3O4 nanoparticles. Chem. Eng. Process. Process. Intensif. 2021, 169, 108611. [Google Scholar] [CrossRef]
- Liang, L.; Wang, J.; Tong, X.; Tong, X.; Zhang, S. Enhanced adsorptive removal of Cr(III) from the complex solution by NTA-modified magnetic mesoporous microspheres. Environ. Sci. Pollut. Res. 2022, 29, 45623–45634. [Google Scholar] [CrossRef] [PubMed]
- Jaffar, F.H.; Zulhairun, A.K.; Selambakkannu, S. Preparation of Amberlite IRN 77 Ion Exchange Resin Loaded with Magnetite Nanoparticles for Cr(III) Removal from Aqueous Solution. J. Appl. Membr. Sci. Technol. 2020, 24, 35–45. [Google Scholar]
- Wołowicz, A.; Staszak, K.; Hubicki, Z. Removal of Copper(II) in the Presence of Sodium Dodecylobenzene Sulfonate from Acidic Effluents Using Adsorption on Ion Exchangers and Micellar-Enhanced Ultrafiltration Methods. Molecules 2022, 27, 2430. [Google Scholar] [CrossRef]
- Singh, A.K. Nanoparticle Ecotoxicology. In Engineered Nanoparticles; Academic Press: Cambridge, MA, USA, 2016; pp. 343–450. [Google Scholar]
- Chen, W.-S.; Chen, Y.-A.; Lee, C.-H.; Chen, Y.-J. Recycling Vanadium and Proton-Exchange Membranes from Waste Vanadium Flow Batteries through Ion Exchange and Recast Methods. Materials 2022, 15, 3749. [Google Scholar] [CrossRef]
- Van Nguyen, N.; Lee, J.; Jha, M.K.; Yoo, K.; Jeong, J. Copper Recovery from Low Concentration Waste Solution Using Dowex G-26 Resin. Hydrometallurgy 2009, 97, 237–242. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Liu, D.; Liu, D.; Xu, L.; Liu, C. Adsorption Optimization of Uranium(VI) onto Polydopamine and Sodium Titanate Co-Functionalized MWCNTs Using Response Surface Methodology and a Modeling Approach. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 627, 127145. [Google Scholar] [CrossRef]
- Bekchanov, D.; Kawakita, H.; Mukhamediev, M.; Khushvaktov, S.; Juraev, M. Sorption of cobalt(II) and chromium(III) ions to nitrogen- and sulfur-containing polyampholyte on the basis of polyvinylchloride. Polym. Adv. Technol. 2021, 32, 2700–2709. [Google Scholar] [CrossRef]
- Gossuin, Y.; Hantson, A.L.; Vuong, Q.L. Low resolution benchtop nuclear magnetic resonance for the follow-up of the removal of Cu2+ and Cr3+ from water by amberlite IR120 ion exchange resin. J. Water Proc. Eng. 2020, 33, 101024. [Google Scholar] [CrossRef]
- Gode, F.; Pehlivan, E. A comparative study of two chelating ion-exchange resins for the removal of chromium(III) from aqueous solution. J. Hazard. Mater. 2003, B100, 231–243. [Google Scholar] [CrossRef]
- Ho, Y.S.; Ng, J.C.Y.; McKay, G. Kinetics of Pollutant Sorption by Biosorbents: Review. Sep. Purif. Methods 2000, 29, 189–232. [Google Scholar] [CrossRef]
- Robinson, J.K.; McMurry, J.E.; Fay, R.C. Chemistry, 8th ed.; Pearson: London, UK, 2020. [Google Scholar]
- Guo, Z.R.; Zhang, G.; Fang, J.; Dou, X. Enhanced chromium recovery from tanning wastewater. J. Clean. Prod. 2006, 14, 75–79. [Google Scholar] [CrossRef]
- Minas, F.; Chandravanshi, B.S.; Leta, S. Chemical precipitation method for chromium removal and its recovery from tannery wastewater in Ethiopia. Chem. Inter. 2017, 3, 392–405. [Google Scholar]
- Kokkinos, E.; Proskynitopoulou, V.; Zouboulis, A. Chromium and energy recovery from tannery wastewater treatment waste: Investigation of major mechanisms in the framework of circular economy. J. Environ. Chem. Eng. 2019, 7, 103307. [Google Scholar] [CrossRef]
Species | PLS before DD | PLS after DD |
---|---|---|
Concentration in g/dm3 | ||
Ni2+ | 26.7 | 37.2 |
Co2+ | 18.0 | 21.4 |
Cr3+ | 13.4 | 24.5 |
Al3+ | 7.20 | 7.60 |
Cu2+ | 0.020 | 0.020 |
Fe3+ | 0.138 | 0.132 |
Mg2+ | 0.023 | 0.021 |
Zn2+ | 0.022 | 0.021 |
Species | Concentration in M | |
H+ | 4.10 | 3.46 |
SO42− | 2.28 | n.a. |
Cl− | 0.19 | 0.16 |
Property | Dowex G26 | Dowex MAC-3 |
---|---|---|
Matrix | Copolymer styrene-divinylbenzene | Polyacrylic, macroporous |
Matrix active group | Sulfonic acid | Carboxylic acid |
Form | Gel beads | White to amber opaque beads |
Crosslinking | 10% | n.a. |
Moisture | 45–52% | 44–52% |
Diameter | 22–25 mesh 600–700 μm | 16–50 mesh 300–1200 μm |
Operating pH | 0–14 | n.a. |
Character | Strongly acidic | Weakly acidic |
Model | Parameters | Dowex G26 | MAC-3 |
---|---|---|---|
Langmuir | Q0 (mg/g) | 54.8 | 33.4 |
kL (dm3/mg) | 5.58 × 10−5 | 5.72 × 10−8 | |
R2 | 0.995 | 0.993 | |
Freundlich | kF (mg1−1/n·dm3/n/g) | 0.062 | 4.73 × 10−4 |
n | 1.26 | 1.13 | |
R2 | 0.973 | 0.997 | |
Temkin | A (dm3/mg) | 3.03 × 10−3 | 4.31 × 10−4 |
bT (J g/mol mg) | 380 | 104 | |
R2 | 0.825 | 0.816 | |
Dubinin–Radushkevich | qm (mg/g) | 29.2 | 27.1 |
kDR (mol2J2) | 0.999 | 0.999 | |
E (kJ/mol) | 0.707 | 0.707 | |
R2 | 0.880 | 0.595 |
Parameter | 2 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ | 10 g/dm3_ | 10 g/dm3_ |
---|---|---|---|---|---|---|---|---|
30 mg_ | 50 mg_ | 100 mg_ | 250 mg_ | 500 mg_ | 2000 mg_ | 30 mg_ | 50 mg_ | |
pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | |
k1 | 1.05 × 10−2 | 9.37 × 10−3 | 9.74 × 10−3 | 5.13 × 10−3 | 5.04 × 10−3 | 5.30 × 10−3 | 1.22 × 10−2 | 9.69 × 10−3 |
R2k1 | 0.788 | 0.731 | 0.773 | 0.781 | 0.956 | 0.890 | 0.781 | 0.774 |
k2 | 4.07 × 10−4 | 4.60 × 10−4 | 9.75 × 10−4 | 1.81 × 10−3 | 2.59 × 10−3 | 3.19 × 10−2 | 8.68 × 10−5 | 8.83 × 10−5 |
R2k2 | 0.636 | 0.610 | 0.626 | 0.721 | 0.903 | 0.830 | 0.621 | 0.629 |
10 g/dm3_ | 10 g/dm3_ | 10 g/dm3_ | 10 g/dm3_ | 40 g/dm3_ | 40 g/dm3_ | 40 g/dm3_ | 40 g/dm3_ | |
100 mg_ | 250 mg_ | 500 mg_ | 2000 mg_ | 30 mg_ | 50 mg_ | 100 mg_ | 250 mg_ | |
pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | |
k1 | 8.31 × 10−3 | 5.78 × 10−3 | 1.21 × 10−2 | 6.15 × 10−3 | 1.01 × 10−2 | 8.39 × 10−3 | 1.32 × 10−2 | 6.16 × 10−3 |
R2k1 | 0.727 | 0.848 | 0.677 | 0.921 | 0.781 | 0.718 | 0.769 | 0.913 |
k2 | 1.62 × 10−4 | 3.27 × 10−4 | 2.11 × 10−3 | 4.90 × 10−3 | 1.59 × 10−5 | 1.68 × 10−5 | 7.67 × 10−5 | 7.00 × 10−5 |
R2k2 | 0.601 | 0.793 | 0.5926 | 0.858 | 0.637 | 0.599 | 0.603 | 0.876 |
40 g/dm3_ | 40 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ | |
500 mg_ | 2000 mg_ | 250 mg_ | 500 mg_ | 2000 mg_ | 250 mg_ | 500_ | 2000_ | |
pH −0.5 | pH −0.5 | pH 2.2 | pH 2.2 | pH 2.2 | pH 4.4 | pH 4.4 | pH 4.4 | |
R2 | 0.879 | 0.973 | 0.970 | 0.966 | 0.955 | 0.969 | 0.984 | 0.962 |
k1 | 5.18 × 10−3 | 8.01 × 10−3 | 4.33 × 10−3 | 6.97 × 10−3 | 8.86 × 10−3 | 1.39 × 10−2 | 6.37 × 10−3 | 3.28 × 10−3 |
R2k1 | 0.895 | 0.895 | 0.950 | 0.924 | 0.876 | 0.720 | 0.902 | 0.911 |
k2 | 1.25 × 10−4 | 1.14 × 10−3 | 1.88 × 10−3 | 6.02 × 10−3 | 0.132 | 2.18 × 10−3 | 7.13 × 10−3 | 3.83 × 10−2 |
R2k2 | 0.835 | 0.818 | 0.901 | 0.875 | 0.809 | 0.621 | 0.837 | 0.846 |
Parameter | 2 g/dm3_ | 2 g/dm3_ | 10 g/dm3_ | 10 g/dm3_ | 40 g/dm3_ | 40 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ | 2 g/dm3_ |
---|---|---|---|---|---|---|---|---|---|---|
250 mg_ | 500 mg_ | 250 mg_ | 500 mg_ | 250 mg_ | 500 mg_ | 250 mg_ | 500 mg_ | 250 mg_ | 500 mg_ | |
pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | pH −0.5 | pH 2.2 | pH 2.2 | pH 4.4 | pH 4.4 | |
R2 | 0.730 | 0.951 | 0.976 | 0.960 | 0.923 | 0.610 | 0.680 | 0.967 | 0.983 | 0.976 |
k1 | 5.35 × 10−3 | 7.19 × 10−3 | 5.55 × 10−3 | 6.87 × 10−3 | 7.48 × 10−3 | 9.52 × 10−4 | 1.10 × 10−3 | 3.98 × 10−3 | 3.65 × 10−3 | 3.10 × 10−3 |
R2k1 | 0.664 | 0.889 | 0.904 | 0.959 | 0.961 | 0.222 | 0.358 | 0.897 | 0.935 | 0.924 |
k2 | 7.99 × 10−2 | 2.94 × 10−2 | 4.00 × 10−2 | 0.296 | 0.343 | 3.30 × 10−3 | 5.60 × 10−2 | 2.51 × 10−2 | 2.80 × 10−3 | 1.07 × 10−3 |
R2k2 | 0.883 | 0.971 | 0.832 | 0.936 | 0.946 | 0.926 | 0.776 | 0.952 | 0.929 | 0.859 |
Name of the Resin | Type of the Resin | Composition of the Feed | Cr(III) Removal, % | Adsorption Capacity, mg/g of the Resin | Ref. |
---|---|---|---|---|---|
Amberlite 200 | Strongly acidic | 0.3 g/dm3 Cr(III), pH 1 | - | 45.0 | [24] |
Amberlite IR120 | Strongly acidic | 0.008 g/dm3 Cr(III) in the presence of Al(III), Ni(II), pH 3.5 Cr(III) content not given, pH 2.8 | 18 - | - 10.1 | [26] [38] |
Lewatit TP207 | Weakly acidic with chelating iminodiacetic acid groups | 0.008 g/dm3 Cr(III) in the presence of Al(III), Ni(II), pH 3.5 0.05 g/dm3, pH 4.5 | 12 95 | - 17.7 | [26] [39] |
Amberlite IRN77 | Strongly acidic | 0.005–0.05 g/dm3, pH 4 0.1 g/dm3, pH 3.5 | 95 100 | 18.2 23.9 | [27] [31] |
Amberlite IRN77-Fe3O4 | Strongly acidic, coated with magnetite | 0.1 g/dm3, pH 3.5 | 100 | 32.7 | [31] |
Purolite C160 | Strongly acidic | 0.005–0.05 g/dm3, pH 4 | 100 | 12.5 | [27] |
PVC-(SO3H)-(NH) | Polyampholyte, acidic and basic groups | 0.5–13 g/dm3 Cr(III) | - | 206 | [37] |
Dowex G26 | Strongly acidic | 2 g/dm3, pH −0.5 | 80.5 | 54.8 | This work |
MAC-3 | Weakly acidic | 2 g/dm3, pH −0.5 | 56.7 | 33.4 | This work |
Time of Adsorption | Dowex G26 | ||||||||
---|---|---|---|---|---|---|---|---|---|
L/S = 1/250 | L/S = 1/500 | ||||||||
2 g/dm3 of Each Metal | 10 g/dm3 of Each Metal | Real PLS | |||||||
Cr(III) | Ni(II) | Co(II) | Cr(III) | Ni(II) | Co(II) | Cr(III) | Ni(II) | Co(II) | |
30 | 42.19 | 49.54 | 31.16 | 33.14 | 24.88 | 20.60 | 40.09 | 18.93 | 48.96 |
1080 | - | - | - | - | - | - | 63.76 | 55.59 | 71.96 |
1440 | 31.87 | 81.93 | 34.12 | 36.11 | 30.60 | 31.04 | - | - | - |
MAC-3 | |||||||||
30 | 5.20 | 8.15 | 0.00 | 0.00 | 0.00 | 2.48 | MAC-3 not used | ||
1440 | 7.74 | 16.08 | 3.20 | 9.04 | 11.58 | 15.33 |
Type of Solution | Removal, % | Amount Adsorbed in the Column, g | Desorption, % | ||||||
---|---|---|---|---|---|---|---|---|---|
Cr(III) | Ni(II) | Co(II) | Cr(III) | Ni(II) | Co(II) | Cr(III) | Ni(II) | Co(II) | |
Model 1 | 64.73 | - | - | 0.125 | - | - | 21.43 | - | - |
Model 3 | 35.77 | 49.20 | 50.64 | 0.093 | 0.086 | 0.100 | 32.00 | 9.20 | 8.02 |
Real PLS after DD | 22.61 | 48.70 | 39.08 | 1.04 | 3.55 | 1.63 | 20.00 | 7.40 | 12.30 |
Assumed pH | Meas. | NaOH (3 or 30%) | NaHCO3 (10%) | Na2CO3 (10%) | CaO (10%) | ||||
---|---|---|---|---|---|---|---|---|---|
pHm | V, cm3 | pHm | V, cm3 | pHm | V, cm3 | pHm | V, cm3 | ||
pH 3 | I | 3.58 | 16.5 (30%) | 2.95 | 95 | 2.97 | 70.5 | 2.87 | 50 |
F | 3.56 | 3.01 | 3.07 | 3.84 | |||||
pH 4 | I | 4.04 | 18 (30%) + 22 (3%) | 3.97 | 118.5 | 3.99 | 88.5 | 3.97 | 64 |
F | 4.12 | 3.87 | 3.91 | 6.36 | |||||
pH 5 | I | 5.60 | 23 (30%) + 2 (3%) | 5.03 | 136 | 4.96 | 99.5 | 5.01 | 72.5 |
F | 5.59 | 4.87 | 4.84 | 7.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostrzewa, M.; Staszak, K.; Ginter-Kramarczyk, D.; Kruszelnicka, I.; Góra, W.; Baraniak, M.; Lota, G.; Regel-Rosocka, M. Chromium(III) Removal from Nickel(II)-Containing Waste Solutions as a Pretreatment Step in a Hydrometallurgical Process. Materials 2022, 15, 6217. https://doi.org/10.3390/ma15186217
Kostrzewa M, Staszak K, Ginter-Kramarczyk D, Kruszelnicka I, Góra W, Baraniak M, Lota G, Regel-Rosocka M. Chromium(III) Removal from Nickel(II)-Containing Waste Solutions as a Pretreatment Step in a Hydrometallurgical Process. Materials. 2022; 15(18):6217. https://doi.org/10.3390/ma15186217
Chicago/Turabian StyleKostrzewa, Milena, Katarzyna Staszak, Dobrochna Ginter-Kramarczyk, Izabela Kruszelnicka, Wojciech Góra, Marek Baraniak, Grzegorz Lota, and Magdalena Regel-Rosocka. 2022. "Chromium(III) Removal from Nickel(II)-Containing Waste Solutions as a Pretreatment Step in a Hydrometallurgical Process" Materials 15, no. 18: 6217. https://doi.org/10.3390/ma15186217
APA StyleKostrzewa, M., Staszak, K., Ginter-Kramarczyk, D., Kruszelnicka, I., Góra, W., Baraniak, M., Lota, G., & Regel-Rosocka, M. (2022). Chromium(III) Removal from Nickel(II)-Containing Waste Solutions as a Pretreatment Step in a Hydrometallurgical Process. Materials, 15(18), 6217. https://doi.org/10.3390/ma15186217