Influence of Abutment Design on Biomechanical Behavior to Support a Screw-Retained 3-Unit Fixed Partial Denture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Finite Element Analysis
2.2. Strain Gauge Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pjetursson, B.E.; Zarauz, C.; Strasding, M.; Sailer, I.; Zwahlen, M.; Zembic, A. A systematic review of the influence of the implant-abutment connection on the clinical outcomes of ceramic and metal implant abutments supporting fixed implant reconstructions. Clin. Oral Implant. Res. 2018, 18, 160–183. [Google Scholar] [CrossRef] [PubMed]
- Lindhe, J.; Meyle, J. Group D of the European Workshop on Periodontology. Peri-implant diseases: Consensus report of the sixth European workshop on periodontology. J. Clin. Periodontol. 2008, 35, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Malchiodi, L.; Cucchi, A.; Ghensi, P.; Consonni, D.; Nocini, P.F. Influence of crown–implant ratio on implant success rates andcrestal bone levels: A 36-month follow-up prospective study. Clin. Oral Implant. Res. 2014, 25, 240–251. [Google Scholar] [CrossRef] [PubMed]
- Urban, I.A.; Barootchi, S.; Tavelli, L.; Wang, H.L. Inter-Implant Papilla Reconstruction via a Bone and Soft Tissue Augmentation: A Case Report with a Long-Term Follow-up. Int. J. Periodontics Restor. Dent. 2021, 41, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Toniollo, M.B.; Vieira, L.J.P.; Dos Santos Sá, M.; Macedo, A.P.; Melo, J.P., Jr.; Terada, A.S.S.D. Stress distribution of three-unit fixed partial prostheses (conventional and pontic) supported by three or two implants: 3D finite element analysis of ductile materials. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 706–712. [Google Scholar] [CrossRef]
- Tribst, J.P.; Rodrigues, V.A.; Dal Piva, A.O.; Borges, A.L.; Nishioka, R.S. The importance of correct implants positioning and masticatory load direction on a fixed prosthesis. J. Clin. Exp. Dent. 2018, 10, e81–e87. [Google Scholar] [CrossRef]
- Naert, I.; Duyck, J.; Vandamme, K. Occlusal overload and bone/implant loss. Clin. Oral Implant. Res. 2012, 23, 95–107. [Google Scholar] [CrossRef]
- Frost, H.M. Wolff’s Law and bone’s structural adaptations to mechanical usage: An overview for clinicians. Angle Orthod. 1994, 64, 175–188. [Google Scholar]
- Kayumi, S.; Takayama, Y.; Yokoyama, A.; Ueda, N. Effect of bite force in occlusal adjustment of dental implants on the distribution of occlusal pressure: Comparison among three bite forces in occlusal adjustment. Int. J. Implant Dent. 2015, 1, 14. [Google Scholar] [CrossRef]
- Duarte, A.R.; Neto, J.P.; Souza, J.C.; Bonachela, W.C. Detorque evaluation of dental abutment screws after immersion in a fluoridated artificial saliva solution. J. Prosthodont. 2013, 22, 275–281. [Google Scholar] [CrossRef]
- Duyck, J.; Vandamme, K. The effect of loading on peri-implant bone: A critical review of the literature. In Bone Response to Dental Implant Materials; Woodhead Publishing: Cambridge, UK, 2017; pp. 139–161. [Google Scholar]
- Tribst, J.P.M.; Dal Piva, A.M.O.; Borges, A.L.S.; Bottino, M.A. Influence of Socket-shield technique on the biomechanical response of dental implant: Three-dimensional finite element analysis. Comput. Methods Biomech. Biomed. Eng. 2020, 8, 1–8. [Google Scholar] [CrossRef]
- Datte, C.E.; Rodrigues, V.A.; Datte, B.D.; Lopes, G.R.S.; Borges, A.L.; Nishioka, R.S. The effect of different bone level and prosthetic connection on the biomechanical response of unitary implants: Strain gauge and finite element analyses. Int. J. Adv. Eng. Res. 2021, 8, 218–224. [Google Scholar] [CrossRef]
- Nishioka, R.S.; Vasconcellos, L.G.O.; Nishioka, G.N. Comparative strain gauge analysis of external and internal hexagon, Morse taper, and influence of straight and offset implant configuration. Implant Dent. 2011, 20, e24–e32. [Google Scholar] [CrossRef]
- Pesqueira, A.A.; Goiato, M.C.; Filho, H.G.; Monteiro, D.R.; Santos, D.M.; Haddad, M.F.; Pellizzer, E. Use of stress analysis methods to evaluate the biomechanics of oral rehabilitation with implants. J. Oral Implantol. 2014, 40, 217–228. [Google Scholar] [CrossRef]
- Nishioka, R.S.; de Vasconcellos, L.G.; Jóias, R.P.; Rode, S.M. Load-application devices: A comparative strain gauge analysis. Braz. Dent. J. 2015, 26, 258–262. [Google Scholar] [CrossRef]
- Nishioka, R.S.; Vasconcellos, L.G.O.; Abreu, C.W. A comparative study of machined copings and plastic copings in three-element prostheses with different types of implant-abutment-joint, strain gauge analysis. J. Appl. Oral Sci. 2010, 18, 225–230. [Google Scholar] [CrossRef]
- Tribst, J.P.; Dal Piva, A.M.; Riquieri, H.; Nishioka, R.S.; Bottino, M.A.; Rodrigues, V.A. Monolithic zirconia crown does not increase the peri-implant strain under axial load. J. Int. Oral Health 2019, 11, 50–53. [Google Scholar]
- Marsico, V.S.; Lehmann, R.B.; Assis Claro, C.A.; Amaral, M.; Vitti, R.P.; Neves, A.C.C.; Silva Concilio, L.R. Three-dimensional finite element analysis of occlusal splint and implant connection on stress distribution in implant-supported fixed dental prosthesis and peri-implantal bone. Mater. Sci. Eng. C 2017, 80, 141–148. [Google Scholar] [CrossRef]
- Mendes Tribst, J.P.; De Oliveira Dal Piva, A.M.; Borges, A.L.; Nishioka, R.S.; Bottino, M.A. Anéas Rodrigues, V. Effect of Framework Type on the Biomechanical Behavior of Provisional Crowns: Strain Gauge and Finite Element Analyses. Int. J. Periodontics Restor. Dent. 2020, 40, e9–e18. [Google Scholar] [CrossRef]
- Akça, K.; Cehreli, M.C.; Iplikcioglu, H. A comparison of three-dimensional finite element stress analysis with in vitro strain gauge measurements on dental implants. Int. J. Prosthodont. 2002, 15, 115–121. [Google Scholar]
- Tribst, J.P.M.; Dal Piva, A.M.O.; Shibli, J.A.; Borges, A.L.S.; Tango, R.N. Influence of implantoplasty on stress distribution of exposed implants at different bone insertion levels. Braz. Oral Res. 2017, 31, e96. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.Y.; Hsu, J.T.; Chee Lin, Y.T.; Fuh, L.J.; Huang, H.L. Biomechanical evaluation of one-piece and two-piece small-diameter dental implants: In-vitro experimental and three-dimensional finite element analyses. J. Formos. Med. Assoc. 2016, 115, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Nishioka, R.S.; Rodrigues, V.A.; De Santis, L.R.; Nishioka, G.N.; Santos, V.M.; Souza, F.Á. Comparative Microstrain Study of Internal Hexagon and Plateau Design of Short Implants Under Vertical Loading. Implant Dent. 2016, 25, 135–139. [Google Scholar] [CrossRef]
- Kitamura, E.; Stegaroiu, R.; Nomura, S.; Miyakawa, O. Biomechanical aspects of marginal bone resorption around osseointe- grated implants: Considerations based on a three-dimensional finite element analysis. Clin. Oral Implant. Res. 2004, 15, 401–412. [Google Scholar] [CrossRef]
- Brunski, J.B.; Puleo, D.A.; Nanci, A. Biomaterials and biomechanics of oral and maxillofacial implants: Current status and future developments. Int. J. Oral Maxillofac. Implant. 2000, 15, 15–46. [Google Scholar]
- Lemos, C.A.A.; Verri, F.R.; Noritomi, P.Y.; Kemmoku, D.T.; Batista, V.E.S.; Cruz, R.S.; Pellizzer, E.P. Effect of bone quality and bone loss level around internal and external connection implants: A finite element analysis study. J. Prosthet. Dent. 2021, 125, 137-e1. [Google Scholar] [CrossRef]
- Bedrossian, E. Laboratory and prosthetic considerations in computer-guided surgery and immediate loading. J. Oral Maxillofac. Surg. 2007, 65, 47–52. [Google Scholar] [CrossRef]
- Isidor, F. Influence of forces on peri-implant bone. Clin. Oral Implant. Res. 2006, 17, 8–18. [Google Scholar] [CrossRef]
- Berglundh, T.; Abrahamsson, I.; Lindhe, J. Bone reactions to longstanding functional load at implants: An experimental study in dogs. J. Clin. Periodontol. 2005, 32, 925–932. [Google Scholar] [CrossRef]
- Rodrigues, V.A.; Tribst, J.P.M.; Santis, L.R.; Lima, D.R.; Nishioka, R.S. Influence of angulation and vertical misfit in the evaluation of micro-deformations around implants. Braz. Dent. Sci. 2017, 20, 32–39. [Google Scholar] [CrossRef]
- Strietzel, F.P.; Neumann, K.; Hertel, M. Impact of platform switching on marginal peri-implant bone-level changes. A systematic review and meta-analysis. Clin. Oral Implant. Res 2015, 26, 342e58. [Google Scholar] [CrossRef] [PubMed]
- Silveira, M.P.M.; Campaner, L.M.; Bottino, M.A.; Nishioka, R.S.; Borges, A.L.S.; Tribst, J.P.M. Influence of the dental implant number and load direction on stress distribution in a 3-unit implant-supported fixed dental prosthesis. Dent. Med. Probl. 2021, 58, 69–74. [Google Scholar] [CrossRef]
- Kul, E.; Korkmaz, İ.H. Effect of different design of abutment and implant on stress distribution in 2 implants and peripheral bone: A finite element analysis study. J. Prosthet. Dent. 2021, 126, 664.e1–664.e9. [Google Scholar] [CrossRef]
- Toniollo, M.B.; Macedo, A.P.; Rodrigues, R.S.C.; Ribeiro, R.F.; Mattos, M.G.C. Three-dimensional finite element analysis of stress distribution on different bony ridges with different lengths of Morse taper implants and pros-thesis dimensions. J. Craniofac. Surg. 2012, 23, 1888–1892. [Google Scholar] [CrossRef]
- Moreira, W.; Hermann, C.; Pereira, J.T.; Balbinoti, J.A.; Tiossi, R. A three-dimensional finite element study on the stress distribution pattern of two prosthetic abutments for external hexagon implants. Eur. J. Dent. 2013, 7, 484–491. [Google Scholar] [CrossRef]
- Yu, H.Y.; Cai, C.Z.; Zhou, Z.R.; Zhu, M.H. Fretting behavior of cortical bone against titanium and its alloy. Wear 2005, 259, 910–918. [Google Scholar] [CrossRef]
- Matos, J.D.; Arcila, L.V.; Ortiz, L.P.; Lopes, G.R.; Anami, L.C.; Ramos, N.C.; Saavedra, G.S.; Tribst, J.P.; Bottino, M.A. Hybrid abutment during prosthetic planning and oral rehabilitation. Minerva Dent. Oral Sci. 2022, 71, 107–116. [Google Scholar] [CrossRef]
- Matos, J.D.M.d.; Queiroz, D.A.; Nakano, L.J.N.; Andrade, V.C.; Ribeiro, N.d.C.R.; Borges, A.L.S.; Bottino, M.A.; Lopes, G.d.R.S. Bioengineering Tools Applied to Dentistry: Validation Methods for In Vitro and In Silico Analysis. Dent. J. 2022, 10, 145. [Google Scholar] [CrossRef]
- Montemezzi, P.; Ferrini, F.; Pantaleo, G.; Gherlone, E.; Capparè, P. Dental Implants with Different Neck Design: A Prospective Clinical Comparative Study with 2-Year Follow-Up. Materials 2020, 13, 1029. [Google Scholar] [CrossRef]
- Datte, C.E.; Tribst, J.P.; Dal Piva, A.O.; Nishioka, R.S.; Bottino, M.A.; Evangelhista, A.M.; Monteiro, F.M.M.; Borges, A.L. Influence of different restorative materials on the stress distribution in dental implants. J. Clin. Exp. Dent. 2018, 10, e439–e444. [Google Scholar] [CrossRef]
- Datte, C.E.; Datte, F.B.; Rodrigues, V.A.; Borges, A.L.S.; Campos, J.F.; Nishioka, R.S. Biomechanics effect of two implant system with different bone height under axial and non–axial loading conditions. J. Res. Knowl. Spreading 2021, 2, 11913. [Google Scholar] [CrossRef]
- Vasconcelos, J.E.L.; Matos, J.D.M.; Queiroz, D.A.; Lopes, G.D.R.S.; Lacerda, B.C.G.V.; Bottino, M.A.; Turssi, C.P.; Basting, R.T.; Amaral, F.L.B.; França, F.M.G. Implant-Abutment Misfit after Cyclic Loading: An In Vitro Experimental Study. Materials 2022, 15, 5341. [Google Scholar] [CrossRef]
- Matos, J.D.M.; Lopes, G.D.R.S.; Nakano, L.J.N.; Ramos, N.C.; Vasconcelos, J.E.L.; Bottino, M.A.; Tribst, J.P.M. Biomechanical evaluation of 3-unit fixed partial dentures on monotype and two-piece zirconia dental implants. Comput. Methods Biomech. Biomed. Eng. 2022, 25, 239–246. [Google Scholar] [CrossRef]
- Tribst, J.P.M.; Campanelli de Morais, D.; Melo de Matos, J.D.; Lopes, G.D.R.S.; Dal Piva, A.M.D.O.; Souto Borges, A.L.; Bottino, M.A.; Lanzotti, A.; Martorelli, M.; Ausiello, P. Influence of Framework Material and Posterior Implant Angulation in Full-Arch All-on-4 Implant-Supported Prosthesis Stress Concentration. Dent. J. 2022, 10, 12. [Google Scholar] [CrossRef]
Material | Young Modulus (GPa) | Poisson Ratio | Reference |
---|---|---|---|
Titanium | 110 | 0.32 | [12] |
Nickel Chromium | 206 | 0.30 | [6] |
Polyurethane | 3.6 | 0.30 | [12] |
SG1 (SD) | SG2 (SD) | SG3 (SD) | SG4 (SD) | ||
---|---|---|---|---|---|
Point A | 847.9 (251.9) | 808.3 (183.1) | 433.6 (106.3) | 394.7 (92.3) | |
CMN | Point B | 840.1 (147.4) | 571.0 (154.0) | 454.1 (246.9) | 797.9 (259.9) |
Point C | 436.3 (208.1) | 632.9 (486.5) | 505.2 (290.5) | 1022.5 (265.5) | |
Point A | 565.4 (310.7) | 905.6 (312.5) | 516.6 (196.1) | 407.3 (106.1) | |
MC | Point B | 601.4 (198.3) | 684 (142.8) | 676.3 (222.3) | 706.5 (252.2) |
Point C | 1073.6 (233.7) | 473.2 (151.0) | 445.1 (212.7) | 664.7 (227.1) |
Structures | Group | Stress Peak (MPa) |
---|---|---|
Prosthetic screw | CMN | 13.4 |
MC | 13.2 | |
Prosthesis | CMN | 13.4 |
MC | 12.1 | |
Dental implant | CMN | 56.5 |
MC | 57.8 | |
Abutment | CMN | 91.6 |
MC | 98.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, G.d.R.S.; Matos, J.D.M.d.; Queiroz, D.A.; Tribst, J.P.M.; Ramos, N.d.C.; Rocha, M.G.; Barbosa, A.B.; Bottino, M.A.; Borges, A.L.S.; Nishioka, R.S. Influence of Abutment Design on Biomechanical Behavior to Support a Screw-Retained 3-Unit Fixed Partial Denture. Materials 2022, 15, 6235. https://doi.org/10.3390/ma15186235
Lopes GdRS, Matos JDMd, Queiroz DA, Tribst JPM, Ramos NdC, Rocha MG, Barbosa AB, Bottino MA, Borges ALS, Nishioka RS. Influence of Abutment Design on Biomechanical Behavior to Support a Screw-Retained 3-Unit Fixed Partial Denture. Materials. 2022; 15(18):6235. https://doi.org/10.3390/ma15186235
Chicago/Turabian StyleLopes, Guilherme da Rocha Scalzer, Jefferson David Melo de Matos, Daher Antonio Queiroz, João Paulo Mendes Tribst, Nathália de Carvalho Ramos, Mateus Garcia Rocha, Adriano Baldotto Barbosa, Marco Antonio Bottino, Alexandre Luiz Souto Borges, and Renato Sussumu Nishioka. 2022. "Influence of Abutment Design on Biomechanical Behavior to Support a Screw-Retained 3-Unit Fixed Partial Denture" Materials 15, no. 18: 6235. https://doi.org/10.3390/ma15186235
APA StyleLopes, G. d. R. S., Matos, J. D. M. d., Queiroz, D. A., Tribst, J. P. M., Ramos, N. d. C., Rocha, M. G., Barbosa, A. B., Bottino, M. A., Borges, A. L. S., & Nishioka, R. S. (2022). Influence of Abutment Design on Biomechanical Behavior to Support a Screw-Retained 3-Unit Fixed Partial Denture. Materials, 15(18), 6235. https://doi.org/10.3390/ma15186235