Electrical and Optoelectronic Properties Enhancement of n-ZnO/p-GaAs Heterojunction Solar Cells via an Optimized Design for Higher Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gettering of GaAs Substrates
2.2. Preparation of the ZnO/GaAs Heterojunction
3. Results and Discussion
3.1. Variable Thermal Process VTP: Extrinsic Gettering of p-GaAs Substrates
3.2. Introducing Microgrooves at the ZnO/GaAs Heterojunction Interface (Using the Gettered Substrate)
3.3. Optimization of the ZnO Emitter Thickness
3.4. ZnO Nanorods Growth as ARC
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Köhl, F.; Vieweg-Gutberlet, F.G. Gallium-arsenide—The material and its application. Microelectron. J. 1981, 12, 5–8. [Google Scholar] [CrossRef]
- Asbeck, P.M.; Chang, F.M.C.; Wang, K.C.; Sullivan, G.J.; Cheung, D.T. GaAs-Based Heterojunction Bipolar Transistors for Very High-Performance Electronic Circuits. Proc. IEEE 1993, 81, 1709–1726. [Google Scholar] [CrossRef]
- Wang, G.W.; Ku, W.H. An analytical and computer-aided model of the AlGaAs/GaAs high electron mobility transistor. IEEE Trans. Electron Devices 1986, 33, 657–663. [Google Scholar] [CrossRef]
- Anspaugh, B.E. Solar Cell Radiation Handbook; NASA: Washington, DC, USA, 1996. Available online: https://ntrs.nasa.gov/citations/19970010878 (accessed on 18 October 2021).
- Brozel, M.R.; Stillman, G.E. Properties of Gallium Arsenide, 3rd ed.; Institution of Engineering and Technology: London, UK, 1996; p. 981. [Google Scholar]
- Milnes, A.G. Impurity and Defect Levels (Experimental) in Gallium Arsenide. Adv. Electron. Electron Phys. 1983, 61, 63–160. [Google Scholar] [CrossRef]
- Isaev, E.I.; Baykov, V.I.; Korzhavyi, P.A.; Vekilov, Y.K.; Johansson, B.; Abrikosov, I.A.; Erikssonc, O. Intrinsic defects and transition metal impurities in GaAs. J. Magn. Magn. Mater. 2004, 272–276, 1961–1962. [Google Scholar] [CrossRef]
- Hall, R.N.; Racette, J.H. Diffusion and Solubility of Copper in Extrinsic and Intrinsic Germanium, Silicon, and Gallium Arsenide. J. Appl. Phys. 1964, 35, 379. [Google Scholar] [CrossRef]
- Zarroug, A.; Derbali, L.; Ezzaouia, H. The impact of thermal treatment on gettering efficiency in silicon solar cell. Mater. Sci. Semicond. Processing 2015, 30, 451–455. [Google Scholar] [CrossRef]
- Zarroug, A.; Hamed, Z.B.; Derbali, L.; Dimassi, W.; Ezzaouia, H. Enhanced phosphorus gettering of impurities in p-type Czochralski silicon through a variable temperature processing (VTP). J. Cryst. Growth 2015, 422, 69–74. [Google Scholar] [CrossRef]
- Al-Amin, M.; Murphy, J.D. Combining Low-Temperature Gettering with Phosphorus Diffusion Gettering for Improved Multicrystalline Silicon. IEEE J. Photovolt. 2017, 7, 1519–1527. [Google Scholar] [CrossRef]
- Pietruszka, R.; Luka, G.; Witkowski, B.S.; Kopalko, K.; Zielony, E.; Bieganski, P.; Placzek-Popko, E.; Godlewski, M. Electrical and photovoltaic properties of ZnO/Si heterostructures with ZnO films grown by atomic layer deposition. Thin Solid Film. 2014, 563, 28–31. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, K.; Kim, C.Z.; Jung, S.H.; Kang, H.K.; Park, W.K.; Lee, J. Highly efficient epitaxial Ge solar cells grown on GaAs (001) substrates by MOCVD using isobutylgermane. Sol. Energy Mater. Sol. Cells 2017, 166, 127–131. [Google Scholar] [CrossRef]
- Kim, H.S.; Park, M.S.; Kim, S.H.; Park, S.I.; Song, J.D.; Kim, S.H.; Choi, W.J.; Park, J.H. Indium-tin-oxide/GaAs Schottky barrier solar cells with embedded InAs quantum dots. Thin Solid Film. 2016, 604, 81–84. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Zhang, S.; Wu, Z.; Wang, P.; Xu, Z.; Chen, H.; Yin, W.; Zhong, H.; Lin, S. 18.5% Efficient graphene/GaAs van der Waals heterostructure solar cell. Nano Energy 2015, 16, 310–319. [Google Scholar] [CrossRef]
- Tekmen, S.; Gur, E.; Asıl, H.; Cınar, K.; Coskun, C.; Tuzemen, S. Structural, optical, and electrical properties of n-ZnO/p-GaAs heterojunction. Phys. Stat. Sol. 2010, 207, 1464–1467. [Google Scholar] [CrossRef]
- Matsumoto, T.; Nishimura, K.; Nabetani, Y.; Kato, T. MBE growth and optical properties of ZnO on GaAs(111) substrates. Phys. Stat. Sol. 2004, 241, 591–594. [Google Scholar] [CrossRef]
- Ryu, M.K.; Lee, S.H.; Jang, M.S.; Panin, G.N.; Kang, T.W. Postgrowth annealing effect on structural and optical properties of ZnO films grown on GaAs substrates by the radio frequency magnetron sputtering technique. J. Appl. Phys. 2002, 92, 154. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Shen, D.Z.; Lu, Y.M.; Zhang, J.Y.; Li, B.H.; Zhao, D.X.; Yao, B.; Fan, X.W. Optical properties of ZnO fabricated on GaAs by molecular beam epitaxy. J. Lumin. 2007, 122–123, 202–204. [Google Scholar] [CrossRef]
- Soylu, M.; Al-Ghamdi, A.A.; Al-Hartomy, O.A.; El-Tantawy, F.; Yakuphanoglu, F. The electrical characterization of ZnO/GaAs heterojunction diode. J. Phys. E. 2014, 64, 240–245. [Google Scholar] [CrossRef]
- Kaenphakdee, S.; Putthithanas, P.; Yodyingyong, S.; Leelawattanachai, J.; Triampo, W.; Sanpo, N.; Jitputti, J.; Triampo, D. Zinc Oxide Synthesis from Extreme Ratios of Zinc Acetate and Zinc Nitrate: Synergistic Morphology. Materials 2022, 15, 570. [Google Scholar] [CrossRef]
- Panžić, I.; Capan, I.; Brodar, T.; Bafti, A.; Mandić, V. Structural and Electrical Characterization of Pure and Al-Doped ZnO Nanorods. Materials 2021, 14, 7454. [Google Scholar] [CrossRef]
- Kayes, B.M.; Nie, H.; Twist, R.; Spruytte, S.G.; Reinhardt, F.; Kizilyalli, I.C.; Higashi, G.S. 27.6% conversion efficiency, a new record for single junction solar cells under 1 sun illumination. In Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA, 19–24 June 2011; IEEE: Piscataway, NJ, USA, 2011; p. 4. [CrossRef]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (Version 56). Progr. Photovolt. 2020, 28, 629. [Google Scholar] [CrossRef]
- Jin, X.; Tang, N. ZnO as an anti-reflective layer for GaAs based heterojunction solar cell. Mat. Res. Express 2021, 8, 16412. [Google Scholar] [CrossRef]
- Caban, P.; Pietruszka, R.; Kopalko, K.; Witkowski, B.S.; Gwozdz, K.; Placzek-Popko, E.; Godlewski, M. ZnO/GaAs heterojunction solar cells fabricated by the ALD method. Optik 2018, 157, 743–749. [Google Scholar] [CrossRef]
- Ouadhour, M.; Derbali, L.; Zargouni, S.; Hajji, M.; Ezzaouia, H. ZnO thin film and porous silicon co-gettering of impurities in multicrystalline silicon through a VTP process. J. Mater. Sci. Mater. Electron. 2018, 29, 8216–8223. [Google Scholar] [CrossRef]
- Zarroug, A.; Hamed, Z.B.; Laatar, F.; Derbali, L.; Ezzaouia, H. The removal of metal impurities from the surface of Czochralski wafers using a porous silicon-based gettering under a gas flow HCl/O2 dry. Mater. Res. Bull. 2017, 91, 127–134. [Google Scholar] [CrossRef]
- Mansour, S.A.; Yakuphanoglu, F. Electrical-optical properties of nanofiber ZnO film grown by sol gel method and fabrication of ZnO/p-Si heterojunction. Solid State Sci. 2012, 14, 121–126. [Google Scholar] [CrossRef]
- Vallisree, S.; Thangavel, R.; Lenka, T.R. Modelling, simulation, optimization of Si/ZnO and Si/ZnMgO heterojunction solar cells. Mater. Res. Express 2018, 6, 025910. [Google Scholar] [CrossRef]
- Hussain, B.; Ebong, A.; Ferguson, I. Zinc oxide as an active n-layer and antireflection coating for silicon based heterojunction solar cell. Sol. Energy Mater. Sol. Cells 2015, 139, 95–100. [Google Scholar] [CrossRef]
- Deng, J.; Wang, M.; Liu, J.; Song, X.; Yang, Z.J. Arrays of ZnO/AZO (Al-doped ZnO) nanocables: A higher open circuit voltage and remarkable improvement of efficiency for CdS-sensitized solar cells. Colloid Interf. Sci. 2014, 418, 277–282. [Google Scholar] [CrossRef]
- Derbali, L.; Zarroug, A.; Ezzaouia, H. Minority carrier lifetime and efficiency improvement of multicrystalline silicon solar cells by two-step process. Renew. Energy 2015, 77, 331–337. [Google Scholar] [CrossRef]
- Derbali, L.; el Whibi, S.; Zarroug, A.; Bertomeu i Balagueró, J.; Ezzaouia, H. Yttrium oxide passivation of porous silicon for improved photoluminescence and optoelectronic properties. J. Mater. Sci. Mater. Electron. 2018, 29, 5738. [Google Scholar] [CrossRef]
- Smida, A.; Laatar, F.; Hassen, M.; Ezzaouia, H. Structural and optical properties of vapor-etched porous GaAs. J. Lumin. 2016, 176, 118–123. [Google Scholar] [CrossRef]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices, 3rd ed.; Wiley Interscience: Hoboken, NJ, USA, 2017; p. 81. ISBN 978-0-471-14323-9. [Google Scholar]
- Bouhjar, F.; Derbali, L.; Marí, B. High performance novel flexible perovskite solar cell based on a low-cost-processed ZnO: Co electron transport layer. Nano Res. 2020, 13, 2546–2555. [Google Scholar] [CrossRef]
- Niemeyer, M.; Ohlmann, J.; Walker, A.W.; Kleinschmidt, P.; Lang, R.; Hannappel, T.; Dimroth, F.; Lackner, D. Minority carrier diffusion length, lifetime and mobility in p-type GaAs and GaInAs. J. Appl. Phys. 2017, 122, 115702. [Google Scholar] [CrossRef]
- Klein, P.B.; Nordquist, P.E.R.; Siebenmann, P.O. Thermal conversion of GaAs. J. Appl. Phys. 1980, 51, 4861. [Google Scholar] [CrossRef]
- Tuck, B.; Adegboyega, G.A.; Jay, P.R.; Cardwell, M.J. Gallium Arsenide and Related Compounds, 1978th ed.; Wolfe, C.M., Ed.; Institute of Physics: London, UK, 1979; p. 114. [Google Scholar]
- Woodall, J. Gallium Arsenide MESFET Technology: Ion Implantation and Metal Contact. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 1982. [Google Scholar]
- Fenning, D.P.; Zuschlag, A.S.; Bertoni, M.I.; Lai, B.; Hahn, G.; Buonassisi, T. Improved iron gettering of contaminated multicrystalline silicon by high-temperature phosphorus diffusion. J. Appl. Phys. 2013, 113, 214504. [Google Scholar] [CrossRef]
- Vähänissi, V. Boron and Phosphorus Diffusion Gettering: Efficiency, Mechanisms and Applicability to Silicon Solar Cells. Ph.D. Thesis, Aalto University, Espoo, Finland, 2016. Available online: http://urn.fi/URN:ISBN:978-952-60-6917-3 (accessed on 6 November 2021).
- Lee, K.M.; Chang, S.H.; Wang, K.H.; Chang, C.M.; Cheng, H.M.; Kei, C.C.; Tseng, Z.L.; Wu, C.G. Thickness effects of ZnO thin film on the performance of tri-iodide perovskite absorber based photovoltaics. Sol. Energy 2015, 120, 117–122. [Google Scholar] [CrossRef]
- Turgut, G.; Kaya, F.S.; Duman, S. Fabrication and characterization of n-ZnO/p-GaAs structure. J. Mater. Sci. Mater. Electron. 2018, 29, 7750–7755. [Google Scholar] [CrossRef]
- Youssef, S.; Combette, P.; Podlecki, J.; al Asmar, R.; Foucaran, A. Structural and optical characterization of ZnO thin films deposited by reactive RF magnetron sputtering. Cryst. Growth Des. 2009, 9, 1088–1094. [Google Scholar] [CrossRef]
- Köç, P.; Tekmen, S.; Baltakesmez, A.; Tüzemen, S.; Meral, K.; Onganer, Y. Stimulated electroluminescence emission from n-ZnO/p-GaAs:Zn heterojunctions fabricated by electro-deposition. AIP Adv. 2013, 3, 122107. [Google Scholar] [CrossRef]
- Yang, L. Caractérisation de Couches Minces de ZnO Elaborées par la Pulvérisation Cathodique en Continu. Ph.D. Thesis, Université du Littoral, Calais, Côte d’Opale, 2012. Available online: https://tel.archives-ouvertes.fr/tel-00919764 (accessed on 21 November 2021).
- Boubaker, K. A physical explanation to the controversial Urbach tailing universality. Eur. Phys. J. Plus 2011, 126, 10. [Google Scholar] [CrossRef]
- Ayouchi, R.; Martin, F.; Leinen, D.; Ramos-Barrado, J.R. Growth of pure ZnO thin films prepared by chemical spray pyrolysis on silicon. J. Cryst. Growth 2003, 247, 497–504. [Google Scholar] [CrossRef]
- Attaf, A.; Djadai, A.; Derbali, A.; Saidi, H.; Aida, M.S.; Lehraki, N.; Attaf, N.; Attaf, R.; Derbali, L.; Poulain, M. The effect of ultrasonic wave amplitude on the physical properties of zinc oxide (ZnO) deposited by ultrasonic spray method. Mater. Sci. Eng. B 2022, 275, 115525. [Google Scholar] [CrossRef]
- Dong, J.; Zhao, Y.; Shi, J.; Wei, H.; Xiao, J.; Xu, X.; Luo, J.; Xu, J.; Li, D.; Luo, Y.; et al. Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification. Chem. Commun. 2014, 50, 13381–13384. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Krantz, J.; Litzov, I.; Stubhan, T.; Pinna, L.; Brabec, C.J. Comparison of various sol–gel derived metal oxide layers for inverted organic solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, 2194–2199. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, Z.; Thway, M.; Lee, K.; Yoon, S.F.; Peters, I.M.; Buonassisi, T.; Fizgerald, E.A.; Tan, C.S.; Lee, K.H. Fabrication and characterization of single junction GaAs solar cells on Si with As-doped Ge buffer. Sol. Energy Mater. Sol. Cells 2017, 172, 140–144. [Google Scholar] [CrossRef]
CTP Process (One Stage Classical Annealing) | VTP Process (Two-Stages Annealing) | |||||
---|---|---|---|---|---|---|
Reference (Untreated) | 700 °C | 800 °C | 900 °C | 800–600 °C (VTP1) | 900–600 °C (VTP2) | |
µH (cm2V−1s−1) | 138 | 331 | 368 | 394 | 420 | 487 |
τeff (ns) | 8.3 | 10.6 | 12.2 | 11.8 | 19.4 | 27.6 |
Thickness | 2θ (°) | FHWM (Radian) | D (nm) | ε (%) | |
---|---|---|---|---|---|
302 nm | 34.39 | 0.41 | 20.4 | 23.9 | 57.4 |
391 nm | 34.40 | 0.28 | 28 | 12.2 | 38.6 |
Solar Cell | Jsc (mA·cm−2) | Voc (mV) | FF | η (%) |
---|---|---|---|---|
Reference ZnO/GaAs | 22.6 | 576 | 65.6 | 8.31 |
S1 | 30.8 | 637.8 | 69.4 | 13.4 |
S2 | 34.6 | 679.3 | 75.1 | 17.22 |
S3 | 36.8 | 683 | 78.4 | 19.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derbali, L. Electrical and Optoelectronic Properties Enhancement of n-ZnO/p-GaAs Heterojunction Solar Cells via an Optimized Design for Higher Efficiency. Materials 2022, 15, 6268. https://doi.org/10.3390/ma15186268
Derbali L. Electrical and Optoelectronic Properties Enhancement of n-ZnO/p-GaAs Heterojunction Solar Cells via an Optimized Design for Higher Efficiency. Materials. 2022; 15(18):6268. https://doi.org/10.3390/ma15186268
Chicago/Turabian StyleDerbali, Lotfi. 2022. "Electrical and Optoelectronic Properties Enhancement of n-ZnO/p-GaAs Heterojunction Solar Cells via an Optimized Design for Higher Efficiency" Materials 15, no. 18: 6268. https://doi.org/10.3390/ma15186268
APA StyleDerbali, L. (2022). Electrical and Optoelectronic Properties Enhancement of n-ZnO/p-GaAs Heterojunction Solar Cells via an Optimized Design for Higher Efficiency. Materials, 15(18), 6268. https://doi.org/10.3390/ma15186268