Facile Approach to the Fabrication of Highly Selective CuCl-Impregnated θ-Al2O3 Adsorbent for Enhanced CO Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Reagents
2.2. Conventional Method for the Synthesis of θ-Al2O3-Supported CuCl (c-Cu(I)/θ-Al2O3) Adsorbent
2.3. New Method for the Synthesis of Novel θ-Al2O3-Supported CuCl (i-Cu(I)/θ-Al2O3) Adsorbent
2.4. Adsorbent Characterization
2.5. The Experimental Setup of CO Adsorption
3. Results and Discussion
3.1. Crystalline and Textural Structures
3.2. Surface Morphologies Results
3.3. Thermal Analysis
3.4. H2Temperature-Programmed Reduction (H2-TPR)
3.5. Adsorption of CO on Impregnated CuCl over θ-Al2O3 Adsorbents
3.6. Adsorption Selectivity of CO over CO2, and N2 in Impregnated CuCl over θ-Al2O3 Adsorbents
3.7. Reusability Studies of Impregnated CuCl over θ-Al2O3 Adsorbents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, J.-B.; Geng, H.-Q.; Wu, X.-F. The Chemistry of CO: Carbonylation. Chem 2019, 5, 526–552. [Google Scholar] [CrossRef]
- Rossi, G.E.; Winfield, J.M.; Mitchell, C.J.; van der Borden, W.; van der Velde, K.; Carr, R.H.; Lennon, D. Phosgene formation via carbon monoxide and dichlorine reaction over an activated carbon catalyst: Reaction testing arrangements. Appl. Catal. A Gen. 2020, 594, 117467. [Google Scholar] [CrossRef]
- Wu, X.F.; Fang, X.; Wu, L.; Jackstell, R.; Neumann, H.; Beller, M. Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: A personal account. Acc. Chem. Res. 2014, 47, 1041–1053. [Google Scholar] [CrossRef] [PubMed]
- Jahangiri, H.; Bennett, J.; Mahjoubi, P.; Wilson, K.; Gu, S. A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal. Sci. Technol. 2014, 4, 2210–2229. [Google Scholar] [CrossRef]
- Fang, K.; Li, D.; Lin, M.; Wei, W.; Sun, Y. A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas. Catal. Today 2009, 147, 133–138. [Google Scholar] [CrossRef]
- Ramírez-Santos, A.A.; Castel, C.; Favre, E. A review of gas separation technologies within emission reduction programs in the iron and steel sector: Current application and development perspectives. Sep. Purif. Technol. 2018, 194, 425–442. [Google Scholar] [CrossRef]
- Kasuya, F.; Tsuji, T. High purity CO gas separation by pressure swing adsorption. Gas. Sep. Purif. 1991, 5, 242–246. [Google Scholar] [CrossRef]
- Mersmann, M.; Fill, B.; Hartmann, R.; Maurer, S. The potential of energy saving by gas phase adsorption processes. Chem. Eng. Technol. 2000, 23, 937–944. [Google Scholar] [CrossRef]
- Grande, C.A.; Lopes, F.V.S.; Ribeiro, A.M.; Loureiro, J.M.; Rodrigues, A.E. Adsorption of off-gases from steam methane reforming (H2, CO2, CH4, CO and N2) on activated carbon. Sep. Sci. Technol. 2008, 43, 1338–1364. [Google Scholar] [CrossRef]
- Mozaffari, N.; Mirzahosseini, A.H.S.; Sari, A.H.; Aval, L.F. Investigation of carbon monoxide gas adsorption on the Al2O3/Pd(NO3)2/zeolite composite film. J. Theor. Appl. Phys. 2020, 14, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Tsutaya, H.; Izumi, J. Carbon monoxide adsorption by zeolite. Zeolite 1991, 11, 90. [Google Scholar] [CrossRef]
- Evans, A.; Luebke, R.; Petit, C. The use of metal–organic frameworks for CO purification. J. Mater. Chem. A 2018, 6, 10570–10594. [Google Scholar] [CrossRef]
- Mishra, P.; Mekala, S.; Dreisbach, F.; Mandal, B.; Gumma, S. Adsorption of CO2, CO, CH4 and N2 on a zinc-based metal organic framework. Sep. Purif. Technol. 2012, 94, 124–130. [Google Scholar] [CrossRef]
- Martin-Calvo, A.; Lahoz-Martin, F.D.; Calero, S. Understanding Carbon Monoxide Capture Using Metal–Organic Frameworks. J. Phys. Chem. C 2012, 116, 6655–6663. [Google Scholar] [CrossRef]
- Wirawan, S.K.; Creaser, D. Multicomponent H2/CO/CO2 Adsorption on BaZSM-5 Zeolite. Sep. Purif. Technol. 2006, 52, 224–231. [Google Scholar] [CrossRef]
- Elhenawy, S.E.M.; Khraisheh, M.; AlMomani, F.; Walker, G. Metal-Organic Frameworks as a Platform for CO2 Capture and Chemical Processes: Adsorption, Membrane Separation, Catalytic-Conversion, and Electrochemical Reduction of CO2. Catalysts 2020, 10, 1293. [Google Scholar] [CrossRef]
- Yoon, J.W.; Yoon, T.U.; Kim, E.J.; Kim, A.R.; Jung, T.S.; Han, S.S.; Bae, Y.S. Highly selective adsorption of CO over CO2 in a Cu(I)-chelated porous organic polymer. J. Hazard. Mater. 2018, 341, 321–327. [Google Scholar]
- Cho, K.; Kim, J.; Beum, H.T.; Jung, T.; Han, S.S. Synthesis of CuCl/Boehmite adsorbents that exhibit high CO selectivity in CO/CO2 separation. J. Hazard. Mater. 2018, 344, 857–864. [Google Scholar]
- Cho, K.; Kim, J.; Park, J.-H.; Jung, T.; Beum, H.T.; Cho, D.-W.; Rhee, Y.W.; Han, S.S. High CO adsorption capacity, and CO selectivity to CO2, N2, H2, and CH4 of CuCl/bayerite adsorbent. Microporous Mesoporous Mater. 2019, 27, 142–148. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, J.; Qiu, J.; Tong, X.; Fu, J.; Yang, G.; Yan, H.; Tang, Y. Zeolites modified by CuCl for separating CO from gas mixtures containing CO2. Adsorption 1996, 3, 27–32. [Google Scholar] [CrossRef]
- Hirai, H.; Wada, K.; Komiyama, M. Active carbon-supported copper(I) chloride as solid adsorbent for carbon monoxide. Bull. Chem. Soc. Jpn. 1986, 59, 2217–2223. [Google Scholar] [CrossRef]
- Tamon, H.; Kitamura, K.; Okazaki, M. Adsorption of carbon monoxide on activated carbon impregnated with metal halide. AIChE J. 1996, 42, 422–430. [Google Scholar] [CrossRef]
- Yang, H.; Fan, D.; Zhang, Y.; Yang, Y.; Zhang, S.; Wang, H.; Zhang, Y.; Zhang, L. Study on preparation of CuCl/REY adsorbent with high CO adsorption and selectivity. Sep. Purif. Technol. 2021, 279, 119730. [Google Scholar] [CrossRef]
- Ferrandon, M.S.; Lewis, M.A.; Alvarez, F.; Shafirovich, E. Hydrolysis of CuCl2 in the Cu-Cl thermochemical cycle for hydrogen production: Experimental studies using a spray reactor with an ultrasonic atomizer. Int. J. Hydrog. Energy 2010, 35, 1895–1904. [Google Scholar] [CrossRef]
- Peng, J.; Xian, S.; Xiao, J.; Huang, Y.; Xia, Q.; Wang, H.; Li, Z. A supported Cu(I)@MIL-100 (Fe) adsorbent with high CO adsorption capacity and CO/N2 selectivity. Chem. Eng. J. 2015, 270, 282–289. [Google Scholar] [CrossRef]
- Gao, F.; Wang, Y.; Wang, S. Selective adsorption of CO on CuCl/Y adsorbent prepared using CuCl2 as precursor: Equilibrium and thermodynamics. Chem. Eng. J. 2016, 290, 418–427. [Google Scholar] [CrossRef]
- Ma, J.; Li, L.; Ren, J.; Li, R. CO adsorption on activated carbon-supported Cu-based adsorbent prepared by a facile route. Sep. Purif. Technol. 2010, 76, 89–93. [Google Scholar] [CrossRef]
- King, C.J. Separation processes based on reversible chemical complexation. In Handbook of Separation Process Technology; Rousseau, R.W., Ed.; Wiley: New York, NY, USA, 1987; pp. 760–774. [Google Scholar]
- Onnes, H.K. Expression of the equation of state of gases and liquids by means of series. K. Ned. Akad. Wet. Proc. Ser. B Phys. Sci. 1902, 4, 125–147. [Google Scholar]
- Krumpolec, R.; Homola, T.; Cameron, D.C.; Humlíček, J.; Caha, O.; Kuldová, K.; Zazpe, R.; Přikryl, J.; Macak, J.M. Structural and Optical Properties of Luminescent Copper(I) Chloride Thin Films Deposited by Sequentially Pulsed Chemical Vapour Deposition. Coatings 2018, 8, 369. [Google Scholar] [CrossRef]
- Lucas, F.O.; Mitra, A.; McNally, P.J.; Daniels, S.; Bradley, A.L.; Taylor, D.M.; Proskuryakov, Y.Y.; Durose, K.; Cameron, D.C. Evaluation of the chemical, electronic and optoelectronic properties of γ-CuCl thin films and their fabrication on Si substrates. J. Phys. D Appl. Phys. 2007, 40, 3461–3467. [Google Scholar]
- Natarajan, G.; Daniels, S.; Cameron, D.C.; O’Reilly, L.; Mitra, A.; McNally, P.J.; Lucas, O.F.; Rajendra Kumar, R.T.; Reid, I.; Bradley, A.L. Growth of CuCl thin films by magnetron sputtering for ultraviolet optoelectronic applications. J. Appl. Phys. 2006, 100, 033520. [Google Scholar] [CrossRef]
- Marin, G.D.; Wang, Z.; Naterer, G.F.; Gabriel, K. X-ray diffraction study of multiphase reverse reaction with molten CuCl and oxygen. Thermochim. Acta 2011, 524, 109–116. [Google Scholar] [CrossRef]
- Ahmed, I.; Jhung, S.H. Adsorptive denitrogenation of model fuel with CuCl-loaded metal–organic frameworks (MOFs). Chem. Eng. J. 2014, 251, 35–42. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X.; Lee, J.Y.; Bolin, T.B. Oxidation of elemental mercury vapor over γ-Al2O3 supported CuCl2 catalyst for mercury emissions control. Chem. Eng. J. 2015, 275, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Tao, Y.; He, L.; Duan, Y.; Xiao, J.; Li, Z. Preparation of CuCl@AC with high CO adsorption capacity and selectivity from CO/N2 binary mixture. Adsorption 2015, 21, 373–381. [Google Scholar] [CrossRef]
- Rouco, A.J. TPR study of Al2O3- and SiO2-supported CuCl2 catalysts. Appl. Catal. A 1994, 117, 139–149. [Google Scholar]
- Tonge, K. Particle size effects in temperature programmed topochemical reactions. Thermochim. Acta 1984, 74, 151–166. [Google Scholar] [CrossRef]
- Delgado, J.A.; Águeda, V.I.; Uguina, M.A.; Sotelo, J.L.; Brea, P.; Grande, C.A. Adsorption and diffusion of H2, CO, CH4, and CO2 in BPL activated carbon and 13X zeolite: Evaluation of performance in pressure swing adsorption hydrogen purification by simulation. Ind. Eng. Chem. Res. 2014, 53, 15414–15426. [Google Scholar] [CrossRef]
- Lopes, F.V.S.; Grande, C.A.; Ribeiro, A.M.; Loureiro, J.M.; Evaggelos, O.; Nikolakis, V.; Rodgrigues, A.E. Title Adsorption of H2, CO2, CH4, CO, N2 and H2O in activated carbon and zeolite for hydrogen production. Sep. Sci. Technol. 2009, 44, 1045–1073. [Google Scholar] [CrossRef]
- Xue, C.; Hao, W.; Cheng, W.; Ma, J.; Li, R. CO adsorption performance of CuCl/activated carbon by simultaneous reduction–dispersion of mixed Cu(II) salts. Materials 2019, 12, 1605. [Google Scholar]
- Yin, Y.; Tan, P.; Liu, X.-Q.; Zhu, J.; Sun, L.-B. Constructing a confined space in silica nanopores: An ideal platform for the formation and dispersion of cuprous sites. J. Mater. Chem. A 2014, 2, 3399–3406. [Google Scholar] [CrossRef]
- Wang, Q.M.; Shen, D.; Bülow, M.; Lau, M.L.; Deng, S.; Fitch, F.R. Metallo-organic molecular sieve for gas separation and purification. Microporous Mesoporous Mat. 2002, 55, 217–230. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, Z.; Li, B.; Xing, J.; Liu, H.; Tong, Y.; Tian, P.; Xu, Y.; Liu, Z. Highly selective adsorption of CO over N2 on CuCl-loaded SAPO-34 adsorbent. J. Energy Chem. 2019, 36, 122–128. [Google Scholar] [CrossRef] [Green Version]
Adsorbent | T (K) | q (cm3/g) | Selectivity | Refs. | |||
---|---|---|---|---|---|---|---|
CO | CO2 | N2 | CO/CO2 | CO/N2 | |||
BPL AC | 298 | 4.4 | 24.4 | - | 0.2 | - | [39] |
AC | 303 | 11.5 | 58 | 7.4 | 0.2 | 1.6 | [40] |
CuCl(5)/Y | 303 | 66.9 | 24.1 | 1.0 | 2.8 | 66.9 | [26] |
Cu(I)/AC | 298 | 56 | 46.2 | 2.5 | 1.2 | 22.4 | [27] |
CuCl/NaY | 303 | 52.0 | 29.3 | 1.8 | 1.7 | 28.8 | [19] |
CuCl/13X | 303 | 84.9 | 53.1 | 1.6 | [19] | ||
Cu(I)-4/AC | 298 | 45.4 | 25.2 | 2.1 | 2.6 | 34.3 | [41] |
CuCl/Boehmite | 293 | 34.94 | 2.91 | - | 12 | - | [18] |
Cu2O-SBA-15 | 298 | 17.24 | - | 2.57 | 6.7 | [42] | |
0.8Cu(I)@MIL-100(Fe) | 298 | 62.27 | - | 3.45 | - | 18 | [25] |
Polymeric copper(II) benzene-1,3,5-tricarboxylate [Cu3(BTC)2(H2O)x]n | 295 | 14.56 | - | 4.55 | - | 3.2 | [43] |
CuCl introduced into SAPO-34 | 298 | 41.21 | - | 2.06 | - | 20 | [44] |
i-Cu(I)/θ-Al2O3-500 | 303 | 67.6 | 25.19 | 20.15 | 2.7 | 3.35 | This work |
c-Cu(I)/θ-Al2O3 | 303 | 65 | 20.39 | 16.61 | 3.2 | 3.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, C.; Kim, J.; Baik, J.H.; Pandey, S.; Koh, D.J. Facile Approach to the Fabrication of Highly Selective CuCl-Impregnated θ-Al2O3 Adsorbent for Enhanced CO Performance. Materials 2022, 15, 6356. https://doi.org/10.3390/ma15186356
Jeong C, Kim J, Baik JH, Pandey S, Koh DJ. Facile Approach to the Fabrication of Highly Selective CuCl-Impregnated θ-Al2O3 Adsorbent for Enhanced CO Performance. Materials. 2022; 15(18):6356. https://doi.org/10.3390/ma15186356
Chicago/Turabian StyleJeong, Cheonwoo, Joonwoo Kim, Joon Hyun Baik, Sadanand Pandey, and Dong Jun Koh. 2022. "Facile Approach to the Fabrication of Highly Selective CuCl-Impregnated θ-Al2O3 Adsorbent for Enhanced CO Performance" Materials 15, no. 18: 6356. https://doi.org/10.3390/ma15186356
APA StyleJeong, C., Kim, J., Baik, J. H., Pandey, S., & Koh, D. J. (2022). Facile Approach to the Fabrication of Highly Selective CuCl-Impregnated θ-Al2O3 Adsorbent for Enhanced CO Performance. Materials, 15(18), 6356. https://doi.org/10.3390/ma15186356