Effect of Impact Velocity and Angle on Impact Wear Behavior of Zr-4 Alloy Cladding Tube
Abstract
:1. Introduction
2. Materials and Experiment
2.1. Materials
2.2. Experimental Equipment Parameters
3. Results and Discussion
3.1. Influence of the Impact Velocity
3.1.1. Dynamic Response
3.1.2. Wear Morphological Analysis
3.2. Influence of the Impact Angle
3.2.1. Dynamic Response
3.2.2. Wear Morphological Analysis
3.3. Impact Wear Mechanism
4. Conclusions
- (a)
- The inclined impact can be divided into two stages: (I) impact-sliding stage and (II) impact stage. A more inclined impact angle indicates greater energy dissipation in the impact-sliding stage and greater material wear.
- (b)
- The increase in the initial impact velocity promotes damage of the material from spalling and plastic deformation to fatigue crack extension and propagation; although inclined impact angle can reduce the impact contact force and reduce the damage caused by impact, cutting in the impact-sliding stage causes much serious material removal.
- (c)
- The accumulated layer of wear debris produced in the impact process can reduce the wear, and the formation and falling off of the accumulated layer of wear debris are the main reasons for the change in Zr, Fe, O, and Cr elements on the surface of worn scars.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, C.H.; Wang, R.S.; Wang, X.T.; Bai, G.H. Effects of ion irradiation on microstructure and properties of zirconium alloys—A review. Nucl. Eng. Technol. 2015, 47, 323–331. [Google Scholar] [CrossRef]
- Cai, Z.B.; Li, Z.Y.; Yin, M.G.; Zhu, M.H.; Zhou, Z.R. A review of fretting study on nuclear power equipment. Tribol. Int. 2020, 144, 106095. [Google Scholar] [CrossRef]
- Ma, J.; Cui, T.; Peng, H.; Lu, Z.; Jia, Y. Diffusing Hydrogen Effect on the Oxide Film on 316l SS in High Temperature Water. In Proceedings of the 19th International Conference on Environmental Degradation of Materials in Nuclear Power System-Water Reactors, Boston, MA, USA, 18–22 August 2019. [Google Scholar]
- Liu, X.H.; Wu, X.Q.; Han, E.H. Effects of temperature on lectrochemical corrosion of domestic nuclear-grade 316L Stainless Steel in Zn-injected aqueous environment. Acta Metall. Sin. 2014, 50, 64–70. [Google Scholar]
- Jang, H.X.; Duan, Z.W.; Zhang, B.B.; Zhao, X.Y.; Wang, P. Wear behavior of zirconium-4 alloy after different irradiation damage level. Appl. Surf. Sci. 2020, 509, 145373. [Google Scholar] [CrossRef]
- Kim, K.T. Self-sufficient nuclear fuel technology development and applications. Nucl. Eng. Des. 2012, 249, 287–296. [Google Scholar] [CrossRef]
- Kim, K.-T. Applicability of out-of-pile fretting wear tests to in-reactor fretting wear-induced failure time prediction. J. Nucl. Mater. 2013, 433, 364–371. [Google Scholar] [CrossRef]
- Attia, M.H. Fretting fatigue and wear damage of structural components in nuclear power stations—Fitness for service and life management perspective. Tribol. Int. 2006, 39, 1294–1304. [Google Scholar] [CrossRef]
- Kopeć, M.; Malá, M.; Cvrček, L.; Krejčí, J. Debris-Fretting Test of Coated and Uncoated Zr-1% Nb Cladding. Acta Polytech. CTU Proc. 2019, 24, 15–20. [Google Scholar] [CrossRef]
- Chen, T.Y. Study on water lubricated drawing rod technoliogy for afa 3G fuel assembly. Prog. Rep. China Nucl. Sci. Technol. 2019, 6, 152–157. [Google Scholar]
- Ru, J.; Xiao, Z.; Zhu, F.W.; Zhang, L.; Qin, M.; Liu, Y.H. Analysis of Measures for Safe Operation of PWR Fuel Assemblies. Nucl. Power Eng. 2017, 38, 175–179. [Google Scholar]
- Duan, Z.G.; Yang, H.L.; Satoh, Y.; Murakami, K.; Kano, S.; Zhao, Z.S.; Shen, J.J. Current status of materials development of nuclear fuel cladding tubes for light water reactors. Nucl. Eng. Des. 2017, 316, 131–150. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kim, H.K. Fretting wear behavior of a nuclear fuel rod under a simulated primary coolant condition. Wear 2013, 301, 569–574. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Z.P.; Lu, W.; Thouless, M.D. The effect of coupled wear and creep during grid-to-rod fretting. Nucl. Eng. Des. 2017, 318, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H.; Kim, H.K.; Jung, Y.H. Effect of impact frequency on the wear behavior of spring-supported tubes in room and high temperature distilled water. Wear 2005, 259, 329–339. [Google Scholar] [CrossRef]
- Jiang, H.X.; Duan, Z.W.; Zhang, B.B.; Zhao, X.Y.; Wang, P. Fretting wear behaviors of Zr-4 alloy under different ions irradiation conditions. Tribol. Int. 2020, 152, 106553. [Google Scholar] [CrossRef]
- Jiang, H.X.; Duan, Z.W.; Zhang, B.B.; Zhao, X.Y.; Wang, P. Influence of ions irradiation on the microstructural evolution, mechanical and tribological properties of Zr-4 alloy. Appl. Surf. Sci. 2019, 498, 143821. [Google Scholar] [CrossRef]
- Tang, C.; Steinbrueck, M.; Stueber, M.; Grosse, M.; Yu, X.J.; Ulrich, S.; Seifert, H.J. Deposition, characterization and high-temperature steam oxidation behavior of single-phase Ti2AlC-coated Zircaloy. Corros. Sci. 2018, 135, 87–98. [Google Scholar]
- Lin, Y.W.; Cai, Z.B.; Chen, Z.Q.; Qian, H.; Tang, L.C.; Xie, Y.C.; Zhu, M.H. Influence of diameter–thickness ratio on alloy Zr-4 tube under low-energy impact fretting wear. Mater. Today Commun. 2016, 8, 79–90. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, Z.B.; Chen, Z.Q.; Sun, Y.; Zhu, M.H. Correction to: Low-Velocity Impact Wear Behavior of Ball-to-Flat Contact Under Constant Kinetic Energy. J. Mater. Eng. Perform. 2017, 26, 5669–5679. [Google Scholar] [CrossRef]
- Qi, H.; Fan, J.M.; Wang, J.; Li, H.Z. Impact erosion by high velocity micro-particles on a quartz crystal. Tribol. Int. 2015, 82, 200–210. [Google Scholar] [CrossRef]
- Wu, S.B.; Cai, Z.B.; Lin, Y.; Li, Z.Y.; Zhu, M.H. Effect of abrasive particle hardness on interface response and impact wear behavior of TC17 titanium alloy. Mater. Res. Express 2019, 6, 016521. [Google Scholar] [CrossRef]
- Soria, S.R.; Tolley, A.; Yawny, A. A study of debris and wear damage resulting from fretting of Incoloy 800 steam generator tubes against AISI Type 304 stainless steel. Wear 2016, 368–369, 219–229. [Google Scholar] [CrossRef]
- Yan, K.; Ren, P.D.; Zhang, X.Y.; Li, C.C. Impact Wear Properties and Wear Mechanism of Zr-4 Alloy Tube. Lubr. Eng. 2016, 41, 12–17. [Google Scholar]
- Tu, X.M.; Xie, S.H.; Zhou, Y.Y.; He, L. Surface gradient heterogeneity induced tensile plasticity in a Zr-based bulk metallic glass through ultrasonic impact treatment. J. Non-Cryst. Solids 2021, 554, 120612. [Google Scholar] [CrossRef]
- Singh, K.; Tiwari, M.; Mahato, A. Evolution of regimes of wear in zircaloy-4/inconel-600 contact subjected to fretting loading. Tribol. Int. 2020, 147, 106274. [Google Scholar] [CrossRef]
- Tan, D.Q.; Mo, J.L.; He, W.F.; Luo, J.; Zhang, Q.; Zhu, M.H.; Zhou, Z.R. Suitability of laser shock peening to impact-sliding wear in different system stiffnesses—ScienceDirect. Surf. Coat. Technol. 2019, 358, 22–35. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y.H. Effects of displacement amplitude on fretting wear behaviors and mechanism of Inconel 600 alloy. Wear 2013, 304, 223–230. [Google Scholar] [CrossRef]
- Silva, C.S.; Henriques, B.; de Oliveira, A.P.N.; Silva, F.; Gomes, J.R.; Souza, J.C. Micro-scale abrasion and sliding wear of zirconium-lithium silicate glass-ceramic and polymer-infiltrated ceramic network used in dentistry. Wear 2020, 448, 203214. [Google Scholar] [CrossRef]
- Bhatti, N.A.; Wahab, M.A. Fretting fatigue crack nucleation: A review. Tribol. Int. 2018, 121, 121–138. [Google Scholar] [CrossRef]
- Kim, K.T. The effect of fuel rod supporting conditions on fuel rod vibration characteristics and grid-to-rod fretting wear. Nucl. Eng. Des. 2010, 240, 1386–1391. [Google Scholar] [CrossRef]
- Chen, X.D.; Wang, L.W.; Yu, Q.H.; Zhang, F.; Mo, K.; Ming, S.L.; Cai, Z.B. Experimental and Numerical Analysis on the Impact Wear Behavior of TP316H Steel. Materials 2022, 15, 2881. [Google Scholar] [CrossRef] [PubMed]
- Prato, A.; Longana, M.; Hussain, A.; Wisnom, M.R. Post-Impact Behaviour of Pseudo-Ductile Thin-Ply Angle-Ply Hybrid Composites. Materials 2019, 12, 579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Materials | Element | ||||
---|---|---|---|---|---|
O | Cr | Fe | Zr | Sn | |
Zircaloy-4 alloy | 0.13 | 0.10 | 0.21 | 98.11 | 1.45 |
Materials | Element | ||||||||
---|---|---|---|---|---|---|---|---|---|
C | Si | Mn | S | P | Cr | Ni | Mo | Fe | |
316L stainless steel | 0.021 | 0.540 | 1.280 | 0.004 | 0.014 | 17.21 | 12.46 | 2.450 | 66.021 |
Element | Weight % | ||||
---|---|---|---|---|---|
Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | |
Zr | 81.61 | 70.41 | 63.52 | 72.32 | 87.70 |
O | 11.19 | 19.98 | 15.19 | 16.28 | 6.50 |
Fe | 0.80 | 2.60 | 10.99 | 2.50 | 0.40 |
Cr | 0.30 | 0.70 | 2.60 | 1.10 | 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.-J.; Hu, Y.; Liu, X.; Li, D.-X.; He, L.-P.; Wang, J.; Cai, Z.-B. Effect of Impact Velocity and Angle on Impact Wear Behavior of Zr-4 Alloy Cladding Tube. Materials 2022, 15, 6371. https://doi.org/10.3390/ma15186371
Yu S-J, Hu Y, Liu X, Li D-X, He L-P, Wang J, Cai Z-B. Effect of Impact Velocity and Angle on Impact Wear Behavior of Zr-4 Alloy Cladding Tube. Materials. 2022; 15(18):6371. https://doi.org/10.3390/ma15186371
Chicago/Turabian StyleYu, Shi-Jia, Yong Hu, Xin Liu, Dong-Xing Li, Li-Ping He, Jun Wang, and Zhen-Bing Cai. 2022. "Effect of Impact Velocity and Angle on Impact Wear Behavior of Zr-4 Alloy Cladding Tube" Materials 15, no. 18: 6371. https://doi.org/10.3390/ma15186371
APA StyleYu, S. -J., Hu, Y., Liu, X., Li, D. -X., He, L. -P., Wang, J., & Cai, Z. -B. (2022). Effect of Impact Velocity and Angle on Impact Wear Behavior of Zr-4 Alloy Cladding Tube. Materials, 15(18), 6371. https://doi.org/10.3390/ma15186371