Research on the Springback Behavior of 316LN Stainless Steel in Micro-Scale Bending Processes
Abstract
:1. Introduction
2. Micro-Scale Four-Point Bending Experiment
2.1. Material Preparation
2.2. Tensile Tests
2.3. Micro-Scale Four-Point Bending Experiments
3. A Combined Constitutive Model
3.1. A Combined Constitutive Model
3.2. Constitutive Model Considering Strain Gradient
3.3. The Calculation of Strain, Strain Gradient, Stress and Bending Moment
3.3.1. The Calculation of Strain and Strain Gradient
3.3.2. The Calculation of Stress
3.3.3. The Calculation of Bending Moment
3.3.4. The Calculation of Springback Angle
4. Results and Discussion
4.1. Prediction of the Springback Angle
4.2. Factors Contributing to Springback
5. Conclusions
- The springback angle of the micro-bending test shows a ‘the smaller, the stronger’ effect, and the springback angle results calculated using the proposed mixed model which considers size effect and strain gradient showed good agreement with the micro-bending experiment data.
- The specially designed four-point bending tooling which allowed the obtainment of a pure bending moment in the bending region made the calculation process easier and ensured that the results were accurate.
- The strain gradient’s effect can be ignored during the micro-bending test that was performed in this study, for the elastic stage of 316LN stainless steel is too obvious, which makes the plastic region small and the strain gradient’s contribution useless, from which it can be inferred that the strain gradient contributes less to materials with obvious elastic stages.
- Quantitative expressions of the factors in the mixed model can be obtained and compared. The geometrical size effect shows a dominant effect compared to the strain gradient, and its contribution to plastic bending angle increases with increasing grain size.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tawfik, H.; Hung, Y.; Mahajan, D. Metal bipolar plates for PEM fuel cell—A review. J. Power Sources 2007, 163, 755–767. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, S.; Wang, J.; Shi, Z.; Du, L. Reproducible Flexible SERS Substrates Inspired by Bionic Micro-Nano Hierarchical Structures of Rose Petals. Adv. Mater. Interfaces 2022, 9, 2102468. [Google Scholar] [CrossRef]
- Cho, E.A.; Jeon, U.S.; Ha, H.Y.; Hong, S.-A.; Oh, I.-H. Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells. J. Power Sources 2004, 125, 178–182. [Google Scholar] [CrossRef]
- Mahabunphachai, S. A Hybrid Hydroforming and Mechanical Bonding Process for Fuel Cell Biopolar Plates. Ph.D. Thesis, The University of Michigan, Ann Arbor, MI, USA, 2008. [Google Scholar]
- Peng, L.; Lai, X.; Yi, P.; Mai, J.; Ni, J. Design, optimization, and fabrication of slotted-interdigitated thin metallic bipolar plates for PEM fuel cells. J. Fuel Cell Sci. Technol. 2011, 8, 011002. [Google Scholar] [CrossRef]
- Peng, L.; Liu, D.; Hu, P.; Lai, X.; Ni, J. Fabrication of metallic bipolar plates for proton exchange membrane fuel cell by flexible forming process-numerical simulations and experiments. J. Fuel Cell Sci. Technol. 2010, 7, 031009. [Google Scholar] [CrossRef]
- Geiger, M.; Kleiner, M.; Eckstein, R.; Tieslera, N.; Engel, U. Microforming. CIRP Ann. 2001, 50, 445–462. [Google Scholar] [CrossRef]
- Fu, M.W.; Wang, J.L.; Korsunsky, A.M. A review of geometrical and microstructural size effects in micro-scale deformation processing of metallic alloy components. Int. J. Mach. Tools Manuf. 2016, 109, 94–125. [Google Scholar] [CrossRef]
- Jing, C.; Wang, J.; Zhang, C.; Sun, Y.; Shi, Z. Influence of size effect on the dynamic mechanical properties of OFHC copper at micro-/meso-scales. Int. J. Adv. Manuf. Technol. 2022, 120, 4775–4789. [Google Scholar] [CrossRef]
- Zhao, Y.; Peng, L.; Lai, X. Influence of the electric pulse on springback during stretch U-bending of Ti6Al4V titanium alloy sheets. J. Mater. Processing Technol. 2018, 261, 12–23. [Google Scholar] [CrossRef]
- Xu, Z.; Peng, L.; Bao, E. Size effect affected springback in micro/meso scale bending process: Experiments and numerical modeling. J. Mater. Processing Technol. 2018, 252, 407–420. [Google Scholar] [CrossRef]
- Fu, M.W.; Wang, J.L. Size effects in multi-scale materials processing and manufacturing. Int. J. Mach. Tools Manuf. 2021, 167, 103755. [Google Scholar] [CrossRef]
- Lou, J.; Shrotriya, P.; Allameh, S.; Buchheit, T.; Soboyejo, W.O. Strain gradient plasticity length scale parameters for LIGA Ni MEMs thin films. Mater. Sci. Eng. A 2006, 441, 299–307. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.; Wan, Y.; Zhang, C.; Ran, J.; Fu, M.W. Size effect on the shear damage under low stress triaxiality in micro-scaled plastic deformation of metallic materials. Mater. Des. 2020, 196, 109107. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, Z.; Wang, X.; Sun, Y.; Sun, C. Ductile fracture behavior in micro-scaled progressive forming of Magnesium-Lithium alloy sheet. Int. J. Adv. Manuf. Technol. 2022, 121, 967–980. [Google Scholar] [CrossRef]
- Kals, T.A.; Eckstein, R. Miniaturization in sheet metal working. J. Mater. Processing Technol. 2000, 103, 95–101. [Google Scholar] [CrossRef]
- Hutchinson, J.; Fleck, N. Strain gradient plasticity. Adv. Appl. Mech. 1997, 33, 295–361. [Google Scholar]
- Diehl, A.; Engel, U.; Geiger, M. Influence of microstructure on the mechanical properties and the forming behaviour of very thin metal foils. Int. J. Adv. Manuf. Technol. 2010, 47, 53–61. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; Shen, Y.; Diehl, A.; Hagenah, H.; Engel, U.; Merklein, M. Size effect on springback behavior due to plastic strain gradient hardening in microbending process of pure aluminum foils. Mater. Sci. Eng. A 2010, 527, 4497–4504. [Google Scholar] [CrossRef]
- Gau, J.T.; Principe, C.; Yu, M. Springback behavior of brass in micro sheet forming. J. Mater. Processing Technol. 2007, 191, 7–10. [Google Scholar] [CrossRef]
- Arsenlis, A.; Parks, D.M. Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater. 1999, 47, 1597–1611. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; Wang, Q.; Shen, Y.; Diehl, A.; Hagenah, H.; Engel, U.; Merklein, M. Determination of material intrinsic length and strain gradient hardening in microbending process. Int. J. Solids Struct. 2011, 48, 163–174. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Huang, Y. Geometrically necessary dislocation and size-dependent plasticity. Scr. Mater. 2003, 48, 113–118. [Google Scholar] [CrossRef]
- Wang, J.L.; Fu, M.W.; Shi, S.Q.; Korsunsky, A.M. Influence of size effect and plastic strain gradient on the springback behaviour of metallic materials in microbending process. Int. J. Mech. Sci. 2018, 146, 105–115. [Google Scholar] [CrossRef]
- Zheng, Q.; Shimizu, T.; Yang, M. Grain size effect on mechanical behavior of thin pure titanium foils at elevated temperatures. Int. J. Mech. Sci. 2017, 133, 416–425. [Google Scholar] [CrossRef]
- Liu, J.G.; Fu, M.W.; Lu, J.; Chan, W.L. Influence of size effect on the springback of sheet metal foils in micro-bending. Comput. Mater. Sci. 2011, 50, 2604–2614. [Google Scholar] [CrossRef]
- Deng, Y.J.; Peng, L.F.; Lai, X.M.; Fu, M.W.; Lin, Z.Q. Constitutive modeling of size effect on deformation behaviors of amorphous polymers in micro-scaled deformation. Int. J. Plast. 2017, 89, 197–222. [Google Scholar] [CrossRef]
- Peng, L.; Lai, X.; Lee, H.J.; Song, J.; Ni, J. Analysis of micro/mesoscale sheet forming process with uniform size dependent material constitutive model. Mater. Sci. Eng. A 2009, 526, 93–99. [Google Scholar] [CrossRef]
- Peng, L.; Liu, F.; Ni, J.; Lai, X. Size effects in thin sheet metal forming and its elastic–plastic constitutive model. Mater. Des. 2007, 28, 1731–1736. [Google Scholar] [CrossRef]
- Lai, X.M.; Peng, L.F.; Hu, P.; Lan, S.; Ni, J. Material behavior modelling in micro/meso-scale forming process with considering size/scale effects. Comput. Mater. Sci. 2008, 43, 1003–1009. [Google Scholar] [CrossRef]
- Han, C.S.; Gao, H.; Huang, Y.; Nix, W.D.; Hutchinson, J.W. Mechanism-based strain gradient crystal plasticity—I. Theory. J. Mech. Phys. Solids 2005, 53, 1188–1203. [Google Scholar] [CrossRef]
- Armstrong, R.W.; Codd, I.; Douthwaite, R.M.; Petch, N.J. The plastic deformation of polycrystalline aggregates. Philos. Mag. A J. Theor. Exp. Appl. Phys. 1962, 7, 45–58. [Google Scholar] [CrossRef]
- Hansen, N. Polycrystalline strengthening. Metall. Trans. A 1985, 16, 2167–2190. [Google Scholar] [CrossRef]
- Rodrıguez, R.; Gutierrez, I. Correlation between nanoindentation and tensile properties: Influence of the indentation size effect. Mater. Sci. Eng. A 2003, 361, 377–384. [Google Scholar] [CrossRef]
- Mecking, H.; Kocks, U.F. Kinetics of flow and strain-hardening. Acta Metall. 1981, 29, 1865–1875. [Google Scholar] [CrossRef]
- Clausen, B.; Lorentzen, T.; Leffers, T. Self-consistent modelling of the plastic deformation of fcc polycrystals and its implications for diffraction measurements of internal stresses. Acta Mater. 1998, 46, 3087–3098. [Google Scholar] [CrossRef]
- Xue, Z.; Huang, Y.; Li, M. Particle size effect in metallic materials: A study by the theory of mechanism-based strain gradient plasticity. Acta Mater. 2002, 50, 149–160. [Google Scholar] [CrossRef]
Annealing Conditions | 900 °C, 0.25 h | 950 °C, 0.5 h | 1000 °C, 1 h |
---|---|---|---|
Grain size average (μm) | 18.18 | 29.59 | 40.51 |
Grain size deviation (μm) | 4.54 | 8.86 | 17.33 |
Grain size/sheet thickness (d/t) | 0.18 | 0.30 | 0.41 |
Bar Radius | Pressing Speed | Upper Bar Span (g) | Lower Bar Span (r) | Pressing Distance |
---|---|---|---|---|
1.25 mm | 5 mm/min | 15 mm | 40 mm | 15 mm |
Grain Size (μm) | No.1 (°) | No.2 (°) | No.3 (°) | Average Angle (°) |
---|---|---|---|---|
18 | 46 | 44 | 46 | 45.3 |
30 | 38 | 33 | 40 | 37.0 |
41 | 32 | 33 | 36 | 33.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, S.; Tian, C.; Pan, H.; Tang, X.; Han, L.; Wang, J. Research on the Springback Behavior of 316LN Stainless Steel in Micro-Scale Bending Processes. Materials 2022, 15, 6373. https://doi.org/10.3390/ma15186373
Guo S, Tian C, Pan H, Tang X, Han L, Wang J. Research on the Springback Behavior of 316LN Stainless Steel in Micro-Scale Bending Processes. Materials. 2022; 15(18):6373. https://doi.org/10.3390/ma15186373
Chicago/Turabian StyleGuo, Shubiao, Chenchen Tian, Haitao Pan, Xuefeng Tang, Lu Han, and Jilai Wang. 2022. "Research on the Springback Behavior of 316LN Stainless Steel in Micro-Scale Bending Processes" Materials 15, no. 18: 6373. https://doi.org/10.3390/ma15186373
APA StyleGuo, S., Tian, C., Pan, H., Tang, X., Han, L., & Wang, J. (2022). Research on the Springback Behavior of 316LN Stainless Steel in Micro-Scale Bending Processes. Materials, 15(18), 6373. https://doi.org/10.3390/ma15186373