Fabrication of P/N/B-Based Intumescent Flame-Retardant Coating for Polyester/Cotton Blend Fabric
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation and Characterization of IFR
2.3. Preparation of Coated T/C Blend Fabrics
2.4. Characterizations
3. Results and Discussion
3.1. FTIR and Morphology Analyses
3.2. Thermal Stability
3.3. Heat Suppression Performance
3.4. Flame Retardancy
3.5. Char Residue Analyses
3.6. Physical Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kowalczyk, D.; Brzeziński, S.; Kamińska, I. Multifunctional bioactive and improving the performance durability nanocoatings for finishing PET/CO woven fabrics by the sol-gel method. J. Alloys Compd. 2015, 649, 387–393. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X.; Cheng, X.; Li, H.; Gu, X.; Sun, J.; Zhang, S. Improving the flame retardant and antibacterial performance of polyester/cotton blend fabrics with organic-inorganic hybrid coating. Polym. Degrad. Stabil. 2022, 200, 109944. [Google Scholar] [CrossRef]
- Liu, L.; Pan, Y.; Zhao, Y.; Cai, W.; Gui, Z.; Hu, Y.; Wang, X. Self-assembly of phosphonate metal complex for superhydrophobic and durable flame-retardant polyester-cotton fabrics. Cellulose 2020, 27, 6011–6025. [Google Scholar] [CrossRef]
- Mayer-Gall, T.; Knittel, D.; Gutmann, J.S.; Opwis, K. Permanent flame retardant finishing of textiles by allyl-functionalized polyphosphazenes. ACS Appl. Mater. Inter. 2015, 7, 9349–9363. [Google Scholar] [CrossRef]
- Liu, X.; Meng, X.; Sun, J.; Tang, W.; Chen, S.; Peng, X.; Gu, X.; Fei, B.; Bourbigot, S.; Zhang, S. Improving the flame retardant properties of polyester-cotton blend fabrics by introducing an intumescent coating via layer by layer assembly. J. Appl. Polym. Sci. 2020, 137, 49253. [Google Scholar] [CrossRef]
- Horrocks, A.R. Textile flammability research since 1980–Personal challenges and partial solutions. Polym. Degrad. Stabil. 2013, 98, 2813–2824. [Google Scholar] [CrossRef]
- Alongi, J.; Carosio, F.; Kiekens, P. Recent advances in the design of water based flame retardant coatings for polyester and polyester-cotton blends. Polymers 2016, 8, 357. [Google Scholar] [CrossRef] [PubMed]
- Torre, A.; Navarro, I.; Sanz, P.; Martínez, M.Á. Organophosphate compounds, polybrominated diphenyl ethers and novel brominated flame retardants in European indoor house dust: Use, evidence for replacements and assessment of human exposure. J. Hazard. Mater. 2020, 382, 121009. [Google Scholar] [CrossRef]
- Rosace, G.; Castellano, A.; Trovato, V.; Iacono, G.; Malucelli, G. Thermal and flame retardant behavior of cotton fabrics treated with a novel nitrogen-containing carboxyl-functionalized organophosphorus system. Carbohydr. Polym. 2018, 196, 348–358. [Google Scholar] [CrossRef]
- Huong, N.T.; Khanh, V.T.H.; Linh, N.P.D. Optimizing content of Pyrovatex CP New and Knittex FFRC in flame retardant treatment for cotton fabric. Ind. Text. 2021, 72, 315–323. [Google Scholar] [CrossRef]
- Taherkhani, A.; Hasanzadeh, M. Durable flame retardant finishing of cotton fabrics with poly (amidoamine) dendrimer using citric acid. Mater. Chem. Phys. 2018, 219, 425–432. [Google Scholar] [CrossRef]
- Zouari, R.; Visileanu, E.; Gargoubi, S. Effect of plasma grafting with Hexamethyldisiloxane on comfort and flame resistance of cotton fabric. Ind. Text. 2021, 72, 225–230. [Google Scholar] [CrossRef]
- Wan, C.; Liu, S.; Chen, Y.; Zhang, F. Facile, one–pot, formaldehyde-free synthesis of reactive NP flame retardant for a biomolecule of cotton. Int. J. Biol. Macromol. 2020, 163, 1659–1668. [Google Scholar] [CrossRef] [PubMed]
- Jordanov, I.; Magovac, E.; Fahami, A.; Lazar, S.; Kolibaba, T.; Smith, R.J.; Bischof, S.; Grunlan, J.C. Flame retardant polyester fabric from nitrogen-rich low molecular weight additives within intumescent nanocoating. Polym. Degrad. Stabil. 2019, 170, 108998. [Google Scholar] [CrossRef]
- Lu, Y.; Jia, Y.; Zhang, G.; Zhang, F. An eco-friendly intumescent flame retardant with high efficiency and durability for cotton fabric. Cellulose 2018, 25, 5389–5404. [Google Scholar] [CrossRef]
- Malucelli, G. Biomacromolecules and bio-sourced products for the design of flame retarded fabrics: Current state of the art and future perspectives. Molecules 2019, 24, 3774. [Google Scholar] [CrossRef]
- Alongi, J.; Carletto, R.A.; Di Blasio, A.; Carosio, F.; Bosco, F.; Malucelli, G. DNA: A novel, green, natural flame retardant and suppressant for cotton. J. Mater. Chem. A 2013, 1, 4779–4785. [Google Scholar] [CrossRef]
- Basak, S.; Raja, A.S.M.; Saxena, S.; Patil, P.G. Tannin based polyphenolic bio-macromolecules: Creating a new era towards sustainable flame retardancy of polymers. Polym. Degrad. Stabil. 2021, 189, 109603. [Google Scholar] [CrossRef]
- Yang, H.; Yu, B.; Xu, X.; Bourbigot, S.; Wang, H.; Song, P. Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials. Green Chem. 2020, 22, 2129–2161. [Google Scholar] [CrossRef]
- Costes, L.; Laoutid, F.; Brohez, S.; Dubois, P. Bio-based flame retardants: When nature meets fire protection. Mat. Sci. Eng. R 2017, 117, 1–25. [Google Scholar] [CrossRef]
- Basak, S.; Ali, S.W. Sustainable fire retardancy of textiles using bio-macromolecules. Polym. Degrad. Stabil. 2016, 133, 47–64. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, J.; Lu, Z.; Tian, Q.; Shao, J. In situ synthesis of silver nanoparticles on flame-retardant cotton textiles treated with biological phytic acid and antibacterial activity. Materials 2022, 15, 2537. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Meng, D.; Wang, S.; Sun, J.; Li, H.; Gu, X.; Zhang, S. Impregnation of phytic acid into the delignified wood to realize excellent flame retardant. Ind. Crop Prod. 2022, 176, 114364. [Google Scholar] [CrossRef]
- Lazar, S.T.; Kolibaba, T.J.; Grunlan, J.C. Flame-retardant surface treatments. Nat. Rev. Mater. 2020, 5, 259–275. [Google Scholar] [CrossRef]
- Sykam, K.; Försth, M.; Sas, G.; Restás, Á.; Das, O. Phytic acid: A bio-based flame retardant for cotton and wool fabrics. Ind. Crop. Prod. 2021, 164, 113349. [Google Scholar] [CrossRef]
- Feng, Y.; Zhou, Y.; Li, D.; He, S.; Zhang, F.; Zhang, G. A plant-based reactive ammonium phytate for use as a flame-retardant for cotton fabric. Carbohydr. Polym. 2017, 175, 636–644. [Google Scholar] [CrossRef]
- Liu, X.H.; Zhang, Q.Y.; Cheng, B.W.; Ren, Y.L.; Zhang, Y.G.; Ding, C. Durable flame retardant cellulosic fibers modified with novel, facile and efficient phytic acid-based finishing agent. Cellulose 2018, 25, 799–811. [Google Scholar] [CrossRef]
- Cromwell, B.; Levenson, A.M.; Levine, M. Thermogravimetric analysis of aromatic boronic acids for potential flame retardant applications. Thermochim. Acta 2020, 683, 178476. [Google Scholar]
- Alongi, J.; Horrocks, A.R.; Carosio, F.; Malucelli, G. (Eds.) Update on Flame Retardant Textiles: State of the Art, Environmental Issues and Innovative Solutions; Smithers Rapra: Shawbury, UK, 2013; p. 35. [Google Scholar]
- Zhu, W.; Yang, M.; Huang, H.; Dai, Z.; Cheng, B.; Hao, S. A phytic acid-based chelating coordination embedding structure of phosphorus-boron-nitride synergistic flame retardant to enhance durability and flame retardancy of cotton. Cellulose 2020, 27, 4817–4829. [Google Scholar] [CrossRef]
- Zhang, J.; Koubaa, A.; Xing, D.; Liu, W.; Wang, Q.; Wang, X.; Wang, H. Improving lignocellulose thermal stability by chemical modification with boric acid for incorporating into polyamide. Mater. Des. 2020, 191, 108589. [Google Scholar] [CrossRef]
- Alongi, J.; Camino, G.; Malucelli, G. Heating rate effect on char yield from cotton, poly(ethylene terephthalate) and blend fabrics. Carbohydr. Polym. 2013, 92, 1327–1334. [Google Scholar] [CrossRef] [PubMed]
Samples | T5% (°C) | Tmax1 (°C) | Tmax2 (°C) | Residue at 650 °C (%) |
---|---|---|---|---|
Control | 329.4 | 369.8 | 434.7 | 9.6 |
T/C-1 | 175.4 | — | 414.4 | 21.1 |
T/C-2 | 181.4 | — | 423.9 | 23.5 |
Samples | Air Permeability (mm/s) | Tensile Strength (N) | Bending Length (mm) | Flexural Rigidity (mN cm) |
---|---|---|---|---|
Control | 725.5 ± 11.3 | 613.5 ± 10.5 | 15.1 ± 1.2 | 3.3 ± 0.1 |
T/C-1 | 699.8 ± 10.9 | 611.1 ± 8.7 | 15.9 ± 1.1 | 3.8 ± 0.2 |
T/C-2 | 684.8 ± 10.5 | 610.8 ± 8.5 | 16.3 ± 1.4 | 4.0 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.-L.; Huang, Y.-T.; Gu, L.; Shen, J.-C.; Cheng, X.-W.; Guan, J.-P. Fabrication of P/N/B-Based Intumescent Flame-Retardant Coating for Polyester/Cotton Blend Fabric. Materials 2022, 15, 6420. https://doi.org/10.3390/ma15186420
He W-L, Huang Y-T, Gu L, Shen J-C, Cheng X-W, Guan J-P. Fabrication of P/N/B-Based Intumescent Flame-Retardant Coating for Polyester/Cotton Blend Fabric. Materials. 2022; 15(18):6420. https://doi.org/10.3390/ma15186420
Chicago/Turabian StyleHe, Wei-Lin, Yi-Ting Huang, Liang Gu, Ji-Cheng Shen, Xian-Wei Cheng, and Jin-Ping Guan. 2022. "Fabrication of P/N/B-Based Intumescent Flame-Retardant Coating for Polyester/Cotton Blend Fabric" Materials 15, no. 18: 6420. https://doi.org/10.3390/ma15186420
APA StyleHe, W. -L., Huang, Y. -T., Gu, L., Shen, J. -C., Cheng, X. -W., & Guan, J. -P. (2022). Fabrication of P/N/B-Based Intumescent Flame-Retardant Coating for Polyester/Cotton Blend Fabric. Materials, 15(18), 6420. https://doi.org/10.3390/ma15186420