Energy-Saving One-Step Pre-Treatment Using an Activated Sodium Percarbonate System and Its Bleaching Mechanism for Cotton Fabric
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. One-Step Pre-Treatment
2.3. Morin Degradation Experiment
2.4. Radical Scavenger Experiment
2.5. Dyeing with Reactive Dyes
2.6. Analytical Methods
2.6.1. Color Features
2.6.2. Hygroscopic Property
2.6.3. Mechanical Properties
2.6.4. SEM and ATR FT-IR
2.6.5. UV-Vis Spectroscopy
2.6.6. LC-MS, MS and 1H-NMR
3. Results
3.1. Analysis of Process Factor
3.1.1. Effect of SPC Concentration
3.1.2. Effect of Temperature
3.1.3. Effect of Duration
3.1.4. Comparisons of Scouring and Bleaching Effects
3.1.5. Energy Consumption Assessment
3.2. Bleaching Mechanism
3.3. Fabric Characterizations
3.3.1. Mechanical Properties
3.3.2. Dyeability with Reactive Dyes
3.3.3. Micromorphology
3.3.4. ATR FT-IR Spectra
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niinimäki, K.; Peters, G.; Dahlbo, H.; Perry, P.; Rissanen, T.; Gwilt, A. The environmental price of fast fashion. Nat. Rev. Earth Environ. 2020, 1, 189–200. [Google Scholar] [CrossRef]
- Hasanbeigi, A.; Price, L. A technical review of emerging technologies for energy and water efficiency and pollution reduction in the textile industry. J. Clean. Prod. 2015, 95, 30–44. [Google Scholar] [CrossRef]
- Singh, R.P.; Mishra, S.; Das, A.P. Synthetic microfibers: Pollution toxicity and remediation. Chemosphere 2020, 257, 127–199. [Google Scholar] [CrossRef] [PubMed]
- Shafie, A.E.; Fouda, M.M.G.; Hashem, M. One-step process for bio-scouring and peracetic acid bleaching of cotton fabric. Carbohyd. Polym. 2009, 78, 302–308. [Google Scholar] [CrossRef]
- Zeronian, S.H.; Inglesby, M.K. Bleaching of cellulose by hydrogen peroxide. Cellulose 1995, 2, 265–272. [Google Scholar] [CrossRef]
- Milne, N.J. Oxygen Bleaching Systems in Domestic Laundry. J. Surfactants Deterg. 1998, 1, 253–261. [Google Scholar] [CrossRef]
- Inamdar, U.Y.; Pervez, M.N.; Navik, R.G.; Peng, X.; Cai, Y. Low-temperature bleaching of cotton fabric by activated peroxide system. Emerg. Mater. Res. 2017, 6, 387–395. [Google Scholar] [CrossRef]
- Hofmann, J.; Just, G.; Pritzkow, W.; Schmidt, H. Bleaching Activators and the Mechanism of Bleaching Activation. J. Prakt. Chem. 1992, 334, 293–297. [Google Scholar] [CrossRef]
- Xu, C.; Hinks, D.; El-Shafei, A.; Hauser, P.; Li, M.; Ankeny, M.; Lee, K. Review of Bleach Activators for Environmentally Efficient Bleaching of Textiles. J. Fiber. Bioeng. Inform. 2011, 4, 209–219. [Google Scholar]
- Indi, Y.M.; Wasif, A. Sodium perborate bleaching of cotton by using tetraacetyl ethylenediamine activator. Indian J. Fibre Text. Res. 2018, 43, 120–125. [Google Scholar]
- Abdel-Halim, E.S.; Al-Deyab, S.S. Low temperature bleaching of cotton cellulose using peracetic acid. Carbohyd. Polym. 2011, 86, 988–994. [Google Scholar] [CrossRef]
- Susan, J.S.; Jane, M.A. Using TAED in Bleaching Fiber Blends to Improve Fiber Quality. Text. Chem. Color. Am. Dyest. Rep. 2000, 32, 33–37. [Google Scholar]
- Liu, K.; Yan, K.; Sun, G. Mechanism of H2O2/bleach activators and related factors. Cellulose 2019, 26, 2743–2757. [Google Scholar] [CrossRef]
- Bianchetti, G.O.; Devlin, C.L.; Seddon, K.R. Bleaching systems in domestic laundry detergents: A review. RSC Adv. 2015, 5, 65365–65384. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, G.; Zhang, J.; Wang, Q.; Zhou, M.; Yu, Y.; Wang, P. An eco-friendly approach to low-temperature and near-neutral bleaching of cotton knitted fabrics using glycerol triacetate as an activator. Cellulose 2021, 28, 8129–8138. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, X.; Yan, K. Bleaching of cotton fabric with tetraacetylhydrazine as bleach activator for H2O2. Carbohydr. Polym. 2018, 188, 221–227. [Google Scholar] [CrossRef]
- Long, X.; Xu, C.; Du, J.; Fu, S. The TAED/H2O2/NaHCO3 system as an approach to low-temperature and near-neutral pH bleaching of cotton. Carbohydr. Polym. 2013, 95, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Špička, N.; Zupin, Ž.; Kovač, J.; Tavčer, P.E.F. Enzymatic Scouring and Low-temperature Bleaching of Fabrics Constructed from Cotton, Regenerated Bamboo, Poly (lactic acid), and Soy Protein Fibers. Fibers Polym. 2015, 16, 1723–1733. [Google Scholar] [CrossRef]
- Fergusson, S.M.; Padhye, R. The effect of domestic laundry detergents on the light fastness of certain reactive dyes on 100% cotton. Text. Res. J. 2019, 89, 1105–1112. [Google Scholar] [CrossRef]
- Dreja, M.; Hätzelt, A.; Bluhm, N. Bleichsysteme für Haushalts-waschmittel Katalyse in der Trommel. Chem. Unserer Zeit. 2018, 52, 164–176. [Google Scholar] [CrossRef]
- Leduc, C.; Daneault, C.; Ye, H.; Lavallee, H.C. Sodium Percarbonate in the Bleaching of Mechanical Pulps (Softwood and Hardwood)-Efficiency and Environmental Impact. Appita J. 2007, 60, 241–244. [Google Scholar]
- Pesman, E.; Imamoglu, S.; Kalyoncu, E.E.; Kırcı, H. The Effects of Sodium Percarbonate and Perborate Usage on Pulping and Flotation Deinking Instead of Hydrogen Peroxide. Bioresources 2014, 9, 523–536. [Google Scholar] [CrossRef]
- Tutak, D. Modified deinking of digitally printed paper with water based inkjet ink. Cellul. Chem. Technol. 2017, 51, 483–488. [Google Scholar]
- Yorgancioglu, A.; Onem, E. Removal of Aromatic Amines Derived from Azo Dyes in Lining Leathers by Oxidative Bleaches. Fresenius Environ. Bull. 2019, 28, 5937–5945. [Google Scholar]
- Zoya, A.; Tewari, R.K.; Mishra, S.K.; Faisal, S.M.; Ali, S.; Kumar, A.; Moin, S. Sodium percarbonate as a novel intracoronal bleaching agent: Assessment of the associated risk of cervical root resorption. Int. Endod. J. 2019, 52, 701–708. [Google Scholar] [CrossRef]
- Xu, C.; Long, X.; Du, J.; Fu, S. A critical reinvestigation of the TAED-activated peroxide system for low temperature bleaching of cotton. Carbohydr. Polym. 2013, 92, 249–253. [Google Scholar] [CrossRef]
- Li, Q.; Ni, L.; Wang, J.; Quan, H.; Zhou, Y. Establishing an ultrasound-assisted activated peroxide system for efficient and sustainable scouring-bleaching of cotton/spandex fabric. Ultrason. Sonochem. 2020, 68, 105220. [Google Scholar] [CrossRef]
- Li, Q.; Tang, H.; Tang, R. Bleaching of Modal/AN-g-Casein Fiber Blend with H2O2/TAED Activating System. J. Appl. Polym. Sci. 2012, 125, 1193–1200. [Google Scholar] [CrossRef]
- Li, L.; Li, Q. Combined Scouring and Bleaching of Cotton/Linen Blends by a Near-Neutral Activated Peroxide System. Fibres Text. East. Eur. 2020, 28, 104–109. [Google Scholar] [CrossRef]
- Preša, P.; Tavčer, P.F. Bioscouring and bleaching of cotton with pectinase enzyme and peracetic acid in one bath. Color. Technol. 2008, 124, 36–42. [Google Scholar] [CrossRef]
- Si, F.; Yan, K.; Zhang, X. Study on H2O2/TAED and H2O2/TBCC bleaching mechanism related to hydroxyl radical with a fluorescent probe. Carbohydr. Polym. 2014, 103, 581–586. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, X.; Yan, K. Development of o-phthalic anhydride as a low-temperature activator in H2O2 bleaching system for cotton fabric. Cellulose 2017, 25, 859–867. [Google Scholar] [CrossRef]
- Topalović, T. Catalytic Bleaching of Cotton: Molecular and Macroscopic Aspects. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2007. [Google Scholar]
- Wang, S.; Li, S.; Zhu, Q.; Yang, C.Q. A Novel Low Temperature Approach for Simultaneous Scouring and Bleaching of Knitted Cotton Fabric at 60 °C. Ind. Eng. Chem. Res. 2014, 53, 9985–9991. [Google Scholar] [CrossRef]
- Tang, A.Y.; Lee, C.; Wang, Y.; Kan, C. Octane-Assisted Reverse Micellar Dyeing of Cotton with Reactive Dyes. Polymers 2017, 9, 678. [Google Scholar] [CrossRef]
- Lu, Y.; Yin, C.; Qin, X.; Zhang, L.; Zhong, Y.; Xu, H.; Mao, Z. Synergistic effect of TBCC /MnTACN system in low temperature bleaching with hydrogen peroxide. J. Text. Res. 2012, 33, 82–87. [Google Scholar]
- Križman, P.; Kovač, F.; Tavčer, P.F. Bleaching of cotton fabric with peracetic acid in the presence of different activators. Color. Technol. 2005, 121, 304–309. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, X.; Quan, H.; Zhou, Y. Establishing an energy-saving scouring/bleaching one-step process for cotton/spandex fabric using UVA-assisted irradiation. RSC Adv. 2022, 12, 9404–9415. [Google Scholar] [CrossRef]
- Špička, N.; Tavčer, P.F. Low-temperature bleaching of knit fabric from regenerated bamboo fibers with different peracetic acid bleaching processes. Text. Res. J. 2015, 85, 1497–1505. [Google Scholar] [CrossRef]
- Song, Z.; Chen, X.; Wang, Z.; King, S.; Yan, H.; Cai, K.; Cheng, J. Potential bleach activators with improved imide hydrolytic stability. Int. J. Ind. Chem. 2020, 11, 177–185. [Google Scholar] [CrossRef]
- Wang, J.; Wan, Y.; Ding, J.; Wang, Z.; Ma, J.; Xie, P.; Wiesner, M.R. Thermal Activation of Peracetic Acid in Aquatic Solution: The Mechanism and Application to Degrade Sulfamethoxazole. Environ. Sci. Technol. 2020, 54, 14635–14645. [Google Scholar] [CrossRef]
- Dannacher, J.; Schlenker, W. The Mechanism of Hydrogen Peroxide Bleaching. Text. Chem. Color. 1996, 28, 24–28. [Google Scholar]
- Gierer, J. Formation and Involvement of Superoxide (O2-·/HO2·) and Hydroxyl (OH·) Radicals in TCF Bleaching Processes: A Review. Holzforschung 1997, 51, 34–46. [Google Scholar] [CrossRef]
- Xu, A.; Li, X.; Xiong, H.; Yin, G. Efficient degradation of organic pollutants in aqueous solution with bicarbonate-activated hydrogen peroxide. Chemosphere 2011, 82, 1190–1195. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z. Modern Testing Techniques for Fiber Materials; China Textile Press: Beijing, China, 2005. [Google Scholar]
- Chung, C.; Lee, M.; Choe, E.K. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr. Polym. 2004, 58, 417–420. [Google Scholar] [CrossRef]
- Deshmukh, K.; Ahamed, M.B.; Deshmukh, R.R.; Pasha, S.K.K.; Chidambaram, K.; Sadasivuni, K.K.; Ponnamma, D.; Al-Maadeed, M.A.A. Eco-Friendly Synthesis of Graphene Oxide Reinforced Hydroxypropyl Methylcellulose (HPMC)/Polyvinyl Alcohol (PVA) Blend Nanocomposites Filled with Zinc Oxide (ZnO) Nanoparticles for High-k Capacitor Applications. Polym.-Plast. Technol. Eng. 2016, 55, 1240–1253. [Google Scholar] [CrossRef]
- Dochia, M.; Chambre, D.; Gavrilas, S.; Moisǎ, C. Characterization of the complexing agents’ influence on bioscouring cotton fabrics by FT-IR and TG/DTG/DTA analysis. J. Therm. Anal. Calorim. 2018, 132, 1489–1498. [Google Scholar] [CrossRef]
- Hao, L.; Wang, R.; Zhang, L.; Fang, K.; Men, Y.; Qi, Z.; Jiao, P.; Tian, J.; Liu, J. Utilizing cellulase as a hydrogen peroxide stabilizer to combine the biopolishing and bleaching procedures of cotton cellulose in one bath. Cellulose 2014, 21, 777–789. [Google Scholar] [CrossRef]
Sample | 30% H2O2 (mmol/L) | SPC (mmol/L) | TAED (mmol/L) | WI | YI | pH I | pH II | Capillary Effect (cm/30 min) |
---|---|---|---|---|---|---|---|---|
Greige | 40.10 | 32.23 | - | - | 0.5 | |||
1 | 0 | 2.5 | 3.75 | 55.19 | 25.81 | 9.0 | 7.5 | 10.2 |
2 | 0 | 10 | 15 | 67.20 | 20.86 | 9.8 | 8.0 | 10.5 |
3 | 0 | 27 | 40 | 71.29 | 19.00 | 10.5 | 8.5 | 10.3 |
4 | 0 | 50 | 75 | 72.11 | 18.80 | 10.8 | 8.5 | 9.4 |
5 | 30 | 0 | 0 | 55.31 | 25.58 | 11.0 | 10.5 | 1.1 |
6 | 100 | 0 | 0 | 64.59 | 21.98 | 11.0 | 10.7 | 2.4 |
7 | 150 | 0 | 0 | 68.32 | 20.23 | 10.7 | 10.7 | 1.2 |
8 | 300 | 0 | 0 | 69.11 | 20.04 | 10.7 | 10.7 | 2.2 |
9 | 400 | 0 | 0 | 71.19 | 19.15 | 10.5 | 10.5 | 2.3 |
10 | 800 | 0 | 0 | 73.54 | 18.27 | 10.5 | 10.5 | 4.5 |
Sample | Breaking Strength (N) | Elongation at Break (%) | ||
---|---|---|---|---|
Warp | Weft | Warp | Weft | |
a | 595 ± 44 | 531 ± 30 | 26.84 ± 2.58 | 25.77 ± 2.22 |
b | 573 ± 26 | 529 ± 22 | 33.28 ± 1.96 | 31.16 ± 1.72 |
c | 515 ± 21 | 509 ± 24 | 34.14 ± 2.07 | 29.31 ± 1.84 |
Dye Used | Dye Dosage (o.w.f %) | Sample | L | a | b | K/S | ΔE * |
---|---|---|---|---|---|---|---|
Red | 0.5 | b | 58.28 | 50.28 | −7.8 | 2.99 | 3.99 |
c | 60.31 | 46.89 | −8.35 | 2.35 | |||
1.0 | b | 50.90 | 55.87 | −5.95 | 5.99 | 1.90 | |
c | 51.87 | 54.38 | −6.63 | 5.23 | |||
2.0 | b | 44.51 | 58.02 | −2.65 | 10.81 | 1.72 | |
c | 45.78 | 57.43 | −3.65 | 9.42 | |||
Yellow | 0.5 | b | 82.24 | 12.51 | 54.05 | 2.06 | 2.07 |
c | 81.95 | 13.87 | 55.58 | 2.21 | |||
1.0 | b | 78.52 | 18.87 | 65.51 | 4.17 | 2.05 | |
c | 77.85 | 20.80 | 65.36 | 4.30 | |||
2.0 | b | 74.44 | 25.67 | 73.00 | 7.55 | 3.04 | |
c | 75.77 | 24.75 | 70.43 | 6.13 | |||
Blue | 0.5 | b | 48.48 | −8.04 | −20.43 | 4.04 | 1.82 |
c | 46.70 | −7.86 | −20.74 | 4.59 | |||
1.0 | b | 40.35 | −7.21 | −21.32 | 7.29 | 0.63 | |
c | 40.82 | −7.17 | −20.90 | 6.91 | |||
2.0 | b | 31.27 | −5.44 | −20.20 | 13.71 | 0.74 | |
c | 30.59 | −5.22 | −20.01 | 14.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Lu, R.; Liang, Y.; Gao, K.; Jiang, H. Energy-Saving One-Step Pre-Treatment Using an Activated Sodium Percarbonate System and Its Bleaching Mechanism for Cotton Fabric. Materials 2022, 15, 5849. https://doi.org/10.3390/ma15175849
Li Q, Lu R, Liang Y, Gao K, Jiang H. Energy-Saving One-Step Pre-Treatment Using an Activated Sodium Percarbonate System and Its Bleaching Mechanism for Cotton Fabric. Materials. 2022; 15(17):5849. https://doi.org/10.3390/ma15175849
Chicago/Turabian StyleLi, Qing, Run Lu, Yan Liang, Kang Gao, and Huiyu Jiang. 2022. "Energy-Saving One-Step Pre-Treatment Using an Activated Sodium Percarbonate System and Its Bleaching Mechanism for Cotton Fabric" Materials 15, no. 17: 5849. https://doi.org/10.3390/ma15175849
APA StyleLi, Q., Lu, R., Liang, Y., Gao, K., & Jiang, H. (2022). Energy-Saving One-Step Pre-Treatment Using an Activated Sodium Percarbonate System and Its Bleaching Mechanism for Cotton Fabric. Materials, 15(17), 5849. https://doi.org/10.3390/ma15175849