Shakedown Analysis and Experimental Study of Thermal Barrier Coatings
Abstract
:1. Introduction
2. Shakedown Analysis of Cylinder Model
2.1. Cylinder Model Derived from the Interfacial Region of TBCs
2.2. Shakedown Analysis of Multilayer Cylinder Model
3. Shakedown Analysis for Typical TBCs
3.1. Material Model and Loading
3.2. Bilinear Model for Yield Strength and Temperature
3.3. Stability Analysis Result
3.3.1. Effect of Curvature on Stability Limit
3.3.2. Effect of Layer Thickness on Stability Limit
4. Constant Temperature Oxidation Test and Thermal Shock Test
4.1. Specimen Preparation
4.2. Testing Plan and Processing
4.3. Test Results and Verification
4.3.1. Verification of Interface Stability
4.3.2. Verification of the Analysis Method for Structural Stability Limit
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ziming, Y.; Brian, G.; James, G.; Deivanayagam, H.; John, S.; Carl, S.; Felipe, C.; Sanjay, S.; Benjamin, L. A comprehensive experimental investigation of low-temperature combustion with thick thermal barrier coatings. Energy 2021, 222, 119954. [Google Scholar]
- Sait, F.; Gurses, E.; Aslan, O. Modeling and simulation of coupled phase transformation and stress evolution in thermal barrier coatings. Int. J. Plast. 2020, 134, 102790. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Zheng, S.J.; Zhu, Y.L.; Wei, H.; Ma, X.L. Microstructural evolution at interfaces of thermal barrier coatings during isothermal oxidation. J. Eur. Ceram. Soc. 2016, 36, 1765–1774. [Google Scholar] [CrossRef]
- Padture, N.P.; Gell, M.; Jordan, E.H. Thermal Barrier Coatings for Gas-Turbine Engine Applications. Science 2002, 296, 280–284. [Google Scholar] [CrossRef]
- He, M.Y.; Hutchinson, J.W.; Evans, A.G. Simulation of stresses and delamination in a plasma-sprayed thermal barrier system upon thermal cycling. Mater. Sci. Eng. A 2003, 345, 172–178. [Google Scholar] [CrossRef]
- Karlsson, A.M.; Hutchinson, J.W.; Evans, A.G. A fundamental model of cyclic instabilities in thermal barrier systems. J. Mech. Phys. Solids 2002, 50, 1565–1589. [Google Scholar] [CrossRef]
- Mondal, K.; Nuñez, L., III; Downey, C.M.; van Rooyen, I.J. Thermal Barrier Coatings Overview: Design, Manufacturing, and Applications in High-Temperature Industries. Ind. Eng. Chem. Res. 2021, 60, 6061–6077. [Google Scholar] [CrossRef]
- Kyaw, S.; Jones, A.; Hyde, T. Predicting failure within TBC system: Finite element simulation of stress within TBC system as affected by sintering of APS TBC, geometry of substrate and creep of TGO. Eng. Fail. Anal. 2013, 27, 150–164. [Google Scholar] [CrossRef]
- Zheng, X.T.; Cheng, S.; Feng, L.; Yu, J.-Y.; Chen, Y. Shakedown analysis of the pressure piping bend under cycle moving thermal loadings. Press. Vessel. Technol. 2013, 30, 67–70. [Google Scholar]
- Zheng, X.T.; Peng, C.F.; Yu, J.Y.; Wang, C. Shakedown analysis of U-groove butt welded joints under cyclic thermo-mechanical loadings. Trans. China Weld. Inst. 2013, 34, 39–42. [Google Scholar]
- Gokhfeld, D.A.; Charniavsky, O.F. Limit Analysis of Structures at Thermal Cycling. J. Appl. Mech. 1982, 49, 259. [Google Scholar] [CrossRef]
- Xue, M.D.; Wang, X.F.; Williams, F.W.; Xu, B.Y. Lower-bound shakedown analysis of axisymmetric structures subjected to variable mechanical and thermal loads. Int. J. Mech. Sci. 1997, 39, 965–976. [Google Scholar] [CrossRef]
- Chen, H. Lower and Upper Bound Shakedown Analysis of Structures With Temperature-Dependent Yield Stress. J. Press. Vessel Technol. 2010, 132, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Feng, X. Shakedown analysis of a thick-walled cylindrical tube considering the material property changing with temperature. Eng. Mech. 1991, 8, 36–44. [Google Scholar]
- Du, S.T.; Xu, B.Y. A Kinematical Shakedown Theorem Considering External Loading and Temperature Variation. Acta Mech. Solida Sin. 1990, 3, 143–153. [Google Scholar]
- Du, S.T.; Liu, H.B.; Chen, S.H.; Lian, J.S. Shakedown Analysis of Elasto—Plastic Structures Subjected to External Loading and Temperature Variation. Appl. Math. Mech. 1995, 16, 791–799. [Google Scholar]
- Evans, H.E. Oxidation failure of TBC systems: An assessment of mechanisms. Surf. Coat. Technol. 2011, 206, 1512–1521. [Google Scholar] [CrossRef]
- Mumm, D.R.; Evans, A.G.; Spitsberg, I.T. Characterization of a cyclic displacement instability for a thermally grown oxide in a thermal barrier system. Acta Mater. 2001, 49, 2329–2340. [Google Scholar] [CrossRef]
- Monteverde, F.; Savino, R.; Fumo, M.; Maso, A.D. Plasma wind tunnel testing of ultra-high temperature ZrB2–SiC composites under hypersonic re-entry conditions. J. Eur. Ceram. Soc. 2010, 30, 2313–2321. [Google Scholar] [CrossRef]
- Karlsson, A.M.; Evans, A.G. A numerical model for the cyclic instability of thermally grown oxides in thermal barrier systems. Acta Mater. 2001, 49, 1793–1804. [Google Scholar] [CrossRef]
- Hille, T.S.; Turteltaub, S.; Suiker, A.S.J. Oxide growth and damage evolution in thermal barrier coatings. Eng. Fract. Mech. 2011, 78, 2139–2152. [Google Scholar] [CrossRef]
- He, M.Y.; Evans, A.G.; Hutchinson, J.W. The ratcheting of compressed thermally grown thin films on ductile substrates. Acta Mater. 2000, 48, 2593–2601. [Google Scholar] [CrossRef]
- Monti, R.; Fumo, M.D.S.; Savino, R. Thermal Shielding of Reentry Vehicle by Ultra-High-Temperature Ceramic Materials. J. Thermophys. Heat Transf. 2006, 20, 500–506. [Google Scholar] [CrossRef]
- Xu, Y.-Q.; Li, S.-J.; Yang, X.H.; Li, J.-F. Numerical simulation of structural instability in thermal barrier system during thermal cycling. Mach. Des. Manuf. 2009, 5, 115–117. [Google Scholar]
- Huang, X.; Ding, J.; Zhou, J.; Zeng, X. Numerical Simulation of Interfacial Displacement Instability in TBC System. Surf. Technol. 2011, 40, 97–100. [Google Scholar]
- Aktaa, J.; Sfar, K.; Munz, D. Assessment of TBC systems failure mechanisms using a fracture mechanics approach. Acta Mater. 2005, 53, 4399–4413. [Google Scholar] [CrossRef]
- Rösler, J.; Bäker, M.; Aufzug, K. A parametric study of the stress state of thermal barrier coatings: Part I: Creep relaxation. Acta Mater. 2004, 52, 4809–4817. [Google Scholar]
- Mao, W.G.; Zhou, Y.C.; Yang, L.; Yu, X.H. Modeling of residual stresses variation with thermal cycling in thermal barrier coatings. Mech. Mater. 2006, 38, 1118–1127. [Google Scholar] [CrossRef]
- Zhou, C.; Na, W.; Xu, H. Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings. Mater. Sci. Eng. A 2007, 452–453, 569–574. [Google Scholar] [CrossRef]
- Li, M.Y.; Zhang, C.Y.; Sun, X.F.; Gong, S.K.; Hu, W.Y.; Guan, H.R.; Hu, Z.Q. Failure Mechanism of EB-PVD Thermal Barrier Coating Subjected to Thermal Cycling. J. Mater. Eng. 2002, 8, 20–23. [Google Scholar]
- Li, M.H.; Sun, X.F.; Zhang, Z.Y.; Gong, S.K.; Hu, Z.Q. Oxidation and phase structure of the bond coat in EB-PVD thermal barrier coatings during thermal cycling. Acta Metall. Sin. Chin. Ed. 2002, 38, 79–83. [Google Scholar]
- Chen, L.Y.; Li, Y.; Jiang, H. General computation method for axisymmetric temperature and thermal stress of multilayer cylinder. J. Mater. Metall. 2007, 6, 297–301+315. [Google Scholar]
- Tolpygo, V.K.; Clarke, D.R. Surface rumpling of a (Ni, Pt)Al bond coat induced by cyclic oxidation. Acta Mater. 2000, 48, 3283–3293. [Google Scholar] [CrossRef]
T/°C | 400 | 400 | 600 | 600 | 800 | 800 | 900 | 900 | 1000 | 1000 |
---|---|---|---|---|---|---|---|---|---|---|
σ/MPa | 1100 | 2500 | 1100 | 2200 | 300 | 380 | 45 | 60 | 10 | 15 |
εp | 0 | 0.24 | 0 | 0.30 | 0 | 0.02 | 0 | 0.02 | 0 | 0.01 |
Radius of Curvature/mm | Concave Elastic Limit Load/°C | Concave Stability Limit Load/°C | Convex Elastic Limit Load/°C | Convex Stability Limit Load/°C |
---|---|---|---|---|
15.165 | 605 | 797.8 | 722 | 949.3 |
17.165 | 609 | 799.8 | 724 | 950.1 |
19.165 | 615 | 802.8 | 726 | 950.9 |
21.165 | 623 | 806.8 | 728 | 951.6 |
23.165 | 635 | 812.8 | 730 | 952.3 |
Thickness Incremental Ratio | TC Thickening Elastic Limit Load/°C | BC Thickening Elastic Limit Load/°C | TGO Thickening Elastic Limit load/°C | TC Thickening Stability Limit Load/°C | BC Thickening Stability Limit Load/°C | TGO Thickening Stability Limit Load/°C |
---|---|---|---|---|---|---|
0 | 605 | 605 | 605 | 797.8 | 797.8 | 797.8 |
0.1 | 622 | 605.1 | 605.4 | 805.3 | 798 | 798.14 |
0.2 | 636 | 605.2 | 606 | 813.6 | 798.2 | 798.4 |
0.3 | 648 | 605.3 | 606.5 | 822.7 | 798.35 | 798.7 |
Thickness Incremental Ratio | TC Thickening Elastic Limit Load/°C | BC Thickening Elastic Limit Load/°C | TGO Thickening Elastic Limit load/°C | TC Thickening Stability Limit Load/°C | BC Thickening Stability Limit Load/°C | TGO Thickening Stability Limit Load/°C |
---|---|---|---|---|---|---|
0 | 730 | 730 | 730 | 949.3 | 949.3 | 949.3 |
0.1 | 743 | 731.2 | 731.9 | 952.8 | 949.5 | 950.1 |
0.2 | 754 | 732.4 | 733.5 | 956.4 | 949.7 | 950.9 |
0.3 | 763 | 733.6 | 735.5 | 960 | 949.9 | 951.4 |
SUB | BC | TC | |
---|---|---|---|
Material | DZ 125 | Ni-Cr-Al-Yttrium | 8 wt%Y2O3-ZrO2 |
Radius/mm | 10 | 10 | 10 |
Thickness/mm | 2 | 0.1 | 0.25 |
Sample | 850 °C | 950 °C | 1050 °C | ||||||
---|---|---|---|---|---|---|---|---|---|
T1-1 | T1-2 | T1-3 | T2-1 | T2-2 | T2-3 | T3-1 | T3-2 | T3-3 | |
Thermal cycles | 300 *) | 300 *) | 300 *) | 300 *) | 154 | 300 *) | 300 *) | 77 | 139 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Chen, Y.; Li, W.; Chen, H.; Liu, H.; Cheng, X. Shakedown Analysis and Experimental Study of Thermal Barrier Coatings. Materials 2022, 15, 6446. https://doi.org/10.3390/ma15186446
Sun J, Chen Y, Li W, Chen H, Liu H, Cheng X. Shakedown Analysis and Experimental Study of Thermal Barrier Coatings. Materials. 2022; 15(18):6446. https://doi.org/10.3390/ma15186446
Chicago/Turabian StyleSun, Jian, Yunhui Chen, Wanzhong Li, Hualong Chen, Hui Liu, and Xiaole Cheng. 2022. "Shakedown Analysis and Experimental Study of Thermal Barrier Coatings" Materials 15, no. 18: 6446. https://doi.org/10.3390/ma15186446
APA StyleSun, J., Chen, Y., Li, W., Chen, H., Liu, H., & Cheng, X. (2022). Shakedown Analysis and Experimental Study of Thermal Barrier Coatings. Materials, 15(18), 6446. https://doi.org/10.3390/ma15186446