Effects of CO2 Concentration and the Uptake on Carbonation of Cement-Based Materials
Abstract
:1. Introduction
2. Thermodynamic Modeling
3. Experimental Procedures
4. Model Parameters
5. Results and Discussion
5.1. Carbonation Behaviors at Different CO2 Volume Concentrations
5.2. Carbonation Behaviors with a Different CO2 Uptake
5.3. Model Validation and Experimental Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Angst, U.M.; Isgor, O.B.; Hansson, C.M.; Sagüés, A.; Geiker, M.R. Beyond the chloride threshold concept for predicting corrosion of steel in concrete. Appl. Phys. Rev. 2022, 9, 11321. [Google Scholar] [CrossRef]
- Guo, B.; Qiao, G.; Li, D.; Ou, J. Multi-species reactive transport modeling of electrochemical corrosion control in saturated concrete structures including electrode reactions and thermodynamic equilibrium. Constr. Build. Mater. 2021, 278, 122228. [Google Scholar] [CrossRef]
- Bary, B.; Sellier, A. Coupled moisture-carbon dioxide-calcium transfer model for carbonation of concrete. Cem. Concr. Res. 2004, 34, 1859–1872. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Clima Change (IPCC). Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Ueli, A.; Fabrizio, M.; Mette, G.; Sylvia, K.; Hans, B. Corrosion of steel in carbonated concrete: Mechanisms, practical experience, and research priorities-a critical review by RILEM TC 281-CCC. RILEM Tech. Lett. 2020, 5, 85–100. [Google Scholar]
- Moreno, M.; Morris, W.; Alvarez, M.G.; Duffó, G.S. Corrosion of reinforcing steel in simulated concrete pore solutions: Effect of carbonation and chloride content. Corros. Sci. 2004, 46, 2681–2699. [Google Scholar] [CrossRef]
- Šavija, B.; Luković, M. Carbonation of cement paste: Understanding, challenges, and opportunities. Constr. Build. Mater. 2016, 117, 285–301. [Google Scholar] [CrossRef]
- Liu, X.; Niu, D.; Li, X.; Lv, Y. Effects of Ca(OH)2-CaCO3 concentration distribution on the pH and pore structure in natural carbonated cover concrete: A case study. Constr. Build. Mater. 2018, 186, 1276–1285. [Google Scholar] [CrossRef]
- von Greve-Dierfeld, S.; Lothenbach, B.; Vollpracht, A.; Wu, B.; Huet, B.; Andrade, C.; Medina, C.; Thiel, C.; Gruyaert, E.; Vanoutrive, H.; et al. Understanding the carbonation of concrete with supplementary cementitious materials: A critical review by RILEM TC 281-CCC. Mater. Struct. 2020, 53, 1–34. [Google Scholar] [CrossRef]
- Leemann, A.; Nygaard, P.; Kaufmann, J.; Loser, R. Relation between carbonation resistance, mix design and exposure of mortar and concrete. Cem. Concr. Comp. 2015, 62, 33–43. [Google Scholar] [CrossRef]
- Anstice, D.J.; Pageb, C.L.; Page, M.M. The pore solution phase of carbonated cement pastes. Cem. Concr. Res. 2005, 35, 377–383. [Google Scholar] [CrossRef]
- Seigneur, N.; Kangni-Foli, E.; Lagneau, V.; Dauzères, A.; Poyet, S.; Bescop, P.L.; Hôpital, E.L.; Espinose De Lacaillerie, J.B.D. Predicting the atmospheric carbonation of cementitious materials using fully coupled two-phase reactive transport modelling. Cem. Concr. Res. 2020, 130, 105966. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.V.; Neves, R.; de Brito, J.; Dhir, R.K. Carbonation behaviour of recycled aggregate concrete. Cem. Concr. Comp. 2015, 62, 22–32. [Google Scholar] [CrossRef]
- Hargis, C.W.; Lothenbach, B.; Müller, C.J.; Winnefeld, F. Carbonation of calcium sulfoaluminate mortars. Cem. Concr. Comp. 2017, 80, 123–134. [Google Scholar] [CrossRef]
- Leemann, A.; Pahlke, H.; Loser, R.; Winnefeld, F. Carbonation resistance of mortar produced with alternative cements. Mater. Struct. 2018, 51, 1–12. [Google Scholar] [CrossRef]
- Shah, V.; Scrivener, K.; Bhattacharjee, B.; Bishnoi, S. Changes in microstructure characteristics of cement paste on carbonation. Cem. Concr. Res. 2018, 109, 184–197. [Google Scholar] [CrossRef]
- Castellote, M.; Fernandez, L.; Andrade, C.; Alonso, C. Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations. Mater. Struct. 2009, 42, 515–525. [Google Scholar] [CrossRef]
- Hyvert, N.; Sellier, A.; Duprat, F.; Rougeau, P.; Francisco, P. Dependency of C–S–H carbonation rate on CO2 pressure to explain transition from accelerated tests to natural carbonation. Cem. Concr. Res. 2010, 40, 1582–1589. [Google Scholar] [CrossRef]
- Guo, B.; Qiao, G.; Han, P.; Li, Z.; Fu, Q. Effect of natural carbonation on chloride binding behaviours in OPC paste investigated by a thermodynamic model. J. Build. Eng. 2022, 49, 104021. [Google Scholar] [CrossRef]
- Lothenbach, B.; Zajac, M. Application of thermodynamic modelling to hydrated cements. Cem. Concr. Res. 2019, 123, 105779. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y. Principle and Application of Geochemical Simulation of Groundwater; China University of Geosciences Press: Beijing, China, 2005. (In Chinese) [Google Scholar]
- Elakneswaran, Y.; Iwasa, A.; Nawa, T.; Sato, T.; Kurumisawa, K. Ion-cement hydrate interactions govern multi-ionic transport model for cementitious materials. Cem. Concr. Res. 2010, 40, 1756–1765. [Google Scholar] [CrossRef]
- Charlton, S.R.; Parkhurst, D.L. Modules based on the geochemical model PHREEQC for use in scripting and programming languages. Comput. Geosci.-UK 2011, 37, 1653–1663. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. US Geol. Surv. Tech. Methods 2013, 6, 497. [Google Scholar]
- Lothenbach, B. Thermodynamic equilibrium calculations in cementitious systems. Mater. Struct. 2010, 43, 1413–1433. [Google Scholar] [CrossRef]
- Shi, Z.; Lothenbach, B.; Geiker, M.R.; Kaufmann, J.; Leemann, A.; Ferreiro, S.; Skibsted, J. Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars. Cem. Concr. Res. 2016, 88, 60–72. [Google Scholar] [CrossRef]
- Huet, B.; Hostis, V.L.; Miserque, F.; Idrissi, H. Electrochemical behavior of mild steel in concrete: Influence of pH and carbonate content of concrete pore solution. Electrochim. Acta 2005, 51, 172–180. [Google Scholar] [CrossRef]
- Groves, G.W.; Brough, A.; Richardson, I.G.; Dobson, C.M. Progressive Changes in the Structure of Hardened C3S Cement Pastes due to Carbonation. J. Am. Ceram. Soc. 1991, 74, 2891–2896. [Google Scholar] [CrossRef]
Ion | Na+ (mM) | K+ (mM) | Ca2+ (mM) | (mM) | pH |
---|---|---|---|---|---|
Concentration | 79.0 | 65.0 | 0.4 | 1.43 | 13.14 |
Hydrate Phase | C-S-H (2CaO⋅3SiO2⋅4.5H2O) | AFt | AFm | CH | Monocarbonate | CaCO3 | CaSO4 | Strätlingite |
---|---|---|---|---|---|---|---|---|
Amount (mol/L of mortar) | 1.668 | 0 | 0 | 0 | 0 | 4.814 | 0.247 | 0.337 |
Ion | Na+ (mM) | K+ (mM) | Ca2+ (mM) | (mM) | pH |
---|---|---|---|---|---|
Experimental results | 63.97 | 46.01 | 6.34 | 55.88 | 7.93 |
Simulation results | 49.75 | 39.83 | 8.05 | 54.01 | 7.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; Guo, B.; Li, C. Effects of CO2 Concentration and the Uptake on Carbonation of Cement-Based Materials. Materials 2022, 15, 6445. https://doi.org/10.3390/ma15186445
Yu Q, Guo B, Li C. Effects of CO2 Concentration and the Uptake on Carbonation of Cement-Based Materials. Materials. 2022; 15(18):6445. https://doi.org/10.3390/ma15186445
Chicago/Turabian StyleYu, Qi, Bingbing Guo, and Changjiang Li. 2022. "Effects of CO2 Concentration and the Uptake on Carbonation of Cement-Based Materials" Materials 15, no. 18: 6445. https://doi.org/10.3390/ma15186445
APA StyleYu, Q., Guo, B., & Li, C. (2022). Effects of CO2 Concentration and the Uptake on Carbonation of Cement-Based Materials. Materials, 15(18), 6445. https://doi.org/10.3390/ma15186445