Tribological Aspects Concerning the Study of Overhead Crane Brakes
Abstract
:1. Introduction
2. Theoretical Considerations Regarding the Wear of the Brake Lining
3. Experimental Determination of the Coefficient of Friction under Tribological Conditions for Brake Shoes within the Overhead Crane
4. Analysis of the Experimental Data
4.1. The Main Effect of Parameters
4.2. The Contribution of Parameters and Their Interactions
4.3. Regression Equation for the Coefficient of Friction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yevtushenko, A.; Topczewska, K.; Kuciej, M. Analytical Determination of the Brake Temperature Mode during Repetitive Short-Term Braking. Materials 2021, 14, 1912. [Google Scholar] [CrossRef] [PubMed]
- Borawski, A. Impact of Operating Time on Selected Tribological Properties of the Friction Material in the Brake Pads of Passenger Cars. Materials 2021, 14, 884. [Google Scholar] [CrossRef] [PubMed]
- Bocîi, L.S. Determination of the friction surface temperature by the Hasselgruber method using brake disc with different physical properties. Metal. Int. 2011, 16, 42–47. [Google Scholar]
- Baklouti, M.; Cristol, A.L.; Desplanques, Y.; Elleuch, R. Impact of the glass fibers addition on tribological behavior and braking performances of organic matrix composites for brake lining. Wear 2015, 330–331, 507–514. [Google Scholar] [CrossRef]
- Bashir, M.; Saleem, S.S.; Bashir, O. Friction and wear behavior of disc brake pad material using banana peel powder. IJRET 2015, 4, 650–659. [Google Scholar] [CrossRef]
- Ruggiero, A.; Merolaa, M.; Carlonea, P.; Archodoulakib, V.M. Tribo-mechanical characterization of reinforced epoxy resin under dry and lubricated contact conditions. Compos. Part B Eng. 2015, 79, 595–603. [Google Scholar] [CrossRef]
- Bahadur, S.; Tabor, D. Role of fillers in the friction and wear behavior of high density polyethylene. In Polymer Wear and Its Control; Lee, L.-H., Ed.; ACS Symposium Series; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 1985; pp. 253–268. [Google Scholar] [CrossRef]
- Lu, B.; Liu, J. Elastocaloric effect and superelastic stability in Ni–Mn–In–Copolycrystalline Heusler alloys: Hysteresis and strain-rate effects. Sci. Rep. 2017, 7, 2084. [Google Scholar] [CrossRef]
- Heise, R. Friction between a temperature dependent viscoelastic body and a rough surface. Friction 2016, 4, 50–64. [Google Scholar] [CrossRef]
- Pham-Ba, S.; Molinari, J.F. Adhesive Wear Regimes on Rough Surfaces and Interaction of Micro-contacts. Tribol. Lett. 2021, 69, 107. [Google Scholar] [CrossRef]
- Milosevic, M.; Valášek, P.; Ruggiero, A. Tribology of Natural Fibers Composite Materials: An Overview. Lubricants 2020, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- Pop, N.; Ungureanu, M.; Pop, A.I. An Approximation of Solutions for the Problem with Quasistatic Contact in the Case of Dry Friction. Mathematics 2021, 9, 904. [Google Scholar] [CrossRef]
- Chen, J.D.; Chern Lin, J.H.; Ju, C.P. Effect of humidity on the tribological behaviour of carbon-carbon composites. Wear 1996, 193, 38–47. [Google Scholar] [CrossRef]
- Mortazavi, V.; Wang, C.; Nosonovsky, M. Stability of Frictional Sliding With the Coefficient of Friction Depended on the Temperature. ASME J. Tribol. 2012, 134, 041601. [Google Scholar] [CrossRef]
- Pan, L.; Han, J.; Yang, Z.; Wang, J.; Li, X.; Li, Z.; Li, W. Temperature Effects on the Friction and Wear Behaviors of SiCp/A356 Composite against Semimetallic Materials. Adv. Mater. Sci. Eng. 2017, 2017, 1824080. [Google Scholar] [CrossRef]
- Ungureanu, M. Sisteme de Frânare pentru Mașini de Extracție; Editura RISOPRINT: Cluj-Napoca, Romania, 2006; ISBN 978-973-751-229-1. [Google Scholar]
- Huang, Y.M.; Shyr, J.S. On Pressure Distributions of Drum Brakes. ASME J. Mech. Des. 2002, 124, 115–120. [Google Scholar] [CrossRef]
- Wang, D.; Wang, R.; Wang, B.; Wahab, M.A. Effect of Vibration on Emergency Braking Tribological Behaviors of Brake Shoe of Deep Coal Mine Hoist. Appl. Sci. 2021, 11, 6441. [Google Scholar] [CrossRef]
- Wang, D.; Wang, R.; Heng, T.; Xie, G.; Zhang, D. Tribo-Brake Characteristics between Brake Disc and Brake Shoe during Emergency Braking of Deep Coal Mine Hoist with the High Speed and Heavy Load. Energies 2020, 13, 5094. [Google Scholar] [CrossRef]
- Popescu, F.D.; Radu, S.M.; Andraș, A.; Brînaș, I. Numerical Modeling of Mine Hoist Disc Brake Temperature for Safer Operation. Sustainability 2021, 13, 2874. [Google Scholar] [CrossRef]
- Vöth, S.; Vasilyeva, M.A. Heat loading of hoist brakes by example of drum brakes. IOP Conf. Ser. Earth Environ. Sci. 2017, 87, 082053. [Google Scholar] [CrossRef]
- Slavchev, Y.; Dimitrov, L.; Dimitrov, Y. 3-D Computer Research and Comparative Analysis of Dynamic Aspects of Drum Brakes and Caliper Disc Brakes. Arch. Mech. Eng. 2018, 65, 2. [Google Scholar] [CrossRef]
- Lu, H.; Zhou, Q.; Chang, D. Condition Assessment Approach of Hydraulic Brake for Large Crane Based on State Estimation Algorithm. Wirel. Pers. Commun. 2018, 103, 195–207. [Google Scholar] [CrossRef]
- Chen, H.; Xuan, B.; Yang, P.; Chen, H. A new overhead crane emergency braking method with theoretical analysis and experimental verification. Nonlinear Dyn. 2019, 98, 2211–2225. [Google Scholar] [CrossRef]
- Jamaria, J.; Ammarullaha, M.I.; Afifa, I.Y.; Ismaila, R.; Tauviqirrahmana, M.; Bayuseno, A.P. Running-in Analysis of Transmission Gear. Tribol. Ind. 2021, 43, 434–441. [Google Scholar] [CrossRef]
- Alămoreanu, M.; de Ridicat, M. Organele Specifice, Mecanismele si Actionarea Masinilor de Ridicat; Editura Tehnică: București, Romania, 1996; Volume 1, ISBN 973-31-0827-8. [Google Scholar]
- Ungureanu, M.; Ungureanu, N.; Anti, A. Study of materials for brake drums. Ann. Univ. Petrosani Mech. Eng. 2012, 14, 207–210. [Google Scholar]
- Xiao, X.; Yin, Y.; Bao, J.; Lu, L.; Feng, X. Review on the friction and wear of brake materials. Adv. Mech. Eng. 2016, 8, 1687814016647300. [Google Scholar] [CrossRef]
- Gil, I.; Galdos, L.; Mugarra, E.; Mendiguren, J.; Saenz de Argandoña, E. Influence of the tool temperature increment on the coefficient of friction behavior on the deep drawing process of HSS. In Proceedings of the IOP Conference Series: Materials Science and Engineering. IDDRG2016 Conference on “Challenges in Forming High-Strength Sheets”, Linz, Austria, 12–15 June 2016. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, D.C. Design and Analysis of Experiments, 8th ed.; Wiley: Hoboken, NJ, USA, 2013; ISBN 978-1118-14692-7. [Google Scholar]
- Țîțu, M.; Oprean, C.; Boroiu, A. Cercetarea Experimentală Aplicată în Creșterea Calității Produselor și Serviciilor, Colecţia Prelucrarea Datelor Experimentale; Editura AGIR: București, Romania, 2011; ISBN 978-973-720-362-5. [Google Scholar]
Pressure [MPa] | Temperature [°C] | Velocity [m/min] | Humidity [%] | Coefficient of Friction |
---|---|---|---|---|
0.25 | 30 | 12.00 | 60 | 0.40 |
90 | 0.32 | |||
15.00 | 60 | 0.38 | ||
90 | 0.32 | |||
18.00 | 60 | 0.38 | ||
90 | 0.31 | |||
24.00 | 60 | 0.36 | ||
90 | 0.30 | |||
90 | 12.00 | 60 | 0.38 | |
90 | 0.31 | |||
15.00 | 60 | 0.38 | ||
90 | 0.30 | |||
18.00 | 60 | 0.36 | ||
90 | 0.29 | |||
24.00 | 60 | 0.36 | ||
90 | 0.28 | |||
150 | 12.00 | 60 | 0.34 | |
90 | 0.32 | |||
15.00 | 60 | 0.34 | ||
90 | 0.34 | |||
18.00 | 60 | 0.32 | ||
90 | 0.32 | |||
24.00 | 60 | 0.32 | ||
90 | 0.32 |
Pressure [MPa] | Temperature [°C] | Velocity [m/min] | Humidity [%] | Coefficient of Friction |
---|---|---|---|---|
0.5 | 30 | 12.00 | 60 | 0.39 |
90 | 0.33 | |||
15.00 | 60 | 0.39 | ||
90 | 0.33 | |||
18.00 | 60 | 0.38 | ||
90 | 0.32 | |||
24.00 | 60 | 0.38 | ||
90 | 0.32 | |||
90 | 12.00 | 60 | 0.37 | |
90 | 0.32 | |||
15.00 | 60 | 0.37 | ||
90 | 0.32 | |||
18.00 | 60 | 0.36 | ||
90 | 0.32 | |||
24.00 | 60 | 0.36 | ||
90 | 0.31 | |||
150 | 12.00 | 60 | 0.35 | |
90 | 0.32 | |||
15.00 | 60 | 0.34 | ||
90 | 0.31 | |||
18.00 | 60 | 0.34 | ||
90 | 0.31 | |||
24.00 | 60 | 0.33 | ||
90 | 0.30 |
Pressure [MPa] | Temperature [°C] | Velocity [m/min] | Humidity [%] | Coefficient of Friction |
---|---|---|---|---|
1 | 30 | 12.00 | 60 | 0.38 |
90 | 0.38 | |||
15.00 | 60 | 0.37 | ||
90 | 0.38 | |||
18.00 | 60 | 0.37 | ||
90 | 0.37 | |||
24.00 | 60 | 0.37 | ||
90 | 0.36 | |||
90 | 12.00 | 60 | 0.36 | |
90 | 0.35 | |||
15.00 | 60 | 0.37 | ||
90 | 0.35 | |||
18.00 | 60 | 0.37 | ||
90 | 0.35 | |||
24.00 | 60 | 0.37 | ||
90 | 0.34 | |||
150 | 12.00 | 60 | 0.33 | |
90 | 0.33 | |||
15.00 | 60 | 0.32 | ||
90 | 0.32 | |||
18.00 | 60 | 0.32 | ||
90 | 0.31 | |||
24.00 | 60 | 0.31 | ||
90 | 0.31 |
Parameter | Values |
---|---|
Pressure [MPa] | 0.25; 0.5; 1 |
Temperature [°C] | 30; 90; 150 |
Velocity [m/min] | 12; 15; 18; 24 |
Humidity [%] | 60; 90 |
Source | DF (Degree of Freedom) | Seq SS | Contribution [%] |
---|---|---|---|
pressure | 2 | 0.002478 | 4.19 |
temperature | 2 | 0.014144 | 23.95 |
velocity | 3 | 0.002682 | 4.54 |
humidity | 1 | 0.021012 | 35.58 |
pressure × temperature | 4 | 0.003281 | 5.55 |
pressure × velocity | 6 | 0.000356 | 0.60 |
pressure × humidity | 2 | 0.006433 | 10.89 |
temperature × velocity | 6 | 0.000089 | 0.15 |
temperature × humidity | 2 | 0.0043 | 7.28 |
velocity × humidity | 3 | 0.000037 | 0.06 |
Error | 61 | 0.004253 | 7.20 |
Total | 71 | 0.059065 | 100.00 |
Source | Abbreviation | DF (Degree of Freedom) | Seq SS | Contribution [%] |
---|---|---|---|---|
Regression | 10 | 0.051528 | 87.24 | |
pressure | p | 1 | 0.002477 | 4.19 |
temperature | t | 1 | 0.014008 | 23.72 |
velocity | v | 1 | 0.00258 | 4.37 |
humidity | h | 1 | 0.021013 | 35.5 |
pressure × temperature | p × t | 1 | 0.002554 | 4.32 |
pressure × velocity | p × v | 1 | 0.000189 | 0.32 |
pressure × humidity | p × h | 1 | 0.006004 | 10.16 |
temperature × velocity | t × v | 1 | 0.000002 | 0.00 |
temperature × humidity | t × h | 1 | 0.0027 | 4.57 |
velocity × humidity | v × h | 1 | 0.000002 | 0.00 |
Error | 61 | 0.007537 | 12.76 | |
Total | 71 | 0.059065 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ungureanu, M.; Medan, N.; Ungureanu, N.S.; Pop, N.; Nadolny, K. Tribological Aspects Concerning the Study of Overhead Crane Brakes. Materials 2022, 15, 6549. https://doi.org/10.3390/ma15196549
Ungureanu M, Medan N, Ungureanu NS, Pop N, Nadolny K. Tribological Aspects Concerning the Study of Overhead Crane Brakes. Materials. 2022; 15(19):6549. https://doi.org/10.3390/ma15196549
Chicago/Turabian StyleUngureanu, Miorita, Nicolae Medan, Nicolae Stelian Ungureanu, Nicolae Pop, and Krzysztof Nadolny. 2022. "Tribological Aspects Concerning the Study of Overhead Crane Brakes" Materials 15, no. 19: 6549. https://doi.org/10.3390/ma15196549
APA StyleUngureanu, M., Medan, N., Ungureanu, N. S., Pop, N., & Nadolny, K. (2022). Tribological Aspects Concerning the Study of Overhead Crane Brakes. Materials, 15(19), 6549. https://doi.org/10.3390/ma15196549