Ho-SiAlON Ceramics as Green Phosphors under Ultra-Violet Excitations
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
3.1. Phase and Microstructure Analysis
3.2. XPS Analysis
3.3. Absorption Spectra:
3.4. Downshifting Photoluminescence in Ho-SiAlON Ceramics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joshi, B.; Gyawali, G.; Wang, H.; Sekino, T.; Lee, S.W. Thermal and mechanical properties of hot pressed translucent Y2O3 doped Mg–α/β-Sialon ceramics. J. Alloys Compd. 2013, 557, 112–119. [Google Scholar] [CrossRef]
- Ekström, T.; Persson, J. Hot Hardness Behavior of Yttrium Sialon Ceramics. J. Am. Ceram. Soc. 1990, 73, 2834–2838. [Google Scholar] [CrossRef]
- Hampshire, S.; Park, H.K.; Thompson, D.P.; Jack, K.H. α′-Sialon ceramics. Nature 1978, 274, 880–882. [Google Scholar] [CrossRef]
- Greskovich, C.; Rosolowski, J.H. Sintering of Covalent Solids. J. Am. Ceram. Soc. 1976, 59, 525. [Google Scholar] [CrossRef]
- Cao, G.Z.; Metselaar, R. α’-Sialon ceramics: A review. Chem. Mater. 1991, 3, 242–252. [Google Scholar] [CrossRef]
- Xie, R.-J.; Hirosaki, N.; Mitomo, M.; Yamamoto, Y.; Suehiro, T.; Ohashi, N. Photoluminescence of Cerium-Doped α-SiAlON Materials. J. Am. Ceram. Soc. 2004, 87, 1368–1370. [Google Scholar] [CrossRef]
- Suehiro, T.; Hirosaki, N.; Xie, R.-J.; Mitomo, M. Powder Synthesis of Ca-α’-SiAlON as a Host Material for Phosphors. Chem. Mater. 2004, 17, 308–314. [Google Scholar] [CrossRef]
- Xie, R.-J.; Hirosaki, N. Silicon-based oxynitride and nitride phosphors for white LEDs—A review. Sci. Technol. Adv. Mater. 2007, 8, 588–600. [Google Scholar] [CrossRef]
- Joshi, B.; Hoon, J.S.; Kshetri, Y.K.; Gyawali, G.; Lee, S.W. Transparent Sialon phosphor ceramic plates for white light emitting diodes applications. Ceram. Int. 2018, 44, 23116–23124. [Google Scholar] [CrossRef]
- Tang, W.; Guo, Q.; Su, K.; Liu, H.; Zhang, Y.; Mei, L.; Liao, L. Structure and Photoluminescence Properties of Dy3+ Doped Phosphor with Whitlockite Structure. Materials 2022, 15, 2177. [Google Scholar] [CrossRef]
- Setlur, A.; Porob, D.; Happek, U.; Brik, M. Concentration quenching in Ce3+-doped LED phosphors. J. Lumin. 2013, 133, 66–68. [Google Scholar] [CrossRef]
- Garcia-Santamaria, F.; Murphy, J.E.; Setlur, A.A.; Sista, S.P. Concentration Quenching in K2SiF6:Mn4+ Phosphors. ECS J. Solid State Sci. Technol. 2017, 7, R3030–R3033. [Google Scholar] [CrossRef]
- Wang, Z.; Meijerink, A. Concentration Quenching in Upconversion Nanocrystals. J. Phys. Chem. C 2018, 122, 26298–26306. [Google Scholar] [CrossRef]
- Yang, N.; Li, J.; Zhang, Z.; Wen, D.; Liang, Q.; Zhou, J.; Yan, J.; Shi, J. Delayed Concentration Quenching of Luminescence Caused by Eu3+-Induced Phase Transition in LaSc3(BO3)4. Chem. Mater. 2020, 32, 6958–6967. [Google Scholar] [CrossRef]
- Atabaev, T.S.; Vu, H.-H.T.; Kim, Y.-D.; Lee, J.-H.; Kim, H.-K.; Hwang, Y.-H. Synthesis and luminescence properties of Ho3+ doped Y2O3 submicron particles. J. Phys. Chem. Solids 2012, 73, 176–181. [Google Scholar] [CrossRef]
- Dexter, D.L.; Schulman, J.H. Theory of Concentration Quenching in Inorganic Phosphors. J. Chem. Phys. 1954, 22, 1063–1070. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Upconversion Luminescent Materials: Advances and Applications. Chem. Rev. 2014, 115, 395–465. [Google Scholar] [CrossRef]
- Wisser, M.D.; Chea, M.; Lin, Y.; Wu, D.M.; Mao, W.L.; Salleo, A.; Dionne, J.A. Strain-Induced Modification of Optical Selection Rules in Lanthanide-Based Upconverting Nanoparticles. Nano Lett. 2015, 15, 1891–1897. [Google Scholar] [CrossRef]
- Runowski, M.; Shyichuk, A.; Tymiński, A.; Grzyb, T.; Lavín, V.; Lis, S. Multifunctional Optical Sensors for Nanomanometry and Nanothermometry: High-Pressure and High-Temperature Upconversion Luminescence of Lanthanide-Doped Phosphates—LaPO4/YPO4:Yb3+–Tm3+. ACS Appl. Mater. Interfaces 2018, 10, 17269–17279. [Google Scholar] [CrossRef]
- Kshetri, Y.K.; Joshi, B.; Diaz-Torres, L.A.; Lee, S.W. Efficient Near Infrared to Visible and Near-Infrared Upconversion Emissions in Transparent (Tm3+, Er3+)-α-Sialon Ceramics. J. Am. Ceram. Soc. 2016, 100, 224–234. [Google Scholar] [CrossRef]
- Kshetri, Y.K.; Kamiyama, T.; Torii, S.; Jeong, S.H.; Kim, T.-H.; Choi, H.; Zhou, J.; Feng, Y.P.; Lee, S.W. Electronic structure, thermodynamic stability and high-temperature sensing properties of Er-α-SiAlON ceramics. Sci. Rep. 2020, 10, 4952. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.-Y.; Tien, T.-Y.; Yen, T.-S. Solubility Limits of α’-SiAION Solid Solutions in the System Si,Al,Y/N,O. J. Am. Ceram. Soc. 1991, 74, 2547–2550. [Google Scholar] [CrossRef]
- Shen, Z.; Nygren, M. On the extension of the α-sialon phase area in yttrium and rare-earth doped systems. J. Eur. Ceram. Soc. 1997, 17, 1639–1645. [Google Scholar] [CrossRef]
- Grins, J.; Esmaeilzadeh, S.; Svensson, G.; Shen, Z. high-resolution electron microscopy of aSr-containing sialon polytypoid phase. J. Eur. Ceram. Soc. 1999, 19, 2723–2730. [Google Scholar] [CrossRef]
- Bernhardt, G.; Krassikoff, J.; Sturtevant, B.; Lad, R. Properties of amorphous SiAlON thin films grown by RF magnetron co-sputtering. Surf. Coat. Technol. 2014, 258, 1191–1195. [Google Scholar] [CrossRef]
- Mohamedkhair, A.; Hakeem, A.; Drmosh, Q.; Mohammed, A.; Baig, M.; Ul-Hamid, A.; Gondal, M.; Yamani, Z. Fabrication and Characterization of Transparent and Scratch-Proof Yttrium/Sialon Thin Films. Nanomaterials 2020, 10, 2283. [Google Scholar] [CrossRef]
- Michalik, D.; Pawlik, T.; Kukliński, B.; Lazarowska, A.; Leśniewski, T.; Barzowska, J.; Mahlik, S.; Grinberg, M.; Adamczyk, B.; Pławecki, M.; et al. Dopant Concentration Induced Optical Changes in Ca,Eu-α-Sialon. Crystals 2017, 7, 342. [Google Scholar] [CrossRef]
- Hagio, T.; Takase, A.; Umebayashi, S. X-ray photoelectron spectroscopic studies of β-sialons. J. Mater. Sci. Lett. 1992, 11, 878–880. [Google Scholar] [CrossRef]
- Kshetri, K.Y.; Chaudhary, B.; Dhakal, D.R.; Murali, G.; Pachhai, S.; Lee, S.W.; Kim, H.; Kim, T. Anomalous Upconversion Behavior and High-Temperature Spectral Properties of Yb /Ho-SiAlON Ceramics. Ceram. Int. 2022, in press. [Google Scholar] [CrossRef]
- Brow, R.K.; Pantano, C.G. Thermochemical Nitridation of Microporous Silica Films in Ammonia. J. Am. Ceram. Soc. 1987, 70, 9–14. [Google Scholar] [CrossRef]
- Donley, M.S.; Baer, D.R.; Stoebe, T.G. Nitrogen 1s charge referencing for Si3N4 and related compounds. Surf. Interface Anal. 1988, 11, 335–340. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation, Physical Electronics Division: Eden Prairie, MN, USA, 1992; ISBN 978-0964812413. [Google Scholar]
- Min, J.-W.; Mitomo, M. Preparation of Y-α-sialon with glassy or crystalline phases at grain boundaries. Ceram. Int. 1995, 21, 427–432. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Wang, H.-Y.; Lu, H.-T.; Tseng, I.-H.; Lu, H.-H.; Huang, S.-L.; Yeh, J.-M. Properties of polyimide/Al2O3 and Si3N4 deposited thin films. Thin Solid Films 2011, 519, 4969–4973. [Google Scholar] [CrossRef]
- Pélisson-Schecker, A.; Hug, H.J.; Patscheider, J. Charge referencing issues in XPS of insulators as evidenced in the case of Al-Si-N thin films. Surf. Interface Anal. 2011, 44, 29–36. [Google Scholar] [CrossRef]
- Joo, M.H.; Park, S.J.; Hong, S.-M.; Rhee, C.K.; Kim, D.; Sohn, Y. Electrodeposition and Characterization of Lanthanide Elements on Carbon Sheets. Coatings 2021, 11, 100. [Google Scholar] [CrossRef]
- Carnall, W.T.; Fields, P.R.; Rajnak, K. Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys. 1968, 49, 4424–4442. [Google Scholar] [CrossRef]
- Shen, Z.; Nygren, M.; Hålenius, U. Absorption spectra of rare-earth-doped α-sialon ceramics. J. Mater. Sci. Lett. 1997, 16, 263–266. [Google Scholar] [CrossRef]
- Mondragon, M.; Garcia, J.; Sibley, W.; Hunt, C. Optical absorption and emission from Ho3+ ions in KCaF3 crystals. J. Solid State Chem. 1988, 76, 368–374. [Google Scholar] [CrossRef]
- Min, X.; Fang, M.; Huang, Z.; Liu, H.; Liu, Y.; Tang, C.; Wu, X. A novel green phosphor LaMgAl11O19:Ho3+ for near-UV/blue light-pumped white light-emitting diodes. Chem. Phys. Lett. 2015, 618, 182–185. [Google Scholar] [CrossRef]
- Singh, V.; Dabre, K.; Dhoble, S.; Lakshminarayana, G. Green emitting holmium (Ho) doped yttrium oxide (Y2O3) phosphor for solid state lighting. Optik 2020, 206, 164339. [Google Scholar] [CrossRef]
- Kshetri, Y.K.; Hoon, J.S.; Kim, T.-H.; Sekino, T.; Lee, S.W. Yb3+, Er3+ and Tm3+ doped α-Sialon as upconversion phosphor. J. Lumin. 2018, 204, 485–492. [Google Scholar] [CrossRef]
- Wan, Z.; Li, W.; Mei, B.; Liu, Z.; Yang, Y. Fabrication and spectral properties of Ho-doped calcium fluoride transparent ceramics. J. Lumin. 2020, 223, 117188. [Google Scholar] [CrossRef]
- Rani, P.R.; Venkateswarlu, M.; Swapna, K.; Mahamuda, S.; Prasad, M.S.; Rao, A. Spectroscopic and luminescence properties of Ho3+ ions doped Barium Lead Alumino Fluoro Borate glasses for green laser applications. Solid State Sci. 2020, 102, 106175. [Google Scholar] [CrossRef]
- Bordj, S.; Satha, H.; Barros, A.; Zambon, D.; Jouart, J.-P.; Diaf, M.; Mahiou, R. Spectroscopic characterization by up conversion of Ho3+/Yb3+ codoped CdF2 single crystal. Opt. Mater. 2021, 118, 111249. [Google Scholar] [CrossRef]
- Kaczkan, M.; Malinowski, M. Optical Transitions and Excited State Absorption Cross Sections of SrLaGaO4 Doped with Ho3+ Ions. Materials 2021, 14, 3831. [Google Scholar] [CrossRef]
Sample | m | n | Si3N4 (wt. %) | AlN (wt. %) | Al2O3 (wt. %) | Ho2O3 (wt. %) |
---|---|---|---|---|---|---|
H10 | 1.0 | 1.0 | 72.698 | 14.869 | 2.642 | 9.791 |
H11 | 1.1 | 1.1 | 70.792 | 15.619 | 2.888 | 10.701 |
H15 | 1.5 | 1.0 | 66.288 | 18.349 | 1.268 | 14.096 |
H20 | 2.0 | 1.0 | 60.372 | 21.560 | 0 | 18.068 |
Element | Peak | Binding Energy (eV) | FWHM (eV) | Area (eV) | Assignment |
---|---|---|---|---|---|
Si | Si2p #1 | 101.46 | 1.60 | 47,556.38 | Si−N (Si3N4) |
Si2p #2 | 102.33 | 1.87 | 19,194.46 | Si−O (Glassy grain boundary phase) | |
Al | Al2p #1 | 73.81 | 1.78 | 10,382.01 | Al−N (AlN rich phase and grain boundaries) |
Al2p #2 | 74.39 | 1.98 | 2372.03 | Al−O (Al(Si)–O(N) substitution in Si3N4) | |
O | O1s #1 | 531.93 | 2.31 | 114,724.90 | O−Al (Al(Si)–O(N) substitution in Si3N4) |
O1s #2 | 532.39 | 1.28 | 14,043.52 | O−Si (Glassy grain boundary phase) | |
N | N1s #1 | 396.20 | 1.73 | 10,604.92 | N−Al (AlN rich phase and grain boundaries) |
N1s #2 | 397.21 | 1.64 | 117,564.10 | N−Si (Si3N4) | |
N1s #3 | 398.86 | 2.92 | 11,423.29 | N−Ho | |
Ho | Ho4d #1 | 161.32 | 1.70 | 2843.22 | 4d5/2 |
Ho4d #2 | 163.40 | 1.67 | 2309.50 | 4d3/2 |
Excitation Wavelength, Mode | CIE Diagram | Sample Name (Point on the CIE Diagram) | CIE Coordinates | ||
---|---|---|---|---|---|
X | Y | I (lum) | |||
348 nm; CW | Figure 6a | H20 (1) | 0.29663 | 0.55551 | 4.724 × 104 |
H15 (2) | 0.30285 | 0.57289 | 3.338 × 104 | ||
H11 (3) | 0.26377 | 0.47692 | 3.928 × 104 | ||
H10 (4) | 0.31348 | 0.58476 | 2.533 × 104 | ||
348 nm; Pulsed | Figure 6b | H20 (1) | 0.34652 | 0.62740 | 1.124 × 103 |
H15 (2) | 0.34571 | 0.63255 | 8.863 × 102 | ||
H11 (3) | 0.33264 | 0.63021 | 1.094 × 103 | ||
H10 (4) | 0.35148 | 0.62860 | 7.299 × 102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kshetri, Y.K.; Chaudhary, B.; Dhakal, D.R.; Lee, S.W.; Kim, T.-H. Ho-SiAlON Ceramics as Green Phosphors under Ultra-Violet Excitations. Materials 2022, 15, 6715. https://doi.org/10.3390/ma15196715
Kshetri YK, Chaudhary B, Dhakal DR, Lee SW, Kim T-H. Ho-SiAlON Ceramics as Green Phosphors under Ultra-Violet Excitations. Materials. 2022; 15(19):6715. https://doi.org/10.3390/ma15196715
Chicago/Turabian StyleKshetri, Yuwaraj K., Bina Chaudhary, Dhani Ram Dhakal, Soo Wohn Lee, and Tae-Ho Kim. 2022. "Ho-SiAlON Ceramics as Green Phosphors under Ultra-Violet Excitations" Materials 15, no. 19: 6715. https://doi.org/10.3390/ma15196715
APA StyleKshetri, Y. K., Chaudhary, B., Dhakal, D. R., Lee, S. W., & Kim, T. -H. (2022). Ho-SiAlON Ceramics as Green Phosphors under Ultra-Violet Excitations. Materials, 15(19), 6715. https://doi.org/10.3390/ma15196715