Laboratory Study and Field Validation of the Performance of Salt-Storage Asphalt Mixtures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Mix Design
2.1.1. Materials
2.1.2. Mix Design
2.2. Laboratory Test Methods
2.2.1. High-Temperature Performance Test
2.2.2. Moisture Resistance Performance Test
2.2.3. Low-Temperature Performance Test
2.2.4. Surface Anti-Skid Performance Test
2.2.5. Surface Spalling Resistance Test
2.3. Field Performance Verification of Salt-Storage Wear Layer
2.3.1. Project Overview
2.3.2. Main Material Parameters
2.3.3. Mix Design for Construction
3. Results and Discussion
3.1. Mechanical Properties
3.1.1. High-Temperature Stability
3.1.2. Moisture Resistance
3.1.3. Low-Temperature Crack Resistance
3.2. Surface Properties
3.2.1. Surface Anti-Skid Performance
3.2.2. Surface Spalling Resistance
3.3. Determination of Optimal Dosage of Snow-Melting Salt
3.4. On-Site Construction Performance
3.4.1. Performance Verification of Salt-Storage Wear Layer before Construction
- High-temperature performance verification
- Moisture resistance verification
- Low-temperature performance verification
- Water permeability verification
3.4.2. Production and Construction of Salt-Storage Wear Layer
- Dosing of snow-melting salt
- Mixing and transport
- Paving and rolling
- Active ingredient identification and pavement inspection
4. Conclusions and Recommendations
- (1)
- Snow-melting salt reduces the mechanical properties of SSAM. With the increase in the replacement amount of snow-melting salt, the mechanical properties of the asphalt mixture significantly decreased. Among them, the high-temperature performance of the SBS group SSAM decreased by 9.8–15.1%, the moisture resistance decreased by 6.3–19.4%, and the low-temperature performance decreased by 1.6–12.3%. All mechanical indexes of SBS50 meet the requirements, while the freeze–thaw splitting strength ratios of SBS75 and SBS100 do not meet the specification requirements.
- (2)
- The mechanical properties of the HEA group SSAM with TPS are higher than those of the SBS group. Among them, the high-temperature, moisture resistance, and low-temperature performance of the SSAM in the HEA group are 11.3–19.7%, 4.8–13.3%, and 4.2–12.3% higher than those in the SBS group. This may be because the TPS not only improves the elasticity of SBS-modified asphalt but also improves the bonding performance between asphalt and aggregate. Therefore, the use of snow-melting salts with TPS is recommended.
- (3)
- HEA can make up for the negative impact of snow-melting salt on the mechanical properties of SSAM to a certain extent, which makes the high-temperature performance, residual stability index of moisture resistance performance, and maximum bending tensile strain index of HEA50 and HEA75 not lower or even higher than SBS00 without snow-melting salt.
- (4)
- In terms of surface properties, snow-melting salts can improve the skid resistance of SSAM, but they have a negative effect on surface spalling resistance. Whether it is a positive effect or a negative effect, the more snow-melting salt is added, the more obvious this effect is. Due to the high viscosity properties of HEA, HEA can both improve the anti-skid performance and surface anti-spalling performance.
- (5)
- Considering both mechanical properties and surface properties, the comprehensive properties of the seven asphalt mixtures are HEA50, HEA75, SBS00, HEA100, SBS50, SBS75, and SBS100 from high to low. Therefore, HEA is suggested to be used as the cementing material of SSAM, and the content of snow-melting salt should be lower.
- (6)
- In terms of engineering application, the mixture verified by indoor mechanics and surface properties can be used for salt-storage asphalt pavements. Moreover, the conventional paving method for hot asphalt mixtures can meet the acceptance requirements of salt-storage asphalt pavements.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sha, A.; Liu, Z.; Jiang, W.; Qi, L.; Pan, W.L.; Hu, L.; Jiao, W.; Barbieri, D. Advances and development trends in eco-friendly pavements. J. Road Eng. 2021, 1, 1–42. [Google Scholar]
- Chen, L.; Wang, Y.; Wang, Z.; Chang, H.; Fan, F. Diffusion resisting performance of concrete modified with sodium methyl silicate in saline soil area. Constr. Build. Mater. 2022, 350, 128767. [Google Scholar]
- Tan, Y.; Zhang, C.; Xu, H.; Tian, D. Snow melting and deicing characteristics and pavement performance of active deicing and snow melting pavement. China J. Highw. Transp. 2019, 32, 1–17. [Google Scholar]
- Liu, Z.; Sha, A.; Jiang, W. Advances in asphalt pavements containing salts: Additives, mixtures, performances, and evaluation. China J. Highw. Transp. 2019, 32, 18–31+72. [Google Scholar]
- Zhong, K.; Sun, M.; Chang, R. Performance evaluation of high-elastic/salt storage asphalt mixture modified with Mafilon and rubber particles. Constr. Build. Mater. 2018, 193, 153–161. [Google Scholar] [CrossRef]
- Li, J.; Cao, Y.; Sha, A.; Song, R.; Li, C.; Wang, Z. Prospective application of coal gangue as filler in fracture-healing behavior of asphalt mixture. J. Clean. Prod. 2022, 373, 133738. [Google Scholar]
- Cao, Y.; Li, J.; Sha, A.; Liu, Z.; Zhang, F.; Li, X. A power-intensive piezoelectric energy harvester with efficient load utilization for road energy collection: Design, testing, and application. J. Clean. Prod. 2022, 369, 133287. [Google Scholar]
- Liu, K.; Huang, S.; Jin, C.; Xie, H.; Wang, F. Prediction models of the thermal field on ice-snow melting pavement with electric heating pipes. Appl. Therm. Eng. 2017, 120, 269–276. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Shi, X. Development and use of salt storage additives in asphalt pavement for anti-icing: Literature review. J. Transp. Eng. Part B Pavements 2021, 147, 03121002. [Google Scholar] [CrossRef]
- Wu, S.; Zheng, M.; Wang, C.; Bi, S.; Wang, C.; Li, Y. Salt-dissolved regularity of the self-ice-melting pavement under rainfall. Constr. Build. Mater. 2019, 204, 371–383. [Google Scholar] [CrossRef]
- Yao, T.; Han, S.; Men, C.; Zhang, J.; Luo, J.; Li, Y. Performance evaluation of asphalt pavement groove-filled with polyurethane-rubber particle elastomer. Constr. Build. Mater. 2021, 292, 123434. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, Q.; Du, Z.; Wu, H.; Sun, Y. Snow melting pavement design strategy with electric cable heating system balancing snow melting, energy conservation, and mechanical performance. Resour. Conserv. Recycl. 2022, 177, 105970. [Google Scholar] [CrossRef]
- Ho, I.; Li, S.; Abudureyimu, S. Alternative hydronic pavement heating system using deep direct use of geothermal hot water. Cold Reg. Sci. Technol. 2019, 160, 194–208. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, C.; Xiang, Y.; Wang, J. Preparation, characterization, and anti-icing properties of sustained-release low-freezing-point asphalt mixture. J. Mater. Civ. Eng. 2022, 34, 04022171. [Google Scholar] [CrossRef]
- Deng, S. Effect of salt storage material on performance of melting snow asphalt pavement material. New Build. Mater. 2020, 47, 64–67. [Google Scholar]
- Liu, Z.; Chen, S.; He, R.; Xing, M.; Bai, Y.; Dou, H. Investigation on the properties of asphalt mixtures containing antifreeze fillers. J. Mater. Civ. Eng. 2015, 27, 04014180. [Google Scholar] [CrossRef]
- Tan, Y.; Sun, R.; Guo, M.; Zhong, Y.; Zhou, S. Research on deicing performance of asphalt mixture containing salt. China J. Highw. Transp. 2013, 26, 23–29. [Google Scholar]
- Liu, Z. Anti-Freezig Materials Used in Asphalt Pavement and Its Application Properties. Ph.D. Thesis, Chang’an University, Xi’an, China, 2013. [Google Scholar]
- Tan, Y.; Hou, M.; Shan, L.; Sun, R. Development of sustained release complex salt filler for asphalt pavement included salt. J. Build. Mater. 2014, 17, 256–260. [Google Scholar]
- Feng, D.; Yi, J.; Wang, D.; Chen, L. Impact of salt and freeze-thaw cycles on performance of asphalt mixtures in coastal frozen region of China. Cold Reg. Sci. Technol. 2010, 62, 34–41. [Google Scholar] [CrossRef]
- Lysbakken, K.; Lalagüe, A. Accuracy of sobo 20 in the measurement of salt on winter pavements. Transp. Res. Rec. 2013, 2329, 24–30. [Google Scholar]
- Borst, M.; Brown, R. Chloride released from three permeable pavement surfaces after winter salt application. JAWRA J. Am. Water Resour. Assoc. 2014, 50, 29–41. [Google Scholar] [CrossRef]
- Hossain, S.; Fu, L.; Hosseini, F.; Muresan, M.; Donnelly, T.; Kabir, S. Optimum winter road maintenance: Effect of pavement types on snow melting performance of road salts. Can. J. Civ. Eng. 2016, 43, 802–811. [Google Scholar] [CrossRef]
- Roseen, R.; Ballestero, T.; Houle, K.; Heath, D.; Houle, J.J. Assessment of winter maintenance of porous asphalt and its function for chloride source control. J. Transp. Eng. 2014, 140, 04013007. [Google Scholar] [CrossRef]
- Derya, A.; Riza, K.; Ramazan, O.; Kizilel, S. Gelation-stabilized functional composite-modified bitumen for anti-icing purposes. Ind. Eng. Chem. Res. 2015, 54, 12587–12596. [Google Scholar]
- Zheng, M.; Zhou, J.; Wu, S.; Yuan, H.; Meng, J. Evaluation of long-term performance of anti-icing asphalt pavement. Constr. Build. Mater. 2015, 84, 277–283. [Google Scholar] [CrossRef]
- İkiz, N.; Galip, E. Computerized decision tree for anti-icing/pretreatment applications as a result of laboratory and field testings. Cold Reg. Sci. Technol. 2016, 126, 90–108. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, Y.; Zhao, F. Review of research on the effect of salt storage deicing material on the preformance of asphalt mixture. Chem. Ind. Eng. Prog. 2018, 37, 2282–2294. [Google Scholar]
- Liu, Z.; Xing, M.; Chen, S.; He, R.; Cong, P. Influence of the chloride-based anti-freeze filler on the properties of asphalt mixtures. Constr. Build. Mater. 2014, 51, 133–140. [Google Scholar] [CrossRef]
- Shi, K.; Fu, Z.; Song, R.; Liu, F.; Ma, F.; Dai, J. Waste chicken fat oil as a biomass regenerator to restore the performance of aged asphalt: Rheological properties and regeneration mechanism. Appl. Mech. Mater. 2021, 1–25. [Google Scholar] [CrossRef]
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. China Communications Press Co., Ltd.: Beijing, China, 2011.
- JTG E42-2005; Test Methods of Aggregate for Highway Engineering. China Communications Press Co., Ltd.: Beijing, China, 2005.
- Xu, O.; Xiang, S.; Yang, X.; Liu, Y. Estimation of the surface free energy and moisture susceptibility of asphalt mastic and aggregate system containing salt storage additive. Constr. Build. Mater. 2022, 318, 125814. [Google Scholar] [CrossRef]
- Yuan, D.; Jiang, W.; Xiao, J.; Lu, H.; Wu, W. Thermal-oxygen aging effects on viscoelastic properties of high viscosity modified asphalt. J. Chang. Univ. Nat. Sci. Ed. 2020, 40, 1–11. [Google Scholar]
- JTG F40-2004; Technical Specifications for Highway Asphalt Pavements. China Communications Press Co., Ltd.: Beijing, China, 2004.
- Yuan, D.; Jiang, W.; Hou, Y.; Xiao, J.; Ling, X.; Xing, C. Fractional derivative viscoelastic response of high-viscosity modified asphalt. Constr. Build. Mater. 2022, 350, 128915. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, H.; Hoff, I. The mutual effect and reaction mechanism of bitumen and de-icing salt solution. Constr. Build. Mater. 2021, 302, 124213. [Google Scholar] [CrossRef]
- Dou, H. Design and Pavement Performance of Ultra-Thin Snow Melt Salt Asphalt Mixture Pavement Overlay. Ph.D. Thesis, Chang’an University, Xi’an, China, 2015. [Google Scholar]
- Liu, Z.; Sha, A.; Xing, M.; Li, Z. Low temperature property and salt releasing characteristics of antifreeze asphalt concrete under static and dynamic conditions. Cold Reg. Sci. Technol. 2015, 114, 9–14. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, C.; Yu, S.; Song, Z.; Fu, H.; An, T. Low-temperature mechanical properties of polyurethane-modified waterborne epoxy resin for pavement coating. Int. J. Pavement Eng. 2022, 1–13. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, C.; Wen, P.; Wang, M.; Zhao, J. Comprehensive performance evaluation of low-carbon modified asphalt based on efficacy coefficient method. J. Clean. Prod. 2018, 203, 633–644. [Google Scholar] [CrossRef]
Index | Unit | SBS-Modified Asphalt | HEA | Standard | Test Method [31] | |
---|---|---|---|---|---|---|
Penetration (100 g, 5 s, 25 °C) | 0.1 mm | 54 | 49 | 40–60 | T0604-2011 | |
Penetration index | - | 0.55 | 0.68 | ≥0 | T0604-2011 | |
Ductility (5 °C, 5 cm/min) | cm | 31 | 55 | ≥20 | T0605-2011 | |
Softening point | °C | 80 | 94 | ≥60 | T0606-2011 | |
Kinematic viscosity at 135 °C | Pa·s | 1.773 | 1.861 | ≤3 | T0620-2000 | |
Elastic recovery at 25 °C | % | 90 | 98 | ≥75 | T0662-2000 | |
After TFOT | Quality loss | % | −0.213 | −0.13 | ±1.0 | T0610-2011 |
Penetration ratio at 25 °C | % | 70.5 | 76.6 | ≥65 | T0604-2011 | |
Ductility (5 °C, 5 cm/min) | cm | 16 | 31 | ≥15 | T0605-2011 |
Aggregate | Index | Test | Standard | Test Method [32] |
---|---|---|---|---|
Coarse aggregate | Crush value (%) | 10 | ≤26 | T0316-2005 |
Los Angeles attrition loss (%) | 9.4 | ≤28 | T0317-2005 | |
Firmness (%) | 8 | ≤12 | T0314-2000 | |
Soft stone content (%) | 1.2 | ≤3 | T0320-2000 | |
Needle-like content (%) | 8.7 | ≤15 | T0312-2005 | |
Fine aggregate | Apparent specific gravity | 2.663 | ≥2.5 | T0328-2005 |
Bulk specific gravity | 2.731 | / | T0330-2005 | |
Firmness (>0.3 mm) (%) | 4 | ≤12 | T0340-2005 | |
Sand equivalent (%) | 70 | ≥60 | T0334-2005 |
Filler | Index | Test | Standard | Test Method [32] |
---|---|---|---|---|
Limestone | Moisture content (%) | 0.2 | ≤1.0 | T0332-2005 |
Apparent specific gravity | 2.762 | / | T0352-2000 | |
Bulk specific gravity | 2.667 | / | T0352-2000 | |
Hydrophilic coefficient | 0.73 | <1 | T0353-2000 | |
Plasticity index (%) | 2.7 | <4 | T0354-2000 | |
Appearance | Qualified | No agglomeration | T0355-2000 | |
Snow-melting salt | Appearance | White powder | No agglomeration | / |
Moisture content (%) | 0.2 | ≤0.5 | T0332-2005 | |
Apparent specific gravity | 2.170 | / | T0352-2000 | |
Bulk specific gravity | 2.136 | / | T0352-2000 | |
Salt content (%) | 56 | 50 ± 10 | / | |
pH | 8.3 | 8–8.5 | / |
Index | Ash Content/% | pH | Oil Absorption | Moisture Content/% | Width/mm | Bulk Density/(g/cm3) |
---|---|---|---|---|---|---|
Value | 17 | 7.3 | 4–6 times the fiber mass | <5 | <0.045 | 0.2–0.4 |
Index | Unit | Test | Standard | |
---|---|---|---|---|
Penetration (100 g, 5 s, 25 °C) | 0.1 mm | 72 | 60–80 | |
Penetration index | - | 1.02 | ≥−0.4 | |
Ductility (5 °C, 5 cm/min) | cm | 51 | ≥30 | |
Softening point | °C | 82 | ≥55 | |
Kinematic viscosity at 135 °C | Pa·s | 1.763 | ≤3 | |
Elastic recovery at 25 °C | % | 92.5 | ≥65 | |
After TFOT | Quality loss | % | −0.320 | ±1.0 |
Penetration ratio at 25 °C | % | 80.6 | ≥60 | |
Ductility (5 °C, 5 cm/min) | cm | 30 | ≥20 |
Particle Size/mm | 0–3 | 3–6 | 6–11 | 11–17 | 17–22 | Snow-Melting Salt |
---|---|---|---|---|---|---|
Apparent specific gravity/(g/cm3) | 2.663 | 2.723 | 2.725 | 2.722 | 2.737 | 2.170 |
Bulk specific gravity/(g/cm3) | 2.731 | 2.666 | 2.693 | 2.689 | 2.707 | 2.136 |
Asphalt Aggregate Ratio/% | VFA/% | VV/% | Flow Value/mm | Stability/kN | Bulk Gravity/(g/cm3) |
---|---|---|---|---|---|
3.8 | 61.97 | 5.16 | 2.24 | 16.70 | 2.394 |
4.3 | 71.71 | 3.76 | 2.97 | 15.68 | 2.412 |
4.8 | 78.62 | 2.91 | 2.92 | 14.43 | 2.416 |
5.3 | 84.58 | 2.16 | 3.08 | 11.55 | 2.419 |
5.8 | 85.88 | 2.12 | 4.19 | 10.68 | 2.403 |
4.2 (optimum) | 71.90 | 3.61 | 3.28 | 15.75 | 2.418 |
SSAMs | Dynamic Stability/ (Times/mm) | Residual Stability Ratio/% | Freeze–Thaw Splitting Strength Ratio/% | Maximum Tensile Strain/με | Strain Energy Density/(J/m3) | BPN | Asphalt Loss/% | Cantabro Loss/% |
---|---|---|---|---|---|---|---|---|
SBS00 | 5258.4 | 93.9 | 89.4 | 2998.6 | 12,371.4 | 76 | 0.0560 | 5.7 |
SBS50 | 4744.9 | 88.0 | 82.3 | 2951.3 | 9531.6 | 79 | 0.0631 | 6.3 |
SBS75 | 4468.9 | 86.6 | 79.0 | 2910.8 | 9127.7 | 79 | 0.0670 | 7.5 |
SBS100 | 4462.1 | 86.4 | 72.1 | 2630.0 | 8448.5 | 81 | 0.0709 | 7.9 |
HEA50 | 5491.3 | 94.9 | 86.2 | 3149.8 | 13,912.6 | 83 | 0.0599 | 5.1 |
HEA75 | 5347.1 | 94.2 | 84.1 | 3033.4 | 13,246.8 | 85 | 0.0664 | 5.7 |
HEA100 | 4964.2 | 92.8 | 81.7 | 2954.7 | 11,204.5 | 88 | 0.0671 | 5.9 |
SSAMs | Dynamic Stability | Residual Stability Ratio | Freeze–Thaw Splitting Strength Ratio | Maximum Tensile Strain | Strain Energy Density | BPN | Asphalt Loss | Cantabro Loss |
---|---|---|---|---|---|---|---|---|
SBS00 | 0.958 | 0.989 | 1.000 | 0.952 | 0.889 | 0.864 | 1.000 | 1.000 |
SBS50 | 0.864 | 0.927 | 0.921 | 0.937 | 0.685 | 0.898 | 0.888 | 0.899 |
SBS75 | 0.814 | 0.912 | 0.884 | 0.924 | 0.656 | 0.898 | 0.835 | 0.757 |
SBS100 | 0.813 | 0.910 | 0.806 | 0.835 | 0.607 | 0.920 | 0.790 | 0.714 |
HEA50 | 1.000 | 1.000 | 0.965 | 1.000 | 1.000 | 0.943 | 0.935 | 1.119 |
HEA75 | 0.974 | 0.992 | 0.940 | 0.963 | 0.952 | 0.966 | 0.843 | 0.993 |
HEA100 | 0.904 | 0.978 | 0.914 | 0.938 | 0.805 | 1.000 | 0.834 | 0.966 |
SSAMs | Distances | Overall Performance Ranking |
---|---|---|
SBS00 | 0.187 | 3 |
SBS50 | 0.408 | 5 |
SBS75 | 0.526 | 6 |
SBS100 | 0.628 | 7 |
HEA50 | 0.151 | 1 |
HEA75 | 0.184 | 2 |
HEA100 | 0.296 | 4 |
Specimen Order | 1 | 2 | 3 | Mean | Standard |
---|---|---|---|---|---|
Dynamic stability/(times/mm) | 6847.8 | 6326.7 | 5931.3 | 6368.6 | 1800–2800 |
Specimen Order | 1 | 2 | 3 | Mean | Standard |
---|---|---|---|---|---|
Stability before immersion/kN | 15.86 | 15.92 | 16.69 | / | / |
Stability after immersion/kN | 14.20 | 13.65 | 14.73 | / | / |
Residual stability ratio/% | 89.56 | 85.71 | 88.25 | 87.84 | ≥80% |
Specimen Order | 1 | 2 | 3 | Mean | Standard |
---|---|---|---|---|---|
Height/mm | 35.5 | 35.4 | 35.2 | / | / |
Deflection/mm | 0.4874 | 0.4991 | 0.5225 | / | / |
Span/mm | 200 | 200 | 200 | / | / |
Tensile strain/με | 2595 | 2650 | 2759 | 2668 | ≥2500 |
Specimen Order | 1 | 2 | 3 | Mean | Standard |
---|---|---|---|---|---|
Water level at 1 min/mL | 140 | 165 | 155 | / | / |
Water level at 2 min/mL | 172 | 230 | 189 | / | / |
Water level at 3 min/mL | 205 | 280 | 217 | / | / |
Permeability coefficient/(mL/min) | 35 | 60 | 39 | 44.7 | ≤120 |
1#silo | 2#silo | 3#silo | 4#silo | 5#silo | Snow- Melting Salt | Asphalt | Asphalt Aggregate Ratio | Total Aggregate |
---|---|---|---|---|---|---|---|---|
620 kg | 355 kg | 682 kg | 630 kg | 112 kg | 100 kg | 105 kg | 4.2% | 2499 kg |
Test Order | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Design |
---|---|---|---|---|---|---|---|---|
Compactness/% | 98.2 | 98.1 | 98.5 | 98.3 | 98.2 | 98.3 | 98.1 | ≥98 |
Permeability coefficient/(mL/min) | 109 | 110 | 108 | 112 | 113 | 110 | 110 | ≤300 |
Flatness/mm | 1.51 | 1.52 | 1.53 | 1.5 | 1.51 | 1.52 | 1.52 | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Li, X.; Liu, Z.; Li, J.; Zhang, F.; Shan, B. Laboratory Study and Field Validation of the Performance of Salt-Storage Asphalt Mixtures. Materials 2022, 15, 6720. https://doi.org/10.3390/ma15196720
Cao Y, Li X, Liu Z, Li J, Zhang F, Shan B. Laboratory Study and Field Validation of the Performance of Salt-Storage Asphalt Mixtures. Materials. 2022; 15(19):6720. https://doi.org/10.3390/ma15196720
Chicago/Turabian StyleCao, Yangsen, Xinzhou Li, Zhuangzhuang Liu, Jiarong Li, Fan Zhang, and Baozeng Shan. 2022. "Laboratory Study and Field Validation of the Performance of Salt-Storage Asphalt Mixtures" Materials 15, no. 19: 6720. https://doi.org/10.3390/ma15196720
APA StyleCao, Y., Li, X., Liu, Z., Li, J., Zhang, F., & Shan, B. (2022). Laboratory Study and Field Validation of the Performance of Salt-Storage Asphalt Mixtures. Materials, 15(19), 6720. https://doi.org/10.3390/ma15196720