Electric Discharge Machining on Stainless Steel Using a Blend of Copper and Fly Ash as the Electrode Material
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- The rate of material removal increases when the concentration of fly ash in the electrode rises while the other input variables remain the same.
- Regardless of the use of different composite electrodes during the machining process, the MRR dramatically increased with the increase in current amplitude from 5A to 15A.
- Tool wear increases as the fly ash content increases during both the 5A and 15A machining scenarios.
- Increasing the fly-ash content on the tool and current amplitude results in an increase in the surface roughness of the machined surface.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alam, M.N.; Siddiquee, A.N.; Khan, Z.A.; Khan, N.Z. A comprehensive review on wire EDM performance evaluation. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2022, 236, 1724–1746. [Google Scholar] [CrossRef]
- Shabgard, M.R.; Gholipoor, A.; Baseri, H. A review on recent developments in machining methods based on electrical discharge phenomena. Int. J. Adv. Manuf. Technol. 2016, 87, 2081–2097. [Google Scholar] [CrossRef]
- Ming, W.; Zhang, S.; Zhang, G.; Du, J.; Ma, J.; He, W.; Cao, C.; Liu, K. Progress in modeling of electrical discharge machining process. Int. J. Heat Mass Transf. 2022, 187, 122563. [Google Scholar] [CrossRef]
- Jain, S.; Parashar, V. Critical review on the impact of EDM process on biomedical materials. Mater. Manuf. Process. 2021, 36, 1701–1724. [Google Scholar] [CrossRef]
- Singh, N.K.; Pandey, P.M.; Singh, K.K.; Sharma, M.K. Steps towards green manufacturing through EDM process: A review. Cogent Eng. 2016, 3, 1272662. [Google Scholar] [CrossRef]
- Mao, X.; Almeida, S.; Mo, J.; Ding, S. The state of the art of electrical discharge drilling: A review. Int. J. Adv. Manuf. Technol. 2022, 121, 2947–2969. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, H.; Wu, C.; Zhang, G.; Yan, H. A New Wire Electrode for Improving the Machining Characteristics of High-Volume Fraction SiCp/Al Composite in WEDM. Materials 2022, 15, 4098. [Google Scholar] [CrossRef]
- Kalita, K.; Chakraborty, S.; Ghadai, R.K.; Chakraborty, S. Parametric optimization of non-traditional machining processes using multi-criteria decision making techniques: Literature review and future directions. Multiscale Multidiscip. Model. Exp. Des. 2022. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Dixit, A.R.; Tiwari, S. A review on the intensification of metal matrix composites and its nonconventional machining. Sci. Eng. Compos. Mater. 2018, 25, 213–228. [Google Scholar] [CrossRef]
- Ram, H.S.; Uthayakumar, M.; Kumar, S.S.; Kumaran, S.T.; Korniejenko, K. Modelling Approach for the Prediction of Machinability in Al6061 Composites by Electrical Discharge Machining. Appl. Sci. 2022, 12, 2673. [Google Scholar] [CrossRef]
- Sree Ram, H.; Uthayakumar, M.; Suresh Kumar, S.; Thirumalai Kumaran, S.; Azzopardi, B.; Korniejenko, K. Prediction of Kerf Width and Surface Roughness of Al6351 Based Composite in Wire-Cut Electric Discharge Machining Using Mathematical Modelling. Materials 2022, 15, 1102. [Google Scholar] [CrossRef] [PubMed]
- Walia, A.S.; Srivastava, V.; Garg, M.; Somani, N.; Gupta, N.K.; Prakash, C.; Bhargava, C.; Kotecha, K. Surface Roughness Analysis of H13 Steel during Electrical Discharge Machining Process Using Cu–TiC Sintered Electrode. Materials 2021, 14, 5943. [Google Scholar] [CrossRef] [PubMed]
- Medellin, H.I.; de Lange, D.F.; Morales, J.; Flores, A. Experimental study on electrodischarge machining in water of D2 tool steel using two different electrode materials. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2009, 223, 1423–1430. [Google Scholar] [CrossRef]
- Prajapati, H.B.; Patel, V.A.; Prajapati, H.R. Experimental Investigation of Performance of Different Electrode Materials in Electro Discharge Machining for Material Removal Rate and Surface Roughness. Int. J. Eng. Res. Appl. 2012, 2, 3072–3076. [Google Scholar]
- Jahan, M.P.; Wong, Y.S.; Rahman, M. A study on the fine-finish die-sinking micro-EDM of tungsten carbide using different electrode materials. J. Mater. Process. Technol. 2008, 9, 3956–3967. [Google Scholar] [CrossRef]
- Phan, N.H.; Muthuramalingam, T.; Minh, N.D.; Van Duc, N. Enhancing surface morphology of machined SKD61 die steel in EDM process using DEAR approach based multi criteria decision making. Int. J. Interact. Des. Manuf. 2022, 16, 1155–1161. [Google Scholar] [CrossRef]
- Genç, A.; Şahin, İ.B.; Özerkan, H.B.; Urtekin, L. Experimental Investigation of Electro Erosion Machining Parameters of Boron Alloy Steels. El-Cezeri J. Sci. Eng. 2022, 9, 325–334. [Google Scholar]
- Korlos, A.; Tzetzis, D.; Mansour, G.; Sagris, D.; David, C. The delamination effect of drilling and electro-discharge machining on the tensile strength of woven composites as studied by X-ray computed tomography. Int. J. Mach. Mach. Mater. 2016, 18, 426–448. [Google Scholar] [CrossRef]
- Urtekin, L.; Özerkan, H.B.; Cogun, C.; Genc, A.; Esen, Z.; Bozkurt, F. Experimental Investigation on Wire Electric Discharge Machining of Biodegradable AZ91 Mg Alloy. J. Mater. Eng. Perform. 2021, 30, 7752–7761. [Google Scholar] [CrossRef]
- Srivastava, S.; Vishnoi, M.; Gangadhar, M.T.; Kukshal, V. An insight on Powder Mixed Electric Discharge Machining: A state of the art review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2022. [Google Scholar] [CrossRef]
- Li, L.; Feng, L.; Bai, X.; Li, Z.Y. Surface characteristics of Ti–6Al–4V alloy by EDM with Cu–SiC composite electrode. Appl. Surf. Sci. 2016, 388, 546–550. [Google Scholar] [CrossRef]
- Tsai, H.C.; Yan, B.H.; Huang, F.Y. EDM performance of Cr/Cu-based composite electrodes. Int. J. Mach. Tools Manuf. 2003, 43, 245–252. [Google Scholar] [CrossRef]
- Curodeau, A.; Richard, M.; Frohn-Villeneuve, L. Molds surface finishing with new EDM process in air with thermoplastic composite electrodes. J. Mater. Process. Technol. 2004, 149, 278–283. [Google Scholar] [CrossRef]
- Khanra, A.K.; Sarkar, B.R.; Bhattacharya, B.; Pathak, L.C.; Godkhindi, M.M. Performance of ZrB2-Cu composite as an EDM electrode. J. Mater. Process. Technol. 2007, 183, 122–126. [Google Scholar] [CrossRef]
- Ming, W.; Xie, Z.; Ma, J.; Du, J.; Zhang, G.; Cao, C.; Zhang, Y. Critical review on sustainable techniques in electrical discharge machining. J. Manuf. Process. 2021, 72, 375–399. [Google Scholar] [CrossRef]
- Prakash, V.; Kumar, P.; Singh, P.; Hussain, M.; Das, A.; Chattopadhyaya, S. Micro-electrical discharge machining of difficult-to-machine materials: A review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 339–370. [Google Scholar] [CrossRef]
- Alekhya, C.; Prajoshna, A.; Ayaz Baig, M.; Chandrika, C.; Devaraju, A.; Gadakary, S. Preparation and characterization of Al-TiO2-Mg composites through powder metallurgy. Mater. Today Proc. 2022, 66, 489–495. [Google Scholar] [CrossRef]
- Abu Qudeiri, J.E.; Saleh, A.; Ziout, A.; Mourad, A.-H.I.; Abidi, M.H.; Elkaseer, A. Advanced Electric Discharge Machining of Stainless Steels: Assessment of the State of the Art, Gaps and Future Prospect. Materials 2019, 12, 907. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Kumar, H.; Nagdeve, L.; Kumar Arora, P. EDM Parametric Study of Composite Materials: A Review. Evergreen Jt. J. Nov. Carbon Resour. Sci. Green Asia Strategy 2020, 07, 519–529. [Google Scholar] [CrossRef]
- Łach, M.; Korniejenko, K.; Balamurugan, P.; Uthayakumar, M.; Mikuła, J. The Influence of Tuff Particles on the Properties of the Sintered Copper Matrix Composite for Application in Resistance Welding Electrodes. Appl. Sci. 2022, 12, 4477. [Google Scholar] [CrossRef]
- Li, J.; Laghari, R.A. A review on machining and optimization of particle-reinforced metal matrix composites. Int. J. Adv. Manuf. Technol. 2019, 100, 2929–2943. [Google Scholar] [CrossRef]
- Pławecka, K.; Bazan, P.; Lin, W.-T.; Korniejenko, K.; Sitarz, M.; Nykiel, M. Development of Geopolymers Based on Fly Ashes from Different Combustion Processes. Polymers 2022, 14, 1954. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.W. Processes for environmentally friendly and/or cost-effective manufacturing. Mater. Manuf. Process. 2021, 36, 987–1009. [Google Scholar] [CrossRef]
- Sharma, D.; Hiremath, S.S. Review on tools and tool wear in EDM. Mach. Sci. Technol. 2021, 25, 802–873. [Google Scholar] [CrossRef]
- Kumar, S.S.; Varol, T.; Canakci, S.; Kumaran, S.T.; Uthayakumar, M. A review on the performance of the materials by surface modification through EDM. Int. J. Lightweight Mater. Manuf. 2021, 4, 127–144. [Google Scholar] [CrossRef]
- Wu, Z.; Bao, H.; Xing, Y.; Liu, L. Tribological characteristics and advanced processing methods of textured surfaces: A review. Int. J. Adv. Manuf. Technol. 2021, 114, 1241–1277. [Google Scholar] [CrossRef]
- Ming, W.; Jia, H.; Zhang, H.; Zhang, Z.; Liu, K.; Du, J.; Shen, F.; Zhang, G. A comprehensive review of electric discharge machining of advanced ceramics. Ceram. Int. 2020, 46, 21813–21838. [Google Scholar] [CrossRef]
- Kumar, N.; Mandal, N.; Das, A.K. Micro-machining through electrochemical discharge processes: A review. Mater. Manuf. Process. 2020, 35, 363–404. [Google Scholar] [CrossRef]
- Jemielniak, K. Review of New Developments in Machining of Aerospace Materials. J. Mach. Eng. 2021, 21, 22–55. [Google Scholar] [CrossRef]
Material | Raw Material Density (kg/m3) | Density after Sintering (kg/m3) |
---|---|---|
Cu + 2.5% Fly ash | 6520 | 6725 |
Cu + 5% Fly ash | 5576 | 5794 |
Cu + 7.5% Fly ash | 5147 | 5244 |
Cu + 10% Fly ash | 4683 | 4711 |
Parameters | Details |
---|---|
Pulse on time [µs] | 100 |
Pulse off time [µs] | 50 |
Machining depth [mm] | 2 |
Amplitude | 5A, 15A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balamurugan, P.; Uthayakumar, M.; Pethuraj, M.; Mierzwiński, D.; Korniejenko, K.; Majid, M.S.A. Electric Discharge Machining on Stainless Steel Using a Blend of Copper and Fly Ash as the Electrode Material. Materials 2022, 15, 6735. https://doi.org/10.3390/ma15196735
Balamurugan P, Uthayakumar M, Pethuraj M, Mierzwiński D, Korniejenko K, Majid MSA. Electric Discharge Machining on Stainless Steel Using a Blend of Copper and Fly Ash as the Electrode Material. Materials. 2022; 15(19):6735. https://doi.org/10.3390/ma15196735
Chicago/Turabian StyleBalamurugan, Ponnambalam, Marimuthu Uthayakumar, Manickaraj Pethuraj, Dariusz Mierzwiński, Kinga Korniejenko, and Mohd Shukry Abdul Majid. 2022. "Electric Discharge Machining on Stainless Steel Using a Blend of Copper and Fly Ash as the Electrode Material" Materials 15, no. 19: 6735. https://doi.org/10.3390/ma15196735
APA StyleBalamurugan, P., Uthayakumar, M., Pethuraj, M., Mierzwiński, D., Korniejenko, K., & Majid, M. S. A. (2022). Electric Discharge Machining on Stainless Steel Using a Blend of Copper and Fly Ash as the Electrode Material. Materials, 15(19), 6735. https://doi.org/10.3390/ma15196735