Formation and Characterization of the Recast Layer Formed on Inconel 718 during Wire Electro Discharge Machining
Abstract
:1. Introduction
2. Materials and Methods
2.1. WEDM of the Inconel 718
2.2. Microstructural Characterization of the WEDMed Surface
2.3. Fabrication of the Micro-Pillars for In-Situ Compression
3. Results and Discussion
3.1. Physical Characterization of the Recast Layer
3.1.1. SEM Characterization
3.1.2. TEM Characterization
3.1.3. Electron Backscattered Diffraction (EBSD) Characterization
3.2. Micro-Mechanical Characterization of the Recast Layer
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aspinwall, D.; Soo, S.; Berrisford, A.; Walder, G. Workpiece surface roughness and integrity after WEDM of Ti–6Al–4V and Inconel 718 using minimum damage generator technology. CIRP Ann. 2008, 57, 187–190. [Google Scholar] [CrossRef]
- Pramanik, A.; Basak, A.K.; Prakash, C.; Shankar, S.; Sharma, S.; Narendranath, S. Recast layer formation during wire electrical discharge machining of Titanium (Ti-Al6-V4) alloy. J. Mater. Eng. Perform. 2021, 30, 8926–8935. [Google Scholar] [CrossRef]
- Huang, J.; Liao, Y.; Hsue, W. Determination of finish-cutting operation number and machining-parameters setting in wire electrical discharge machining. J. Mater. Process. Technol. 1999, 87, 69–81. [Google Scholar] [CrossRef]
- Choungthong, P.; Wilaisahwat, B.; Tangwarodomnukun, V. Removal of Recast layer in laser-ablated titanium alloy surface by electrochemical machining process. Procedia Manuf. 2019, 30, 552–559. [Google Scholar] [CrossRef]
- Newton, T.R.; Melkote, S.N.; Watkins, T.; Trejo, R.M.; Reister, L. Investigation of the effect of process parameters on the formation and characteristics of recast layer in wire-EDM of Inconel 718. Mater. Sci. Eng. A 2009, 513, 208–215. [Google Scholar] [CrossRef]
- Jadam, T.; Rahul; Datta, S.; Mahapatra, S.S. Electro-discharge machining (EDM) of superalloy inconel 718 using triangular cross-sectioned copper tool electrode: Emphasis on topography and metallurgical characteristics of the EDMed work surface. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2021, 91, 123–134. [Google Scholar] [CrossRef]
- Kurdi, A.; Alshihri, S.; Tabbakh, T.; Bin Darwish, N.; Saedon, J.B.; Basak, A.K. Compressive strength and deformation behavior of the hybrid S phase layer under micro-pillar compression. Mater. Sci. Eng. A 2022, 861, 144380. [Google Scholar] [CrossRef]
- Kurdi, A.; Basak, A. Deformation of electrodeposited gradient Co/Sn multilayered coatings under micro-pillar compression. Eng. Fract. Mech. 2018, 204, 138–146. [Google Scholar] [CrossRef]
- Kurdi, A.; Tabbakh, T.; Alhazmi, H. Deformation of cold sprayed Ni-Sn coating under micro-pillar compression. Surf. Coat. Technol. 2020, 403, 126425. [Google Scholar] [CrossRef]
- Tabbakh, T.; Alshihri, S.; Basak, A.K.; Kurdi, A. Strength of a 3D Printed Al 7068 Alloy Under Micro-Pillar Compression. Met. Mater. Int. 2022, 28, 2706–2718. [Google Scholar] [CrossRef]
- Basak, A.; Pramanik, A.; Prakash, C. Deformation and strengthening of SiC reinforced Al-MMCs during in-situ micro-pillar compression. Mater. Sci. Eng. A 2019, 763, 138141. [Google Scholar] [CrossRef]
- Nair, H.; Pramanik, A.; Prakash, C.; Debnath, S.; Shankar, S.; Dixit, A.R. Experimental investigation on material removal rate, kerf width, surface roughness and the dimensional accuracy the accuracy of hole in Inconel 718 using wire electric discharge. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2022, 09544089221096025. [Google Scholar] [CrossRef]
- Misra, A.; Hirth, J.; Hoagland, R. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 2005, 53, 4817–4824. [Google Scholar] [CrossRef]
- Prenitzer, B.; Urbanik-Shannon, C.; Giannuzzi, L.; Brown, S.; Irwin, R.; Shofner, T.; Stevie, F. The correlation between ion beam/material interactions and practical FIB specimen preparation. Microsc. Microanal. 2003, 9, 216–236. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Schuster, B.; Wei, Q.; Ramesh, K. The design of accurate micro-compression experiments. Scr. Mater. 2006, 54, 181–186. [Google Scholar] [CrossRef]
- Hasçalýk, A.; Çaydaş, U. Experimental study of wire electrical discharge machining of AISI D5 tool steel. J. Mater. Process. Technol. 2004, 148, 362–367. [Google Scholar] [CrossRef]
- Poros, D.; Wisniewska, M.; Zaborski, S. Comparative analysis of WEDM with different wire electrodes applied to cut titanium Ti6Al4V. J. Mach. Eng. 2020, 20, 116–125. [Google Scholar] [CrossRef]
- Slama, C.; Abdellaoui, M. Structural characterization of the aged Inconel 718. J. Alloys Compd. 2000, 306, 277–284. [Google Scholar] [CrossRef]
- Wang, J.; Stanford, N. Investigation of precipitate hardening of slip and twinning in Mg5% Zn by micropillar compression. Acta Mater. 2015, 100, 53–63. [Google Scholar] [CrossRef]
- Mlikota, M.; Schmauder, S. On the critical resolved shear stress and its importance in the fatigue performance of steels and other metals with different crystallographic structures. Metals 2018, 8, 883. [Google Scholar] [CrossRef]
- Basak, A.; Pramanik, A.; Prakash, C.; Kotecha, K. Micro-mechanical characterization of superficial layer synthesized by electric discharge machining process. Mater. Lett. 2021, 305, 130769. [Google Scholar] [CrossRef]
- Basak, A.; Pramanik, A.; Prakash, C.; Shankar, S.; Debnath, S. Understanding the Micro-Mechanical Behaviour of Recast Layer Formed during WEDM of Titanium Alloy. Metals 2022, 12, 188. [Google Scholar] [CrossRef]
Material | Superficial Layer | Bulk Material |
---|---|---|
Yield strength (σy), MPa | 762.7 ± 11.1 | 360.9 ± 41.8 |
Ultimate compressive strength (σUTS), MPa | 1151.6 ± 51.1 | 523.2 ±22.1 |
Young’s modulus (E), MPa | 406.6 ± 23.5 | 222.6 ± 49.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkahlan, B.; Tabbakh, T.; Kurdi, A.; Pramanik, A.; Basak, A.K. Formation and Characterization of the Recast Layer Formed on Inconel 718 during Wire Electro Discharge Machining. Materials 2023, 16, 930. https://doi.org/10.3390/ma16030930
Alkahlan B, Tabbakh T, Kurdi A, Pramanik A, Basak AK. Formation and Characterization of the Recast Layer Formed on Inconel 718 during Wire Electro Discharge Machining. Materials. 2023; 16(3):930. https://doi.org/10.3390/ma16030930
Chicago/Turabian StyleAlkahlan, Bandar, Thamer Tabbakh, Abdulaziz Kurdi, Alokesh Pramanik, and Animesh K. Basak. 2023. "Formation and Characterization of the Recast Layer Formed on Inconel 718 during Wire Electro Discharge Machining" Materials 16, no. 3: 930. https://doi.org/10.3390/ma16030930
APA StyleAlkahlan, B., Tabbakh, T., Kurdi, A., Pramanik, A., & Basak, A. K. (2023). Formation and Characterization of the Recast Layer Formed on Inconel 718 during Wire Electro Discharge Machining. Materials, 16(3), 930. https://doi.org/10.3390/ma16030930