Study on the Stability of Bio-Oil Modified Prime Coat Oil Based on Molecular Dynamics
Abstract
:1. Introduction
2. Test Material and Microscopic Model
2.1. Test Materials and Instruments
2.1.1. Instruments and Sample Preparation
2.1.2. Materials
2.2. Molecular Model of Biomass Asphalt/Water Emulsion
2.2.1. Determination of Asphalt/Water Emulsion Composition and Model Proportioning Calculation
2.2.2. Molecular Modeling of Asphalt/Water Emulsion
3. Emulsifier Dosing on the Stability of the Biomass Asphalt/Water Emulsion
3.1. Radial Distribution Function
3.2. Interaction Energy
3.3. Particle Size Measurement
3.4. Storage Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Gao, J.; Kong, X.; Pei, C. Reasonable selection and application of permeable layer materials for Semi-rigid base asphalt pavement. J. Beijing Inst. Civ. Eng. Archit. 2005, 21, 17–20. [Google Scholar]
- Wang, K. Research on Permeable formation of semi-rigid base. J. Highw. Transp. Sci. Technol. 2000, 17, 23–26. [Google Scholar]
- Cui, Z. Application of SBR modified emulsified asphalt permeable layer on Beijing-Zhang Expressway. Natl. Def. Transp. Eng. Technol. 2003, 1, 64–66. [Google Scholar]
- Shu, Z.; Zhang, B. Application and research progress of permeable oil. West. Leather 2019, 41, 7–8. [Google Scholar]
- Nuria, Q.; Camila, B.; Luisa, C. Storage stability of bimodal emulsions vs. monomodal emulsions. Appl. Sci. 2017, 7, 1267. [Google Scholar]
- Ouyang, J.; Sun, Y.; Zarei, S. Fabrication of solvent-free asphalt emulsion prime with high penetrative ability. Constr. Build. Mater. 2020, 230, 117020. [Google Scholar] [CrossRef]
- Qu, X.; Ding, H.; Wang, C.; Liu, Y.; Wang, H. Research on micro properties of bio-oil modified asphalt based on molecular dynamics simulation technique. Mater. Rep. 2022, 19, 1–11. [Google Scholar]
- Li, N.; Zhu, Z.; Li, P. Study on applicability of biomass oil to replace asphalt for road use. Renew. Energy Resour. 2022, 40, 448–454. [Google Scholar]
- Wang, N.; Chen, F.; Ma, T.; Luan, Y.; Zhu, J. Compaction Performance of Cold Recycled Asphalt Mixture Using SmartRock Sensor. Autom. Constr. 2022, 140, 104377. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H. Laboratory evaluation of waste cooking oil-based bio-oil modified asphalt binder. J. Beijing Univ. Technol. 2018, 44, 904–909. [Google Scholar]
- Shi, K.; Fu, Z.; Song, R.M.; Liu, F.; Ma, F.; Dai, J. Waste chicken fat oil as a bio-oil regenerator to restore the performance of aged asphalt: Rheological properties and regeneration mechanism. Road Mater. Pavement Des. 2021, 1–25. [Google Scholar] [CrossRef]
- Girimath, S.; Singh, D. Effects of bio-oil on performance characteristics of base and recycled asphalt pavement binders. Constr. Build. Mater. 2019, 227, 116684. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Z.; Wang, J.; Li, J.; Zheng, Y. Advances in molecular dynamics simulation of self-healing behavior of asphalt binders. Chem. Prog. 2022, 1–17. [Google Scholar]
- Fan, W.; Zhao, P.; Kang, J.; Nan, G. Application of molecular simulation technology to asphalt/water emulsion study. J. China Univ. Pet. (Nat. Sci. Ed.) 2014, 38, 179–185. [Google Scholar]
- He, L.; Li, G.; Zheng, Y.; Alexiadis, A.; Valentin, J.; Kowalski, K.J. Research progress and prospect of molecular dynamics of asphalt systems. Mater. Rep. 2020, 34, 19083–19093. [Google Scholar]
- Zhang, E.H.; Liu, S.; Shan, L.Y.; Wang, Y.Y.; Tan, Y.Q. Study on the dual mechanism healing mechanism of graphene microencapsulated asphalt. Chin. J. Highw. 2022, 35, 91–99. [Google Scholar]
- Yu, X.; Wang, J.; Si, J.; Mei, J.; Ding, G.; Li, J. Research on compatibility mechanism of biobased cold-mixed epoxy asphalt binder-sciencedirect. Constr. Build. Mater. 2020, 250, 118868. [Google Scholar] [CrossRef]
- Yu, C.; Hu, K.; Yang, Q.; Wang, D.; Zhang, W.; Chen, G.; Kapyelata, C. Analysis of the storage stability property of carbon nanotube/recycled polyethylene-modified asphalt using molecular dynamics simulations. Polymers 2021, 13, 1658. [Google Scholar] [CrossRef]
- Li, D.D.; Greenfield, M.L. Chemical compositions of improved model asphalt systems for molecular simulations. Fuel 2014, 115, 347–356. [Google Scholar] [CrossRef]
- Xu, G.J.; Wang, H. Study of cohesion and adhesion properties of asphalt concrete with molecular dynamics simulation. Comput. Mater. Sci. 2016, 112, 161–169. [Google Scholar] [CrossRef]
- Fardin, K.; Rajesh, K. Molecular simulations of asphalt rheology: Application of time–temperature superposition principle. J. Rheol. 2018, 62, 941–954. [Google Scholar]
- Chen, H.; He, M.; Ji, X.; Huang, Y. Gray correlation analysis of asphalt performance and four fractions. J. Chang. Univ. (Nat. Sci. Ed.) 2014, 34, 1–6. [Google Scholar]
- Wu, M.; Xu, G.; Luan Yi Zhu, Y.; Ma, T.; Zhang, W. Molecular dynamics simulation on cohesion and adhesion properties of the emulsified cold recycled mixtures. Constr. Build. Mater. 2022, 333, 127403. [Google Scholar] [CrossRef]
- Li, Y.; Sang, S.; Wang, K.; Zhang, S.; Chen, L.; Zhang, Y.; Tan, J. Preparation and properties of nonionic waterborne epoxy resin emulsifier. Paint. Coat. Ind. 2021, 51, 25–32. [Google Scholar]
- Wang, J.; Han, X.; Li, T.; Yu, J. Mechanism and Application of Emulsifiers for Stabilizing Emulsions: A Review. Food Sci. 2020, 41, 303–310. [Google Scholar]
- Quan, X. Effect of Hydrophilic Groups on the Stability and Demulsification Process of Dodecyl Anionic Emulsion Asphalt; Chongqing Jiaotong University: Chongqing, China, 2021. [Google Scholar]
- Su, M.; Zhang, H.; Zhang, Y.; Zhang, Z. Molecular Dynamics Simulation of Compatibility and Mechanical Properties of Sbs and Asphalt. J. Chang. Univ. (Nat. Sci. Ed.) 2017, 37, 24–32. [Google Scholar]
- Wang, L.; Zhang, L.; Liu, Y. Compatibility of rubber powder and asphalt in rubber powder modified asphalt by molecular dynamics. J. Build. Mater. 2018, 21, 689–694. [Google Scholar]
- Li, C.; Fan, S.Y.; Xu, T. Method for evaluating compatibility between sbs modifier and asphalt matrix using molecular dynamics models. J. Mater. Civ. Eng. 2021, 33, 04021207. [Google Scholar] [CrossRef]
- Rivera, J.L.; Mccabe, C.; Cummings, P. Molecular simulations of liquid-liquid interfacial properties: Water-n-alkane and water-methanol-n-alkane systems. Phys. Rev. E 2003, 67, 011603. [Google Scholar] [CrossRef]
- Tang, F.; Ma, T.; Zhang, J.; Guan, Y.; Chen, L. Integrating Three-Dimensional Road Design and Pavement Structure Analysis Based on BIM. Autom. Constr. 2020, 113, 103152. [Google Scholar] [CrossRef]
- Wu, J.; Du, B.; Li, H. Performance evaluation method of prime coat oil based on average particle size of asphalt/water emulsion. Highway 2016, 61, 265–269. [Google Scholar]
- He, L.; Wen, X.; Hou, Y.; Deng, W. Influence factors of particle size and distribution of anionic asphalt/water emulsion. J. Chongqing Jiao Tong Univ. (Nat. Sci. Ed.) 2021, 40, 99–104. [Google Scholar]
- Sun, Z.; Ma, S.; Zhang, J.; Fuan, S. Microstructure characterization and performance investigation of a rapid hardening asphalt/water emulsion seal mixture. Road Mater. Pavement Des. 2021, 22, 2767–2782. [Google Scholar] [CrossRef]
- Liu, B.J.; Hou, W.L. Influence of storage conditions on the stability of asphalt emulsion. Pet. Sci. Technol. 2017, 35, 1217–1223. [Google Scholar] [CrossRef]
- Kiihnl, L.; Braham, A.F. Developing a particle size specification for asphalt emulsion. Constr. Build. Mater. 2021, 293, 123414. [Google Scholar] [CrossRef]
- Zhang, H. Influence of asphalt/water emulsion particle size distribution on asphalt properties. Transp. World 2016, 110–111. [Google Scholar]
- Wei, W.; Guo, P.; Tang, B. Review of the research on diffusion efficiency of virgin-aged asphalt in recycled asphalt mixture. Mater. Rep. 2017, 31, 109–114. [Google Scholar]
- Zhou, Y.; Li, Q.; Tong, Y.; Qu, F.; Wen, G.; Wu, C. Effect of regenerant on macroproperties and microstructure of sbs modified asphalt. Highway 2022, 67, 302–309. [Google Scholar]
- Chen, J.; Li, X.; Han, L.; Shen, Y.; Fang, X. Study on modification mechanism of asphalt by waste tire rubber powder. Shanxi Archit. 2021, 47, 110–111+196. [Google Scholar]
25 °C Penetration (0.1 mm) | 25 °C Ductility (cm) | Softening Point (°C) | 60 °C Brinell Viscosity (Pa·s) | |
---|---|---|---|---|
Test results | 63.7 | >100 | 47 | 203 |
Index requirements | 60–80 | >100 | >46 | >160 |
Test method | GB/T0606-2011 | GB/T0605-2011 | GB/T0606-2011 | GB/T0625-2011 |
Types of Asphalt | Asphaltene | Saturate | Aromatics | Resin |
---|---|---|---|---|
SK-70# | 12.44 | 26.62 | 44.62 | 16.32 |
Components | Molecular Formula | Number of Molecules | Model Component(%) | Actual Component (%) | Proportion Error (%) | |
---|---|---|---|---|---|---|
Asphaltene | Phenol | C42H54O | 1 | 13.28 | 12.44 | 0.84 |
Pyrrole | C66H81N | 1 | ||||
Thiophene | C51H62S | 1 | ||||
Aromatics | Quinolinohopa-ne | C40H59N | 2 | 26.93 | 26.62 | 0.31 |
Thioisorenierat-ane | C40H60S | 1 | ||||
Benzobisbenz-othiophene | C18H10S2 | 3 | ||||
Pyridinohopan-e | C36H57N | 2 | ||||
Trimethylbenz-eneoxane | C29H50O | 2 | ||||
Resin | PHPN | C35H44 | 14 | 44.17 | 44.62 | 0.45 |
DOCHN | C30H46 | 2 | ||||
Saturate | Squalane | C30H62 | 4 | 15.91 | 16.32 | 0.41 |
Hopane | C35H62 | 2 |
Components | Molecular Formula | Molecular Weight (g/mol) | Number of Molecules | Ratio to Asphalt (%) | |
---|---|---|---|---|---|
Emulsifier | 1% | C24H32O7Na2S2 | 542 | 1 | 2.7 |
3% | 3 | 6.5 | |||
5% | 5 | 10.3 | |||
H2O | 1% | H2O | 18 | 904 | 97.3 |
3% | 867 | 94.1 | |||
5% | 826 | 89.6 | |||
Biomass of oil | Hexadecenoic acid | C16H32O2 | 256.4 | 1 | 9.1 |
Linolenic acid | C18H32O2 | 280.5 | 2 | ||
Oleic acid | C18H34O2 | 282.5 | 2 | ||
Stearic acid | C18H36O2 | 284.5 | 1 |
Material | Bio-Oil Asphalt/Water Emulsion | ||
---|---|---|---|
Emulsifier Content | 1% | 3% | 5% |
D10 | 1.712 | 1.579 | 1.647 |
D20 | 2.013 | 1.793 | 1.899 |
D30 | 2.310 | 1.941 | 2.193 |
D40 | 2.439 | 2.197 | 2.407 |
D50 | 2.648 | 2.315 | 2.591 |
D60 | 2.901 | 2.487 | 2.797 |
D70 | 3.201 | 2.664 | 3.134 |
D80 | 3.798 | 3.012 | 3.287 |
D90 | 4.312 | 3.510 | 3.978 |
Volumetric mean particle size | 2.917 | 2.416 | 2.736 |
Span of particle size | 0.982 | 0.834 | 0.899 |
Wave Number (cm−1) | 2948 | 2849 | 1455 | 1375 | 1151 | 1124 | 628 |
---|---|---|---|---|---|---|---|
Control Group | |||||||
Upper 1% | 693.693 | 431.286 | 779.685 | 137.132 | 26.114 | 16.332 | 6.988 |
Lower 1% | 713.879 | 459.798 | 779.638 | 154.987 | 25.369 | 13.874 | 5.746 |
Upper 3% | 681.125 | 402.146 | 720.987 | 120.126 | 30.999 | 32.007 | 53.365 |
Lower 3% | 696.348 | 396.984 | 738.969 | 118.741 | 32.941 | 32.104 | 55.001 |
Upper 5% | 642.153 | 431.123 | 790.258 | 132.110 | 86.212 | 64.988 | 51.214 |
Lower 5% | 649.336 | 440.369 | 805.112 | 140.136 | 48.764 | 34.589 | 73.951 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, S.; Lin, L.; Hu, Z.; Gu, L.; Zhang, Y. Study on the Stability of Bio-Oil Modified Prime Coat Oil Based on Molecular Dynamics. Materials 2022, 15, 6737. https://doi.org/10.3390/ma15196737
Shi S, Lin L, Hu Z, Gu L, Zhang Y. Study on the Stability of Bio-Oil Modified Prime Coat Oil Based on Molecular Dynamics. Materials. 2022; 15(19):6737. https://doi.org/10.3390/ma15196737
Chicago/Turabian StyleShi, Shuang, Lanqin Lin, Zhaoguang Hu, Linhao Gu, and Yanning Zhang. 2022. "Study on the Stability of Bio-Oil Modified Prime Coat Oil Based on Molecular Dynamics" Materials 15, no. 19: 6737. https://doi.org/10.3390/ma15196737
APA StyleShi, S., Lin, L., Hu, Z., Gu, L., & Zhang, Y. (2022). Study on the Stability of Bio-Oil Modified Prime Coat Oil Based on Molecular Dynamics. Materials, 15(19), 6737. https://doi.org/10.3390/ma15196737