Analysis of the Influence of Waste Seashell as Modified Materials on Asphalt Pavement Performance
Abstract
:1. Introduction
2. Materials Selection and Sample Preparation
2.1. Materials
2.1.1. Aggregate and Asphalt
2.1.2. Seashell and Seashell Powder
2.1.3. Reagent for Contact Angle Test
2.2. Sample Preparation
2.3. Test Method
2.3.1. Micro Characteristic Test
2.3.2. Fourier-Transform Infrared (FTIR) Spectroscopy
2.3.3. Dynamic Shear Rheometer (DSR) Test
2.3.4. Bending Beam Rheometer (BBR) Test
2.3.5. Contact Angle Test
3. Results and Discussion
3.1. Microscopic Characteristics of Seashell Powder
3.2. Functional Group Analysis
3.3. Analysis of High-Temperature Rheological Properties
3.4. Analysis of Rheological Properties at Low Temperature
3.5. Analysis of Water Stability
4. Conclusions
- (1)
- The surface of SP and SCESP is rough with more pores and holes, and their main component is CaCO3. SCESP has more pores and holes than SP, and has better adsorption effect during mixing with asphalt, thus giving the modified asphalt a better adhesion effect. From the perspective of the type and content of characteristic functional groups of modified asphalt. The modification of SP and SCESP to NA-70 is a physical process.
- (2)
- Temperature–frequency tests show that SP and SCESP improve the high-temperature deformation resistance of NA-70. The G* of SPMA and SCESPMA is linear with the load frequency. At the same temperature, the G* of SCESPMA is more sensitive to the load frequency than that of SPMA, and SCESP has better high-temperature improvement effect on NA-70 than SP.
- (3)
- BBR tests indicate that SP and SCESP increase the creep modulus (S) and reduce the creep rate (m) of NA-70, resulting in a decrease in the low-temperature crack resistance of NA-70, and SCESP is more detrimental to the low temperature crack resistance of NA-70 than SP at the same content.
- (4)
- The contact angle test shows that SP and SCESP enhance the cohesion work, adhesion work and water stability of NA-70; in addition, at the same content, SCESP strengthens the cohesion work, adhesion work and water stability of NA-70 better than SP.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lv, S.; Yuan, J.; Peng, X.; Cabrera, M.B.; Guo, S.; Luo, X.; Gao, J. Performance and optimization of bio-oil/Buton rock asphalt composite modified asphalt. Constr. Build. Mater. 2020, 264, 120235. [Google Scholar] [CrossRef]
- Wang, P.; Tian, X.; Zhang, R.; Zhen, S. Effect of Waterborne Epoxy Resin on Properties of Modified Emulsified Asphalt and Its Microstructure. J. Mater. Civ. Eng. 2021, 33, 4021177. [Google Scholar] [CrossRef]
- Chen, W.; Li, Y.; Chen, S.; Zheng, C. Properties and economics evaluation of utilization of oil shale waste as an alternative environmentally-friendly building materials in pavement engineering. Constr. Build. Mater. 2020, 259, 119698. [Google Scholar] [CrossRef]
- Tang, J.; Fu, Y.; Ma, T.; Zheng, B.; Zhang, Y.; Huang, X. Investigation on low-temperature cracking characteristics of asphalt mixtures: A virtual thermal stress re-strained specimen test approach. Constr. Build. Mater. 2022, 347, 128541. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, C.; Zhang, Y. Research for SEBS/PPA compound-modified asphalt. J. Appl. Polym. Sci. 2018, 135, 46085. [Google Scholar] [CrossRef]
- Buhari, R.; Zabidi, N.F.; Abdullah, M.E.; Abu Bakar, S.K.; Kamarudin, N.H.M. Rheological Behaviour of Coconut Shell Powder Modified Asphalt Binder. J. Teknol. 2016, 78, 17–22. [Google Scholar] [CrossRef]
- Bethary, R.T.; Intari, D.E.; Fathonah, W.; Andika, S. The Evaluation of The use of Palm Shell Ash Waste to Polymer Modified Asphalt Mixture. IOP Conf. Ser. Earth Environ. Sci. 2021, 830, 012010. [Google Scholar] [CrossRef]
- Jeffry, S.N.A.; Jaya, R.P.; Hassan, N.A.; Yaacob, H.; Satar, M.K.I.M. Mechanical performance of asphalt mixture containing nano-charcoal coconut shell ash. Constr. Build. Mater. 2018, 173, 40–48. [Google Scholar] [CrossRef]
- Fu, X.; He, M.; Liu, Y. Research on Short-term Aging of Lignin Modified Asphalt. E3S Web Conf. 2021, 233, 01125. [Google Scholar] [CrossRef]
- Ritonga, W.; Ritonga, N.Y.; Rangkuti, M.A.; Eddiyanto, E.; Prawijaya, S. The effect of oil palm shell ash to asphalt characteristics. J. Phys. Conf. Ser. 2019, 1282, 012031. [Google Scholar] [CrossRef]
- Arabani, M.; Esmaaeli, N. Laboratory evaluation on effect of groundnut shell ash on performance parameters of asphalt bind-er and mixes. Road Mater. Pavement Des. 2020, 21, 1565–1587. [Google Scholar] [CrossRef]
- Salazar-Cruz, B.; Zapien-Castillo, S.; Hernández-Zamora, G.; Rivera-Armenta, J. Investigation of the performance of asphalt binder modified by sargassum. Constr. Build. Mater. 2020, 271, 121876. [Google Scholar] [CrossRef]
- Lv, S.; Guo, Y.; Xia, C.; Liu, C.; Hu, L.; Guo, S.; Wang, X.; Cabrera, M.B.; Li, M. Investigation on high-temperature resistance to permanent deformation of waste leather modified asphalt. Constr. Build. Mater. 2021, 282, 122541. [Google Scholar] [CrossRef]
- Lv, S.; Xia, C.; Yang, Q.; Guo, S.; You, L.; Guo, Y.; Zheng, J. Improvements on high-temperature stability, rheology, and stiffness of asphalt binder modified with waste cray-fish shell powder. J. Clean. Prod. 2020, 264, 121745. [Google Scholar] [CrossRef]
- Lv, S.; Hu, L.; Xia, C.; Cabrera, M.B.; Guo, Y.; Liu, C.; You, L. Recycling fish scale powder in improving the performance of asphalt: A sustainable utilization of fish scale waste in asphalt. J. Clean. Prod. 2020, 288, 125682. [Google Scholar] [CrossRef]
- Lv, S.; Hu, L.; Xia, C.; Peng, X.; Cabrera, M.B.; Guo, S.; You, L. Surface-treated fish scale powder with silane coupling agent in asphalt for performance improvement: Conventional properties, rheology, and morphology. J. Clean. Prod. 2021, 311, 127772. [Google Scholar] [CrossRef]
- Razzaq, A.K.; Yousif, R.A.; Tayh, S.A. Characterization of hot mix asphalt modified by egg shell powder. Int. J. Eng. Res. Technol. 2018, 11, 481–492. [Google Scholar]
- Ji, G.; Wang, X.; Guo, Y.; Zhang, Y.; Yin, Q.; Luo, Y. Study on the Physical, Chemical and Nano-Microstructure Characteristics of Asphalt Mixed with Recycled Eggshell Waste. Sustainability 2021, 13, 11173. [Google Scholar] [CrossRef]
- Huang, J.; Kumar, G.S.; Ren, J.; Sun, Y.; Li, Y.; Wang, C. Towards the potential usage of eggshell powder as bio-modifier for asphalt binder and mixture: Workability and mechanical properties. Int. J. Pavement Eng. 2021, 23, 3553–3565. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, X.; Ji, G.; Zhang, Y.; Su, H.; Luo, Y. Effect of Recycled Shell Waste as a Modifier on the High-and Low-Temperature Rheological Properties of As-phalt. Sustainability 2021, 13, 10271. [Google Scholar] [CrossRef]
- Nciri, N.; Shin, T.; Lee, H.; Cho, N. Potential of Waste Oyster Shells as a Novel Biofiller for Hot-Mix Asphalt. Appl. Sci. 2018, 8, 415. [Google Scholar] [CrossRef] [Green Version]
- Modupe, A.E.; Fadugba, O.G.; Busari, A.A.; Adeboje, A.O.; Aladegboye, O.J.; Alejolowo, O.O.; Chukwuma, C.G. Sustainability Assessment of the Engineering Properties of Asphalt Concrete Incorporating Pulverized Snail Shell Ash as Partial Replacement for Filler. IOP Conf. Ser. Earth Environ. Sci. 2021, 665, 012057. [Google Scholar] [CrossRef]
- Chu, C.; Zhu, J.; Wang, Z.-A. Investigation of the Road Performance of AH-30 Bitumen and Its Mixture: Comparison with AH-70 and SBS-Modified Bitumen. Adv. Mater. Sci. Eng. 2021, 2021, 3124047. [Google Scholar] [CrossRef]
- JTG/T 5521–2019; Technical Specifications for Highway Asphalt Pavement Recycling: Industry Recommended Standards of the People’s Republic of China. China Communications Press: Beijing, China, 2019.
- Shao, H.; Zhu, J.; Zhou, Q.; Lei, J.; Xu, J.; Wang, K. Characteristics of microstructure and size change of the shell of Hyriopsis cumingii. Acta Mater. Compos.-Tate Sin. 2019, 36, 2398–2406. [Google Scholar]
- Geng, L.; Liu, Y.; Xu, Q.; Han, F.; Yu, X.; Qin, T. Development of bio-based stabilizers and their effects on the performance of SBS-modified asphalt. Constr. Build. Mater. 2020, 271, 121889. [Google Scholar] [CrossRef]
- AASHTO T 315-20; Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). American Association of State Highway and Transportation Officials: Washington, DC, USA, 2019.
- Sun, Y.S.; Chen, X.L.; Han, Y.X.; Zhang, B. Research on Performance of the Modified Asphalt by Diatomite-Cellulose Composite. Adv. Mater. Res. 2010, 158, 211–218. [Google Scholar]
- Zheng, Y.X.; Cai, Y.C.; Zhang, Y.M. Laboratory Study of Pavement Performance of Basalt Fiber-Modified Asphalt Mixture. In Advanced Materials Research; Trans Tech Publications: Zurich, Switzerland, 2011; pp. 175–179. [Google Scholar]
- Yang, J.; Zhang, Z.; Shi, J.; Yang, X.; Fang, Y. Comparative analysis of thermal aging behavior and comprehensive performance of high viscosity asphalt (HVA) from cohesion, adhesion and rheology perspectives. Constr. Build. Mater. 2022, 317, 125982. [Google Scholar] [CrossRef]
- Han, M.; Li, J.; Muhammad, Y.; Hou, D.; Zhang, F.; Yin, Y.; Duan, S. Effect of polystyrene grafted graphene nanoplatelets on the physical and chemical properties of asphalt binder. Constr. Build. Mater. 2018, 174, 108–119. [Google Scholar] [CrossRef]
- Da Silva, A.M.; De Souza, K.R.; Jacobs, G.; Graham, U.M.; Davis, B.H.; Mattos, L.V.; Noronha, F.B. Steam and CO2 reforming of ethanol over Rh/CeO2 catalyst. Appl. Catal. B Environ. 2011, 102, 94–109. [Google Scholar] [CrossRef]
- Yu, M.; Li, J.; Cui, X.; Guo, D.; Li, X. Antiageing Performance Evaluation of Recycled Engine Oil Bottom Used in Asphalt Rejuvenation. Adv. Mater. Sci. Eng. 2019, 2019, 2947170. [Google Scholar] [CrossRef]
- Zhang, H.; Gong, M.; Huang, Y.; Miljković, M. Study of the high and low-temperature behavior of asphalt based on a performance grading system in Northeast China. Constr. Build. Mater. 2020, 254, 119046. [Google Scholar] [CrossRef]
- Chen, Z.; Yi, J.; Chen, Z.; Feng, D. Properties of asphalt binder modified by corn stalk fiber. Constr. Build. Mater. 2019, 212, 225–235. [Google Scholar] [CrossRef]
- Yang, Q.; Li, X. Mechanism and Effectiveness of a Silicone-Based Warm Mix Additive. J. Mater. Civ. Eng. 2019, 31, 04018336. [Google Scholar] [CrossRef]
- Wang, X.; Guo, Y.; Ji, G.; Zhang, Y.; Zhao, J.; Su, H. Effect of Biowaste on the High- and Low-Temperature Rheological Properties of Asphalt Binders. Adv. Civ. Eng. 2021, 2021, 5516546. [Google Scholar] [CrossRef]
Aggregate | |||
---|---|---|---|
Limestone | 48.76 | 43.66 | 5.10 |
Items | Test Specification: JTG E20-2011 | |||
---|---|---|---|---|
Measured Values | Technical Requirements | Reference Methods | ||
Penetration (25 °C, 100 g, 5 s) (0.1 mm) | 69.9 | 60~80 | T0604-2011. | |
Penetration index (PI) | 0.201 | −1.5~+1.0 | T0604-2011. | |
Length (5 cm/min, 10°C) (cm) | 33 | ≥15 | T0605-2011. | |
Length (5 cm/min, 15°C) (cm) | >100 | ≥100 | T0605-2011. | |
Softening point (Global method) (°C) | 49.5 | ≥46 | T0606-2011. | |
Wax content (distillation) (%) | 0.5 | <2.2 | T0615-2011. | |
Flash point (°C) | 335 | ≥260 | T0611-2011. | |
Solubility (%) | 99.87 | ≥99.5 | T0607-2011. | |
Density (25 °C) (g/cm)3) | 1.037 | Measured | T0603-2011. | |
60 °C Dynamic viscosity (Pa·s) | 199.8 | ≥180 | T0620-2000. | |
Rolling thin film oven test (163 °C, 85 min) | Mass loss (%) | −0.065 | ≤±0.8 | T0609-2011. |
Residual penetration ratio (%) | 81 | ≥61 | T0604-2011. | |
Residual ductility (10 °C) | 7 | ≥6 | T0605-2011. | |
Residual ductility (15 °C) | 28 | ≥15 | T0605-2011. |
Seashell Name | Seashell Structure | Types of Seashell Powder | Appearance | Particle Size of Seashell Powder |
---|---|---|---|---|
Hyriopsis cumingii | Stratum corneum Prismatic layer Nacre | Seashell powder | Light yellow powder | <0.15 mm |
Stratum corneum-exfoliated seashell powder | Milky white powder |
Reagents | /mJ·m−2 | /mJ·m−2 | /mJ·m−2 |
---|---|---|---|
Distilled water | 72.8 | 21.8 | 51 |
Glycerol | 64 | 34 | 30 |
Formamide | 58 | 39 | 19 |
Sample No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Content of SP (g) | 0 | 10 | 20 | 30 | |||
Content of SCESP (g) | - | - | - | - | 10 | 20 | 30 |
Sample Type | Main Components | ||||||
---|---|---|---|---|---|---|---|
SP | Element | C | O | Ca | Si | S | Al |
Weight (%) | 42.54 | 37.80 | 12.39 | 3.86 | 1.85 | 1.56 | |
Chemical compound | CaCO3 | SiO2 | Al2O3 | ||||
Weight (%) | 76.32 | 15.25 | 8.43 | ||||
SCESP | Element | C | O | Ca | Si | S | Mg |
Weight (%) | 33.25 | 44.55 | 18.58 | 1.85 | 0.91 | 0.86 | |
Chemical compound | CaCO3 | SiO2 | MgO | ||||
Weight (%) | 86.62 | 8.23 | 5.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, G.; Liu, H.; Liu, C.; Xue, Y.; Ju, Z.; Ding, S.; Zhang, Y.; Li, Y. Analysis of the Influence of Waste Seashell as Modified Materials on Asphalt Pavement Performance. Materials 2022, 15, 6788. https://doi.org/10.3390/ma15196788
Fan G, Liu H, Liu C, Xue Y, Ju Z, Ding S, Zhang Y, Li Y. Analysis of the Influence of Waste Seashell as Modified Materials on Asphalt Pavement Performance. Materials. 2022; 15(19):6788. https://doi.org/10.3390/ma15196788
Chicago/Turabian StyleFan, Guopeng, Honglin Liu, Chaochao Liu, Yanhua Xue, Zihao Ju, Sha Ding, Yuling Zhang, and Yuanbo Li. 2022. "Analysis of the Influence of Waste Seashell as Modified Materials on Asphalt Pavement Performance" Materials 15, no. 19: 6788. https://doi.org/10.3390/ma15196788
APA StyleFan, G., Liu, H., Liu, C., Xue, Y., Ju, Z., Ding, S., Zhang, Y., & Li, Y. (2022). Analysis of the Influence of Waste Seashell as Modified Materials on Asphalt Pavement Performance. Materials, 15(19), 6788. https://doi.org/10.3390/ma15196788