Numerical Investigation of the Temperature Field Effect on the Mechanical Responses of Conventional and Cool Pavements
Abstract
:1. Introduction
2. Heat Transfer Model in Asphalt Pavement
3. Development of FE Model of Asphalt Pavement
3.1. The FE Heat Transfer Model
3.2. The FE Mechanical Pavement Model
4. Result and Analysis
4.1. Results of the Responses of Conventional Pavement
4.1.1. Results of the Thermal Response of Conventional Pavement
4.1.2. Results of the Mechanical Response of Conventional Pavement
4.2. Results of the Responses of Cool Pavement
4.2.1. Results of the Thermal Response of Cool Pavement
4.2.2. Results of the Mechanical Response of Cool Pavement
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, J.; Fan, Z.; Lin, J.; Liu, P.; Wang, D.; Oeser, M. Study on the effects of reversible aging on the low temperature performance of asphalt binders. Constr. Build. Mater. 2021, 295, 123604. [Google Scholar] [CrossRef]
- Hu, J.; Liu, P.; Wang, D.; Oeser, M.; Canon Falla, G. Investigation on interface stripping damage at high temperature using microstructural analysis. Int. J. Pavement Eng. 2019, 20, 544–556. [Google Scholar] [CrossRef]
- Otto, F.; Liu, P.; Zhang, Z.; Wang, D.; Oeser, M. Influence of temperature on the cracking behavior of asphalt base courses with structural weaknesses. J. Transp. Sci. and Technol. 2018, 7, 208–216. [Google Scholar] [CrossRef]
- Sun, Y.; Du, C.; Gong, H.; Li, Y.; Chen, J. Effect of temperature field on damage initiation in asphalt pavement: A microstructure-based multiscale finite element method. Mech. Mater. 2020, 144, 103367. [Google Scholar] [CrossRef]
- Santamouris, M. Using cool pavements as a mitigation strategy to fight urban heat island - A review of the actual developments. Renew. Sustain. Energy Rev. 2013, 26, 224–240. [Google Scholar] [CrossRef]
- Sankar Cheela, V.R.; John, M.; Biswas, W.; Sarker, P. Combating Urban Heat Island Effect - A Review of Reflective Pavements and Tree Shading Strategies. Build 2021, 11, 93. [Google Scholar] [CrossRef]
- Sha, A.; Liu, Z.; Tang, K.; Li, P. Solar heating reflective coating layer (SHRCL) to cool the asphalt pavement surface pavement surface. Constr. Build. Mater. 2017, 139, 355–364. [Google Scholar] [CrossRef]
- Zheng, M.; Tian, Y.; He, L. Analysis on Environmental Thermal Effect of Functionally Graded Nanocomposite Heat Reflective Coatings for Asphalt Pavement. Coatings 2019, 9, 178. [Google Scholar] [CrossRef]
- Qin, Y. A review on the development of cool pavements to mitigate urban heat island effect. Renew. Sustain. Energy Rev. 2015, 52, 445–459. [Google Scholar]
- Hill, K.; Beecham, S. The Effect of Particle Size on Sediment Accumulation in Permeable Pavements. Water 2018, 10, 403. [Google Scholar] [CrossRef]
- Office, J.E.; Chen, J.; Dan, H.; Ding, Y.; Gao, Y.; Guo, M.; Guo, S.; Han, B.; Hong, B.; Hou, Y.; et al. New innovations in pavement materials and engineering: A review on pavement engineering research 2021. J. Traffic Transp. Eng. (Engl. Ed. ) 2021, 8, 815–999. [Google Scholar]
- Wang, X.; Gu, X.; Ni, F.; Deng, H.; Dong, X. Rutting resistance of porous asphalt mixture under coupled conditions of high temperature and rainfall. Constr. Build. Mater. 2018, 174, 293–301. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, P.; Jiang, J.; Hu, X. High-temperature failure of porous asphalt mixture under wheel loading based on 2D air void structure analysis. Constr. Build. Mater. 2020, 252, 119051. [Google Scholar] [CrossRef]
- Zhao, X.; Shen, A.; Ma, B. Temperature response of asphalt pavement to low temperatures and large temperature differences. Int. J. Pavement Eng. 2018, 21, 49–62. [Google Scholar] [CrossRef]
- Palmer, J.M. The measurement of transmission, absorption, emission, and reflection. In Handbook of Optics, 2nd ed.; Optical Society of America: Washington, DC, USA, 1995. [Google Scholar]
- Liao, G.; Huang, X. Application of ABAQUS Finite Element Software in Road Engineering; Southeast University Press: Nanjing, China, 2014. [Google Scholar]
- FGSV. Guidelines for the Standardization of the Upper Structure of Traffic Areas; Research Society for Road and Transportation: Cologne, Germany, 2012. [Google Scholar]
- Wan, W.C.; Hien, W.N.; Ping, T.P.; Zhi, A.; Aloysius, W. A study on the effectiveness of heat mitigating pavement coatings in Singapore. J. Heat Isl. Inst. Int. 2012, 7, 238–247. [Google Scholar]
- ABAQUS. ABAQUS Version 6.10 HTML—ABAQUS/CAE User’s Manual; Dassault Systems: Paris, France, 2020. [Google Scholar]
- NASA POWER Data Access Viewer. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 1 October 2021).
- FGSV. Guidelines for the Computational Dimension of the Upper Structure of Road with Asphalt Surface Course; Research Society for Road and Transportation: Cologne, Germany, 2009. [Google Scholar]
- Liu, P.; Xing, Q.; Wang, D.; Oeser, M. Application of dynamic analysis in semi-analytical finite element method. Materials 2017, 10, 1010. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Wang, D.; Oeser, M. Application of semi-analytical finite element method to analyze asphalt pavement response under heavy traffic loads. J. Traffic Transp. Eng. (Engl. Ed. ) 2017, 4, 206–214. [Google Scholar] [CrossRef]
- Liu, P.; Wang, D.; Hu, J.; Oeser, M. SAFEM-Software with graphical user interface for fast and accurate finite element analysis of asphalt pavements. J. Test. Eval. 2016, 45, 1301–1315. [Google Scholar] [CrossRef]
- Liu, P.; Wang, D.; Otto, F.; Oeser, M. Application of semi-analytical finite element method to analyze the bearing capacity of asphalt pavements under moving loads. Front. Struct. Civ. Eng. 2018, 12, 215–221. [Google Scholar] [CrossRef]
Albedo | 19% |
Pavement radiation emissivity | 0.828 |
Thermal conductivity | 907.2 mJ/(mm∙h∙K) |
Wind Speed | Sunshine Time | Air Temperature | |||
---|---|---|---|---|---|
2.6 m/s | 10.7 h | Time | °C | Time | °C |
1:00 | 25.8 | 13:00 | 34.4 | ||
2:00 | 24.7 | 14:00 | 35.3 | ||
3:00 | 23.7 | 15:00 | 35.6 | ||
4:00 | 23.1 | 16:00 | 35.3 | ||
5:00 | 22.8 | 17:00 | 34.7 | ||
6:00 | 23.1 | 18:00 | 33.7 | ||
7:00 | 24 | 19:00 | 32.6 | ||
8:00 | 25.4 | 20:00 | 31.5 | ||
9:00 | 27.2 | 21:00 | 30.3 | ||
10:00 | 29.2 | 22:00 | 29.2 | ||
11:00 | 31.2 | 23:00 | 28.1 | ||
12:00 | 33 | 0:00 | 26.9 |
Layer | Poisson’s Ratio | Density | Damping Factor |
---|---|---|---|
[ton/mm3] | |||
Asphalt surface course | 0.35 | 2.38 × 10−9 | 0.9 |
Asphalt binder course | 0.35 | 2.49 × 10−9 | 0.9 |
Asphalt base course | 0.35 | 2.30 × 10−9 | 0.9 |
Hydraulically bound base course | 0.25 | 2.40 × 10−9 | 0.8 |
Frost protection course | 0.5 | 2.40 × 10−9 | 0.4 |
Subgrade | 0.5 | 2.40 × 10−9 | 0.4 |
Item | Relaxation Time (s) | The mth Maxwell Spring Modulus (MPa) | Item | Relaxation Time (s) | The mth Maxwell Spring Modulus (MPa) |
---|---|---|---|---|---|
1 | 1.00 × 10−7 | 1.25 | 7 | 0.1 | 1141.19 |
2 | 1.00 × 10−6 | 3.90 | 8 | 1 | 2214.31 |
3 | 1.0 × 10−5 | 12.29 | 9 | 10 | 1624.26 |
4 | 1.0 × 10−4 | 38.33 | 10 | 100 | 425.02 |
5 | 0.001 | 121.51 | 11 | 1000 | 39.42 |
6 | 0.01 | 371.69 | 12 | 10,000 | 1.00 |
The parallel spring modulus (MPa) | 107.04 | ||||
Tr (°C) | −5 | ||||
C1 | 10.16 | ||||
C2 | 46.64 |
Item | Relaxation Time (s) | The mth Maxwell Spring Modulus (MPa) | Item | Relaxation Time (s) | The mth Maxwell Spring Modulus (MPa) |
---|---|---|---|---|---|
1 | 1.00 × 10−7 | 1.73 | 7 | 0.1 | 13,237.69 |
2 | 1.00 × 10−6 | 9.67 | 8 | 1 | 7135.05 |
3 | 1.0 × 10−5 | 42.93 | 9 | 10 | 2066.84 |
4 | 1.0 × 10−4 | 248.43 | 10 | 100 | 678.16 |
5 | 0.001 | 1148.68 | 11 | 1000 | 187.77 |
6 | 0.01 | 6775.57 | 12 | 10,000 | 65.36 |
The parallel spring modulus (MPa) | 22.29 | ||||
Tr (°C) | 10 | ||||
C1 | 254,154,208 | ||||
C2 | 1,637,000,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Kong, X.; Du, C.; Wang, C.; Wang, D.; Oeser, M. Numerical Investigation of the Temperature Field Effect on the Mechanical Responses of Conventional and Cool Pavements. Materials 2022, 15, 6813. https://doi.org/10.3390/ma15196813
Liu P, Kong X, Du C, Wang C, Wang D, Oeser M. Numerical Investigation of the Temperature Field Effect on the Mechanical Responses of Conventional and Cool Pavements. Materials. 2022; 15(19):6813. https://doi.org/10.3390/ma15196813
Chicago/Turabian StyleLiu, Pengfei, Xiangrui Kong, Cong Du, Chaohe Wang, Di Wang, and Markus Oeser. 2022. "Numerical Investigation of the Temperature Field Effect on the Mechanical Responses of Conventional and Cool Pavements" Materials 15, no. 19: 6813. https://doi.org/10.3390/ma15196813
APA StyleLiu, P., Kong, X., Du, C., Wang, C., Wang, D., & Oeser, M. (2022). Numerical Investigation of the Temperature Field Effect on the Mechanical Responses of Conventional and Cool Pavements. Materials, 15(19), 6813. https://doi.org/10.3390/ma15196813