Adsorption Study of Continuous Heavy Metal Ions (Pb2+, Cd2+, Ni2+) Removal Using Cocoa (Theobroma cacao L.) Pod Husks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Sorbate
2.2. Preparation of Adsorbent
2.3. Chemical Composition of Biomass
2.4. Continuos Fixed-Bed Column Study
2.5. Adsorption Modeling
3. Results and Discussion
3.1. Chemical Composition of Biomass
3.2. Continuous Fixed-Bed Column Study
3.3. Adsorption Breaktrough Curves Modeling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, S.; Yun, J.M.; Lee, J.Y.; Hong, G.; Kim, J.S.; Kim, D.; Han, J.G. The Remediation Characteristics of Heavy Metals (Copper and Lead) on Applying Recycled Food Waste Ash and Electrokinetic Remediation Techniques. Appl. Sci. 2021, 11, 7437. [Google Scholar] [CrossRef]
- Rashid, R.; Shafiq, I.; Akhter, P.; Iqbal, M.J.; Hussain, M. A state-of-the-art review on wastewater treatment techniques: The effectiveness of adsorption method. Environ. Sci. Pollut. Res. 2021, 28, 9050–9066. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 2021, 22, 101504. [Google Scholar] [CrossRef]
- Charkiewicz, A.E.; Backstrand, J.R. Lead Toxicity and Pollution in Poland. Int. J. Environ. Res. Public Health 2020, 17, 4385. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, X.; Xiong, Z.; Wang, M.; Liu, Q. Environmental Pollution Effect Analysis of Lead Compounds in China Based on Life Cycle. Int. J. Environ. Res. Public Health 2020, 17, 2184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumat, C.; Shahid, M.; Khalid, S.; Murtaza, B.; Shahid, M.; Khalid, S.; Murtaza, B. Lead Pollution and Human Exposure: Forewarned is Forearmed, and the Question Now Becomes How to Respond to the Threat! In Radionuclides and Heavy Metals in the Environment, 1st ed.; Springer: Cham, Switzerland, 2020; pp. 33–65. [Google Scholar]
- Ezeonuegbu, B.A.; Machido, D.A.; Whong, C.M.Z.; Japhet, W.S.; Alexiou, A.; Elazab, S.T.; Qusty, N.; Yaro, C.A.; Batiha, G.E.S. Agricultural waste of sugarcane bagasse as efficient adsorbent for lead and nickel removal from untreated wastewater: Biosorption, equilibrium isotherms, kinetics and desorption studies. Biotechnol. Rep. 2021, 30, e00614. [Google Scholar] [CrossRef] [PubMed]
- Siregar, A.; Sulistyo, I.; Prayogo, N.A. Heavy metal contamination in water, sediments and Planiliza subviridis tissue in the Donan River, Indonesia. J. Water L. Dev. 2020, 45, 157–164. [Google Scholar] [CrossRef]
- Patel, H.; In, C. Comparison of batch and fixed bed column adsorption: A critical review. Int. J. Environ. Sci. Technol. 2021, 19, 10409–10426. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Shrestha, R.; Ban, S.; Devkota, S.; Sharma, S.; Joshi, R.; Tiwari, A.P.; Kim, H.Y.; Joshi, M.K. Technological trends in heavy metals removal from industrial wastewater: A review. J. Environ. Chem. Eng. 2021, 9, 105688. [Google Scholar] [CrossRef]
- Herrera-Barros, A.; Tejada-Tovar, C.; Villabona-Ortíz, A.; Gonzalez-Delgado, Á.; Mejia-Meza, R. Assessment of the Effect of Al2O3 and TiO2 Nanoparticles on Orange Peel Biomass and its Application for Cd (II) and Ni (II) Uptake. Trans. ASABE 2019, 62, 139–147. [Google Scholar] [CrossRef]
- Younas, F.; Mustafa, A.; Farooqi, Z.U.R.; Wang, X.; Younas, S.; Mohy-Ud-din, W.; Hameed, M.A.; Abrar, M.M.; Maitlo, A.A.; Noreen, S.; et al. Current and Emerging Adsorbent Technologies for Wastewater Treatment: Trends, Limitations, and Environmental Implications. Water 2021, 13, 215. [Google Scholar] [CrossRef]
- Torres-Caban, R.; Vega-Olivencia, C.A.; Mina-Camilde, N. Adsorption of Ni2+ and Cd2+ from Water by Calcium Alginate/Spent Coffee Grounds Composite Beads. Appl. Sci. 2019, 9, 4531. [Google Scholar] [CrossRef] [Green Version]
- Suganthi, N.; Srinivasan, K. Phosphorylated tamarind nut carbon for the removal of cadmium ions from aqueous solutions. Indian J. Eng. Mater. Sci. 2010, 17, 382–388. [Google Scholar]
- Jia, Y.; Shi, S.; Liu, J.; Su, S.; Liang, Q.; Zeng, X.; Li, T. Study of the Effect of Pyrolysis Temperature on the Cd2+ Adsorption Characteristics of Biochar. Appl. Sci. 2018, 8, 1019. [Google Scholar] [CrossRef] [Green Version]
- Es-Sahbany, H.; Berradi, M.; Nkhili, S.; Hsissou, R.; Allaoui, M.; Loutfi, M.; Bassir, D.; Belfaquir, M.; El Youbi, M.S. Removal of heavy metals (nickel) contained in wastewater-models by the adsorption technique on natural clay. Mater. Today Proc. 2019, 13, 866–875. [Google Scholar] [CrossRef]
- Aboli, E.; Jafari, D.; Esmaeili, H. Heavy metal ions (lead, cobalt, and nickel) biosorption from aqueous solution onto activated carbon prepared from Citrus limetta leaves. Carbon Lett. 2020, 30, 683–698. [Google Scholar] [CrossRef]
- Jin, Y.; Zeng, C.; Lü, Q.F.; Yu, Y. Efficient adsorption of methylene blue and lead ions in aqueous solutions by 5-sulfosalicylic acid modified lignin. Int. J. Biol. Macromol. 2019, 123, 50–58. [Google Scholar] [CrossRef]
- Chen, H.; Li, W.; Wang, J.; Xu, H.; Liu, Y.; Zhang, Z.; Li, Y.; Zhang, Y. Adsorption of cadmium and lead ions by phosphoric acid-modified biochar generated from chicken feather: Selective adsorption and influence of dissolved organic matter. Bioresour. Technol. 2019, 292, 121948. [Google Scholar] [CrossRef]
- Eletta, O.A.A.; Adeniyi, A.G.; Ighalo, J.O.; Onifade, D.V.; Ayandele, F.O. Valorisation of Cocoa (Theobroma cacao) pod husk as precursors for the production of adsorbents for water treatment. Environ. Technol. Rev. 2020, 9, 20–36. [Google Scholar] [CrossRef]
- Vásquez, Z.S.; De Carvalho, D.P.; Pereira, G.V.M.; Vandenberghe, L.P.S.; De Oliveira, P.Z.; Tiburcio, P.B.; Rogez, H.L.G.; Góes, A.; Soccol, C.R. Biotechnological approaches for cocoa waste management: A review. Waste 2019, 90, 72–83. [Google Scholar] [CrossRef]
- Hernández-Mendoza, A.G.; Saldaña-Trinidad, S.; Martínez-Hernández, S.; Pérez-Sariñana, B.Y.; Láinez, M. Optimization of alkaline pretreatment and enzymatic hydrolysis of cocoa pod husk (Theobroma cacao L.) for ethanol production. Biomass Bioenergy 2021, 154, 106268. [Google Scholar] [CrossRef]
- Soares, T.F.; Oliveira, M.B.P.P. Cocoa by-Products: Characterization of Bioactive Compounds and Beneficial Health Effects. Molecules 2022, 27, 1625. [Google Scholar] [CrossRef]
- Patel, H. Fixed-bed column adsorption study: A comprehensive review. Appl. Water Sci. 2019, 9, 45. [Google Scholar] [CrossRef] [Green Version]
- Cherdchoo, W.; Nithettham, S.; Charoenpanich, J. Removal of Cr(VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea. Chemosphere 2019, 221, 758–767. [Google Scholar] [CrossRef]
- Barquilha, C.E.R.; Braga, M.C.B. Adsorption of organic and inorganic pollutants onto biochars: Challenges, operating conditions, and mechanisms. Bioresour. Technol. Rep. 2021, 15, 100728. [Google Scholar] [CrossRef]
- Duarte, E.; Olivero, J.; Jaramillo, B. Studies of chromium removal from tannery wastewaters by quitosan biosorbents obtained shrimp (Litopenaus vanamei). Sci. Tech. 2009, 15, 290–295. [Google Scholar]
- Tejada-Tovar, C.; Villabona-Ortíz, A.; Marimón, W. Biosorption of chromium (VI) in water using modified lignocellulosic material. Rev. Educ. Ing. 2014, 9, 86–97. [Google Scholar]
- Tejada-Tovar, C.; Villabona-Ortiz, A.; Alvarez-Bajaire, G.; Jattin-Torres, L.; Acevedo, D. Evaluation of Theobroma cacao Waste Performance in Nickel Removal (II) in Continuous System. Int. J. Chem. Tech. Res. 2018, 11, 186–194. [Google Scholar]
- Tejada-Tovar, C.; Villabona-Ortíz, A.; Gonzalez-Delgado, Á.; Granados-Conde, C.; Jimenez-Villadiego, M. Kinetics of Mercury and Nickel Adsorption Using Chemically Pretreated Cocoa (Theobroma cacao) Husks. Trans. ASABE 2019, 62, 461–466. [Google Scholar] [CrossRef]
- Biswas, S.; Mishra, U. Continuous Fixed-Bed Column Study and Adsorption Modeling: Removal of Lead Ion from Aqueous Solution by Charcoal Originated from Chemical Carbonization of Rubber Wood Sawdust. J. Chem. 2015, 2015, 907379. [Google Scholar] [CrossRef] [Green Version]
- Tejada-Tovar, C.; Villabona-Ortíz, A.; Alvarez-Bajaire, G.; Jattin-Torres, L.; Granados-Conde, C. Influence of the bed height on the dynamic behavior of a fixed-bed column during mercury biosorption. TecnoLógicas 2017, 20, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Tejada-Tovar, C.; Villabona-Ortíz, A.; Caballero-Romero, V.; Paternina-Cuesta, J.; Granados-Conde, C. Parameter optimization for Cr(VI) adsorption breakdown curves onto cocoa shell. Rev. UDCA Actual. Divulg. Cient. 2018, 21, 167–177. [Google Scholar]
- Moreno-Sader, K.; García-Padilla, A.; Realpe, A.; Acevedo-Morantes, M.; Soares, J. Removal of Heavy Metal Water Pollutants ( Co2+ and Ni2+) Using Polyacrylamide/Sodium Montmorillonite (PAM/Na-MMT) Nanocomposites. ACS Omega 2019, 4, 10834–10844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Njoku, V.; Ayuk, A.; Ejike, E.; Oguzie, E.; Duru, C.; Bello, O. Cocoa Pod Husk as a Low Cost Biosorbent for the Removal of Pb(II) and Cu(II) from Aqueous Solutions. Aust. J. Basic Appl. Sci. 2011, 5, 101–110. [Google Scholar]
- Kalaivani, S.; Vidhyadevi, T.; Murugesan, A.; Baskaralingam, P.; Anuradha, C.; Ravikumar, L.; Sivanesan, S. Equilibrium and kinetic studies on the adsorption of Ni(II) ion from an aqueous solution using activated carbon prepared from Theobroma cacao (cocoa) shell. Desalin. Water Treat. 2015, 54, 1629–1641. [Google Scholar] [CrossRef]
- Kede, C.; Ndibewu, P.; Kalumba, M.; Panichev, N.; Ngomo, H.; Ketcha, J. Adsorption of Mercury(II) onto activated carbons derived from Theobroma cacao pod husk. S. Afr. J. Chem. Eng. 2015, 68, 226–235. [Google Scholar]
- Valencia-Ríos, J.; Castellar-Ortega, G. Prediction of breakthrough curves for the removal of lead (II) in aqueous solution onto activated carbon in a packed column. Rev. Fac. Ing. Univ. Antioq. 2013, 66, 141–158. [Google Scholar]
- Onwordi, C.; Uche, C.; Ameh, A.; Petrik, L. Comparative study of the adsorption capacity of lead (II) ions onto bean husk and fish scale from aqueous solution. Water Reuse Desalin. 2019, 9, 249–262. [Google Scholar] [CrossRef] [Green Version]
- Rojas, H.; Guerrero, D.; Vásquez, O.; Valencia, J. Aplicación del Modelo de Bohart y Adams en la Remoción de Mercurio de Drenajes de Minería por Adsorción con Carbón Activado. Inf. Tecnol. 2012, 23, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Han, R.; Ding, D.; Xu, Y.; Zou, W.; Wang, Y.; Li, Y.; Zou, L. Use of rice husk for the adsorption of congo red from aqueous solution in column mode. Bioreseource Technol. 2008, 99, 2938–2946. [Google Scholar] [CrossRef]
- Calero, M.; Blázquez, G.; Hernáinz, F.; Ronda, A.; Martín, M. Biosorción de cobre con corteza de pino en columna de lecho de fijo: Optimización de las variables del proceso. Afinidad 2012, 69, 175–184. [Google Scholar]
- Ghribi, A.; Chlendi, M. Modeling of Fixed Bed Adsorption: Application to the Adsorption of an Organic Dye. Asian J. Text. 2011, 1, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Forero-Nuñez, C.; Jochum, J.; Sierra, F. Effect of particle size and addition of cocoa pod husk on the properties of sawdust and coal pellets. Ing. Investig. 2015, 35, 17–23. [Google Scholar] [CrossRef]
- Lu, F.; Rodriguez-Garcia, J.; Van Damme, I.; Westwood, N.J.; Shaw, L.; Robinson, J.S.; Warren, G.; Chatzifragkou, A.; Mason, S.M.; Gomez, L.; et al. Valorisation strategies for cocoa pod husk and its fractions. Curr. Opin. Green Sustain. Chem. 2018, 14, 80–88. [Google Scholar] [CrossRef]
- Yuan, W.; Cheng, J.; Huang, H.; Xiong, S.; Gao, J.; Zhang, J.; Feng, S. Optimization of cadmium biosorption by Shewanella putrefaciens using a Box-Behnken design. Ecotoxicol. Environ. Saf. 2019, 175, 138–147. [Google Scholar] [CrossRef]
- Asuquo, E.D.; Martin, A.D. Sorption of cadmium (II) ion from aqueous solution onto sweet potato (Ipomoea batatas L.) peel adsorbent: Characterisation, kinetic and isotherm studies. J. Environ. Chem. Eng. 2016, 4, 54215298. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Huang, S.; Dong, C.; Meng, Z.; Wang, X. Competitive adsorption behaviour and mechanisms of cadmium, nickel and ammonium from aqueous solution by fresh and ageing rice straw biochars. Bioresour. Technol. 2020, 303, 122853. [Google Scholar] [CrossRef]
- Pino, G.; Souza de Mesquita, L.; Torem, M.; Saavedra Pinto, G. Biosorption of cadmium by green coconut shell powder. Miner. Eng. 2006, 19, 380–387. [Google Scholar] [CrossRef]
- Okoya, A.; Akinyele, A.; Ofoezie, I.; Amuda, O.; Alayande, O.; Makinde, O. Adsorption of heavy metal ions onto chitosan grafted cocoa husk char. Afr. J. Pure Appl. Chem. 2014, 8, 147–161. [Google Scholar]
- Xia, L.; Xu, X.; Zhu, W.; Huang, Q.; Chen, W. A comparative study on the biosorption of Cd2+ onto Paecilomyces lilacinus XLA and Mucoromycote sp. XLC. Int. J. Mol. Sci. 2015, 16, 15670–15687. [Google Scholar] [CrossRef] [Green Version]
- Basu, M.; Guha, A.K.; Ray, L. Adsorption Behavior of Cadmium on Husk of Lentil. Process Saf. Environ. Prot. 2017, 106, 11–22. [Google Scholar] [CrossRef]
- Huang, X.; Chen, T.; Zou, X.; Zhu, M.; Chen, D.; Pan, M. The adsorption of Cd(II) on manganese oxide investigated by batch and modeling techniques. Int. J. Environ. Res. Public Health 2017, 14, 1145. [Google Scholar] [CrossRef] [Green Version]
- Mahdi, Z.; Yu, Q.J.; El Hanandeh, A. Investigation of the kinetics and mechanisms of nickel and copper ions adsorption from aqueous solutions by date seed derived biochar. J. Environ. Chem. Eng. 2018, 6, 1171–1181. [Google Scholar] [CrossRef] [Green Version]
- Tejeda-Benítez, L.; Tejada-Tovar, C.; Marimón-Bolívar, W.; Villabona-Ortiz, A. Estudio de modificación química y física de biomasa (Citrus sinensis y Musa paradisiaca) para la adsorción de metales pesados en solución. Rev. Luna Azul 2014, 39, 124–142. [Google Scholar] [CrossRef]
- Castillo-Borobio, S. Reutilización de Raspo Procedente de la Industria Vinícola Para la Extracción de Metales en Efluentes Líquidos. Master’s Thesis, Universitat Politècnica de Catalunya Barcelona Tech, Barcelona, Spain, 2004. [Google Scholar]
- Vera, L.M.; Bermejo, D.; Uguña, M.F.; Garcia, N.; Flores, M.; Gonzalez, E. Fixed bed column modeling of lead (II) and cadmium (II) ions biosorption on sugarcane bagasse. Environ. Eng. Res. 2019, 24, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Assaad, E.; Azzouz, A.; Nistor, D.; Ursu, A.V.; Sajin, T.; Miron, D.N.; Monette, F.; Niquette, P.; Hausler, R. Metal removal through synergic coagulation-flocculation using an optimized chitosan-montmorillonite system. Appl. Clay Sci. 2007, 37, 258–274. [Google Scholar] [CrossRef]
- Yahya, M.D.; Ihejirika, C.V.; Iyaka, Y.A.; Garba, U.; Olugbenga, A.G. Continuous Sorption of Chromium Ions from Simulated Effluents using Citric Acid Modified Sweet Potato Peels. Niger. J. Technol. Dev. 2020, 17, 47–54. [Google Scholar] [CrossRef]
- Khalfa, L.; Sdiri, A.; Bagane, M.; Cervera, M.L. A calcined clay fixed bed adsorption studies for the removal of heavy metals from aqueous solutions. J. Clean. Prod. 2021, 278, 123935. [Google Scholar] [CrossRef]
- Cortés, R. Efecto de la Modificación de Una Zeolita Natural Mexicana en la Sorción de Cadmio y 4-Clorofenol. Ph.D. Thesis, Universities Allied for Essential Medicines, Toluca, Mexico, 2007. [Google Scholar]
- Rafati, L.; Ehrampoush, M.H.; Rafati, A.A.; Mokhtari, M.; Mahvi, A.H. Fixed bed adsorption column studies and models for removal of ibuprofen from aqueous solution by strong adsorbent Nano-clay composite. J. Environ. Health Sci. Eng. 2019, 17, 753–765. [Google Scholar] [CrossRef]
- Dávila-Guzmán, N. Caracterización del Proceso de Biosorción de Metales Pesados Mediante Residuos Sólidos de Café. Doctorado Thesis, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico, 2012. [Google Scholar]
- Abdolali, A.; Ngo, H.H.; Guo, W.; Zhou, J.L.; Zhang, J.; Liang, S.; Chang, S.W.; Nguyen, D.D.; Liu, Y. Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in a lab-scale continuous fixed-bed column. Bioresour. Technol. 2017, 229, 78–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Blancas, V.; Aguilar-Madera, C.G.; Flores-Cano, J.V.; Leyva-Ramos, R.; Padilla-Ortega, E.; Ocampo-Pérez, R. Evaluation of mass transfer mechanisms involved during the adsorption of metronidazole on granular activated carbon in fixed bed column. J. Water Process Eng. 2020, 36, 101303. [Google Scholar] [CrossRef]
- Tyagi, U. Enhanced adsorption of metal ions onto Vetiveria zizanioides biochar via batch and fixed bed studies. Bioresour. Technol. 2022, 345, 126475. [Google Scholar] [CrossRef] [PubMed]
- Madeira, R.; Camps, I. First-principles calculations of nickel, cadmium, and lead nanoclusters adsorption on single-wall (10,0) boron-nitride nanotube. Appl. Surf. Sci. 2022, 573, 151547. [Google Scholar] [CrossRef]
Parameter | Method |
---|---|
Carbon (%) | AOAC 949.14 |
Hydrogen (%) | AOAC 949.14 |
Nitrogen (%) | Total Kjeldahl nitrogen |
Ashes (%) | Thermogravimetry |
Pectin (%) | Digestion-thermogravimetry |
Lignin (%) | Photocalorimetry |
Cellulose (%) | Digestion-thermogravimetry |
Hemicellulose (%) | Digestion-thermogravimetry |
Elemental composition | EDS analysis |
Functional groups | FT-IR analysis |
Carbon (%) | AOAC 949.14 |
Heavy Metal Ion | Optimum Operating Conditions | Reference |
---|---|---|
Ni2+, Co2+ | Co = 60–100 ppm | [35] |
Pb2+, Cu2+ | pH = 6 | [36] |
Ni2+ | Co = 25–150 ppm | [37] |
Hg2+ | pH = 6–8 | [38] |
Ni2+ | pH = 6 | [37] |
Ni2+, Co2+ | Co = 60–100 ppm | [35] |
Metal | Bed Depth (cm) | Tb (min) | Qb (mg/g) | Maximum Removal Yield (%) |
---|---|---|---|---|
Pb2+ | 4 | 210 | 18 | 98.99 |
7.5 | 270 | 25.2 | 99.76 | |
Ni2+ | 4 | 30 | 6.98 | 93.27 |
7.5 | 240 | 14.31 | 98.80 | |
Cd2+ | 4 | - | - | 90.60 |
7.5 | 120 | 7.2 | 96.90 |
Model | Parameter | Pb2+ | Ni2+ | Cd2+ | |||
---|---|---|---|---|---|---|---|
7.5 cm | 4 cm | 7.5 cm | 4 cm | 7.5 cm | 4 cm | ||
Adams–Bohart | KAB (L mg−1 min−1) | 2.01 × 10−4 | 1.15 × 10−4 | 7.48 × 10−5 | 3.73 × 10−5 | 5.13 × 10−5 | 4.13 × 10−5 |
N0 (mg L−1) | 1903.88 | 1121.24 | 1561.73 | 3837.16 | 1621.07 | 2775.80 | |
SE | 2.08 × 10−5 | 5.79 × 10−5 | 1.88 × 10−5 | 3.31 × 10−5 | 1.20 × 10−5 | 8.43 × 10−5 | |
R2 | 0.95 | 0.96 | 0.97 | 0.97 | 0.99 | 0.98 | |
Thomas | KTH (mL mg−1 min−1) | 0.207 | 0.122 | 0.079 | 0.043 | 0.055 | 0.048 |
q0 (mg g−1) | 25.66 | 55.36 | 38.01 | 89.34 | 38.52 | 64.03 | |
SS | 2.07 × 10−5 | 5.75 × 10−5 | 1.92 × 10−5 | 4.14 × 10−5 | 1.11 × 10−5 | 1.05 × 10−4 | |
R2 | 0.95 | 0.96 | 0.97 | 0.97 | 0.99 | 0.98 | |
Yoon–Nelson | KYN (mL mg−1 min−1) | 0.021 | 0.012 | 7.57 × 10−3 | 3.82 × 10−3 | 5.49 × 10−3 | 5.02×103 |
SE | 2.19 × 10−5 | 6.62 × 10−5 | 2.35 × 10−5 | 4.57 × 10−5 | 1.45 × 10−5 | 1.95 × 10−4 | |
R2 | 0.95 | 0.96 | 0.97 | 0.97 | 0.98 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tejada-Tovar, C.; Villabona-Ortíz, A.; González-Delgado, Á. Adsorption Study of Continuous Heavy Metal Ions (Pb2+, Cd2+, Ni2+) Removal Using Cocoa (Theobroma cacao L.) Pod Husks. Materials 2022, 15, 6937. https://doi.org/10.3390/ma15196937
Tejada-Tovar C, Villabona-Ortíz A, González-Delgado Á. Adsorption Study of Continuous Heavy Metal Ions (Pb2+, Cd2+, Ni2+) Removal Using Cocoa (Theobroma cacao L.) Pod Husks. Materials. 2022; 15(19):6937. https://doi.org/10.3390/ma15196937
Chicago/Turabian StyleTejada-Tovar, Candelaria, Angel Villabona-Ortíz, and Ángel González-Delgado. 2022. "Adsorption Study of Continuous Heavy Metal Ions (Pb2+, Cd2+, Ni2+) Removal Using Cocoa (Theobroma cacao L.) Pod Husks" Materials 15, no. 19: 6937. https://doi.org/10.3390/ma15196937
APA StyleTejada-Tovar, C., Villabona-Ortíz, A., & González-Delgado, Á. (2022). Adsorption Study of Continuous Heavy Metal Ions (Pb2+, Cd2+, Ni2+) Removal Using Cocoa (Theobroma cacao L.) Pod Husks. Materials, 15(19), 6937. https://doi.org/10.3390/ma15196937