Solvothermal Synthesis, Structural Characterization and Optical Properties of Pr-Doped CeO2 and Their Degradation for Acid Orange 7
Abstract
:1. Introduction
2. Experimental
2.1. Starting Materials
2.2. Synthesis of Undoped and Pr-Doped CeO2
2.3. Characterization
2.4. Photoreactor and Light Source
2.5. Degradation of AO7 Dye
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nieto, A.; Guelly, K.; Kleit, A. Addressing criticality for rare earth elements in petroleum refining: The key supply factors approach. Resour. Policy 2013, 38, 496–503. [Google Scholar] [CrossRef]
- Lenka, R.K.; Mahata, T.; Sinha, P.K.; Tyagi, A.K. Combustion synthesis of gadolinia-doped ceria using glycine and urea fuels. J. Alloy. Compd. 2008, 466, 326–329. [Google Scholar] [CrossRef]
- Zhao, P.S.; Song, J.; Zhou, S.S.; Zhu, Y.; Jing, L.; Guo, Z.Y. Facile 1,4-dioxane-assisted solvothermal synthesis, optical and electrochemical properties of CeO2 microspheres. Mater. Res. Bull. 2013, 48, 4476–4480. [Google Scholar] [CrossRef]
- Ruocco, C.; Palma, V.; Cortese, M.; Martino, M. Stability of bimetallic Ni/CeO2-SiO2 catalysts during fuel grade bioethanol reforming in a fluidized bed reactor. Renew. Energy 2022, 182, 913–922. [Google Scholar] [CrossRef]
- Lin, F.; Pappe, K.; Kovarik, L.; Song, M.; Li Shari, X.; Engelhard, M.; Wang, Y. Effects of high-temperature CeO2 calcination on the activity of Pt/CeO2 catalysts for oxidation of unburned hydrocarbon fuels. Catal. Sci. Technol. 2022, 12, 2462–2470. [Google Scholar] [CrossRef]
- Kosynkin, V.D.; Arzgatkina, A.A.; Ivanov, E.N.; Chtoutsa, M.G.; Grabko, A.I.; Kardapolov, A.V.; Sysina, N.A. The study of process production of polishing powder based on cerium dioxide. J. Alloy. Compd. 2000, 303–304, 421–425. [Google Scholar] [CrossRef]
- Feng, H.E.; Chen, J.L.; Tian, S.S.; Lian-Meng, X.U.; Xie, J.L.; Zhong, T.Q. Study on Yellow Opaque Glass with Mixed Coloring Agents CeO2 and TiO2. J. Wuhan Univ. Technol. 2013, 35, 34–37. [Google Scholar] [CrossRef]
- Ding, Z.; Yang, W.; Huo, K.; Shaw, L. Thermodynamics and Kinetics Tuning of LiBH4 for Hydrogen Storage. Prog. Chem. 2021, 33, 1586–1597. [Google Scholar] [CrossRef]
- Ding, Z.; Li, H.; Shaw, L. New insights into the solid-state hydrogen storage of nanostructured LiBH4-MgH2 system. Chem. Eng. J. 2020, 385, 123856. [Google Scholar] [CrossRef]
- Ding, Z.; Chen, Z.; Ma, T.; Lu, C.-T.; Ma, W.; Shaw, L. Predicting the hydrogen release ability of LiBH4-based mixtures by ensemble machine learning. Energy Storage Mater. 2020, 27, 466–477. [Google Scholar] [CrossRef]
- Li, D.; Yuan, Y.; Liu, J.; Fichtner, M.; Pan, F. A review on current anode materials for rechargeable Mg batteries. J. Magnes. Alloy. 2020, 8, 963–979. [Google Scholar] [CrossRef]
- Tong, F.; Wei, S.; Chen, X.; Gao, W. Magnesium alloys as anodes for neutral aqueous magnesium-air batteries. J. Magnes. Alloy. 2021, 9, 1887–1911. [Google Scholar] [CrossRef]
- Kapoor, R.T.; Danish, M.; Singh, R.S.; Rafatullah, M.; Abdul Khalil, H.P.S. Exploiting microbial biomass in treating azo dyes contaminated wastewater: Mechanism of degradation and factors affecting microbial efficiency. J. Water Process Eng. 2021, 43, 102255. [Google Scholar] [CrossRef]
- Li, H.; Tang, C.; Wang, M.; Mei, C.; Liu, N. Decolorization of azo dyes in a heterogeneous persulfate system using FeS as the activator. Water Sci. Technol. 2021, 83, 1703–1713. [Google Scholar] [CrossRef] [PubMed]
- Ruan, C.; Ma, Y.; Shi, G.; He, C.; Du, C.; Jin, X.; Liu, X.; He, S.; Huang, Y. Self-assembly cellulose nanocrystals/SiO2 composite aerogel under freeze-drying: Adsorption towards dye contaminant. Appl. Surf. Sci. 2022, 592, 153280. [Google Scholar] [CrossRef]
- Guo, Q.; Wu, X.; Ji, Y.; Hao, Y.; Liao, S.; Cui, Z.; Li, J.; Younas, M.; He, B. pH-responsive nanofiltration membrane containing chitosan for dye separation. J. Membr. Sci. 2021, 635, 119445. [Google Scholar] [CrossRef]
- You, S.J.; Damodar, R.A.; Hou, S.C. Degradation of Reactive Black 5 dye using anaerobic/aerobic membrane bioreactor (MBR) and photochemical membrane reactor. J. Hazard. Mater. 2010, 177, 1112–1118. [Google Scholar] [CrossRef]
- Aragaw, T.A. Recovery of iron hydroxides from electro-coagulated sludge for adsorption removals of dye wastewater: Adsorption capacity and adsorbent characteristics. Surf. Interfaces 2020, 18, 100439. [Google Scholar] [CrossRef]
- Wang, D.; Jin, Z.; Pang, X.; Jiang, X.; Lu, Y.; Shen, L. Fabrication and functionalization of biological graphene aerogel by reusing microorganism in activated sludge and ionic dyes. Chem. Eng. J. 2020, 392, 124823. [Google Scholar] [CrossRef]
- Yang, Z.; Shen, W.; Chen, Q.; Wang, W. Direct electrochemical reduction and dyeing properties of CI Vat Yellow 1 using carbon felt electrode. Dye. Pigment. 2021, 184, 108835. [Google Scholar] [CrossRef]
- Sun, D.; Gu, M.; Li, R.; Yin, S.; Song, X.; Zhao, B.; Li, C.; Li, J.; Feng, Z.; Sato, T. Effects of nitrogen content in monocrystalline nano-CeO2 on the degradation of dye in indoor lighting. Appl. Surf. Sci. 2013, 280, 693–697. [Google Scholar] [CrossRef]
- Rana, A.; Sudhaik, A.; Raizada, P.; Nguyen, V.H.; Xia, C.; Khan, A.A.P.; Thakur, S.; Nguyen-Tri, P.; Nguyen, C.C.; Kim, S.Y.; et al. Graphitic carbon nitride based immobilized and non-immobilized floating photocatalysts for environmental remediation. Chemosphere 2022, 297, 134229. [Google Scholar] [CrossRef]
- Hussain, S.; Mottahir Alam, M.; Imran, M.; Ashraf Ali, M.; Ahamad, T.; Haidyrah, A.S.; Raji Alotaibi, S.M.A.; Naik, M.; Shariq, M. A facile low-cost scheme for highly photoactive Fe3O4-MWCNTs nanocomposite material for degradation of methylene blue. Alex. Eng. J. 2022, 61, 9107–9117. [Google Scholar] [CrossRef]
- Passi, M.; Pal, B. Recent advances on visible light active non-typical stoichiometric oxygen-rich Bi12O17Cl2 photocatalyst for environment pollution remediation. J. Environ. Chem. Eng. 2022, 10, 107688. [Google Scholar] [CrossRef]
- Chen, L.; Guo, C.; Blawert, C.; Yang, J.; Chen, D.; Wang, X.; Yu, Z.; Zheludkevich, M.L.; Li, W. Evaluation of the biodegradation product layer on Mg-1Zn alloy during dynamical strain. J. Magnes. Alloy. 2021, 9, 1820–1833. [Google Scholar] [CrossRef]
- Almeida, G.; Mohallem, N.; Viana, M.M. Ag/GO/TiO2 nanocomposites: The role of the interfacial charge transfer for application in photocatalysis. Nanotechnology 2022, 33, 035710. [Google Scholar] [CrossRef]
- Chen, X.; Deng, T.S.; Zhou, M.; Dong, Z.; Cheng, Z. Mixed-phase TiO2 with oxygen vacancies for enhanced visible light photocatalysis performance. Nano 2022, 17, 2250025. [Google Scholar] [CrossRef]
- Li, J.; Xie, J.; Li, D.; Yu, L.; Xu, C.; Yan, S.; Lu, Y. An Interface Heterostructure of NiO and CeO2 for Using Electrolytes of Low-Temperature Solid Oxide Fuel Cells. Nanomaterials 2021, 11, 2004. [Google Scholar] [CrossRef]
- Foletto, E.L.; Battiston, S.; Collazzo, G.C.; Bassaco, M.M.; Mazutti, M.A. Degradation of Leather Dye Using CeO2-SnO2 Nanocomposite as Photocatalyst Under Sunlight. Water Air Soil Pollut. 2012, 223, 5773–5779. [Google Scholar] [CrossRef]
- Mousavi, S.; Shahraki, F.; Aliabadi, M.; Haji, A.; Deuber, F.; Adlhart, C. Nanofiber immobilized CeO2/dendrimer nanoparticles: An efficient photocatalyst in the visible and the UV. Appl. Surf. Sci. 2019, 479, 608–618. [Google Scholar] [CrossRef]
- Mishra, S.; Soren, S.; Debnath, A.K.; Aswal, D.K.; Das, N.; Parhi, P. Rapid microwave-Hydrothermal synthesis of CeO2 nanoparticles for simultaneous adsorption/photodegradation of organic dyes under visible light. Optik 2018, 169, 125–136. [Google Scholar] [CrossRef]
- Pu, Z.Y.; Liu, X.S.; Jia, A.P.; Xie, Y.L.; Lu, J.Q.; Luo, M.F. Enhanced Activity for CO Oxidation over Pr- and Cu-Doped CeO2 Catalysts: Effect of Oxygen Vacancies. J. Phys. Chem. C 2008, 112, 15045–15051. [Google Scholar] [CrossRef]
- Paunović, N.; Dohčević-Mitrović, Z.; Scurtu, R.; Aškrabić, S.; Prekajski, M.; Matović, B.; Popović, Z.V. Suppression of inherent ferromagnetism in Pr-doped CeO2 nanocrystals. Nanoscale 2012, 4, 5469. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.; Oishi, T.; Hamamoto, S.; Ishihara, T. Lattice Oxygen Activity in Pr- and La-Doped CeO2 for Low-Temperature Soot Oxidation. J. Phys. Chem. C 2013, 118, 559–568. [Google Scholar] [CrossRef]
- Shannon, R.T. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Alex, J.; Rajkumar, S.; PrincyMerlin, J.; Aravind, A.; Sajan, D.; Praveen, C.S. Single step auto-igniting combustion technique grown CeO2 and Ni-doped CeO2 nanostructures for multifunctional applications. J. Alloy. Compd. 2021, 882, 160409. [Google Scholar] [CrossRef]
- Dash, S.; Morita, T.; Kurokawa, K.; Matsuzawa, Y.; Saini, N.L.; Yamamoto, N.; Kajitani, J.; Higashinaka, R.; Matsuda, T.D.; Aoki, Y.; et al. Impact of valence fluctuations on the electronic properties of RO1-xFxBiS2 (R=Ce and Pr). Phys. Rev. B 2018, 98, 144501. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Dai, H.; Au, C. Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE = Ce, Pr) solid solutions. Catal. Today 2004, 90, 245–254. [Google Scholar] [CrossRef]
- Glisenti, A.; Natile, M.M.; Galenda, A. PrMnO3 Prepared by the Citrate Gel Method, Studied by XPS. Surf. Sci. Spectra 2009, 16, 67–74. [Google Scholar] [CrossRef]
- Kozakov, A.T.; Kochur, A.G.; Trotsenko, V.G.; Nikolskii, A.V.; El Marssi, M.; Gorshunov, B.P.; Torgashev, V.I. Valence state of cations in manganites Pr1-xCaxMnO3 (0.3 ≤ x ≤ 0.5) from X-ray diffraction and X-ray photoelectron spectroscopy. J. Alloy. Compd. 2018, 740, 132–142. [Google Scholar] [CrossRef]
- Burroughs, P.; Hamnett, A.; Orchard, A.F.; Thornton, G. Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium. J. Chem. Soc. 1976, 1686–1698. [Google Scholar] [CrossRef]
- Yu, R.; Yan, L.; Zheng, P.; Chen, J.; Xing, X. Controlled Synthesis of CeO2 Flower-Like and Well-Aligned Nanorod Hierarchical Architectures by a Phosphate-Assisted Hydrothermal Route. J. Phys. Chem. C 2008, 112, 19896–19900. [Google Scholar] [CrossRef]
- Wu, Z.; Li, M.; Howe, J.; Meyer, H.M.; Overbury, S.H. Probing Defect Sites on CeO2 Nanocrystals with Well-Defined Surface Planes by Raman Spectroscopy and O2 Adsorption. Langmuir 2010, 26, 16595–16606. [Google Scholar] [CrossRef]
- Cai, W.; Chen, F.; Shen, X.; Chen, L.; Zhang, J. Enhanced catalytic degradation of AO7 in the CeO2-H2O2 system with Fe3+ doping. Appl. Catal. B—Environ. 2010, 101, 160–168. [Google Scholar] [CrossRef]
- Groen, J.C.; Peffer, L.A.A.; Pérez-Ramírez, J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Micropor. Mesopor. Mat. 2003, 60, 1–17. [Google Scholar] [CrossRef]
- Manoharan, D.; Vishista, K. Optical Properties of Nano-Crystalline Cerium Dioxide Synthesized by Single Step Aqueous Citrate-Nitrate Gel Combustion Method. Asian J. Chem. 2013, 25, 9045–9049. [Google Scholar] [CrossRef]
- Bharathi, R.N.; Sankar, S. Structural, optical and magnetic properties of Pr doped CeO2 nanoparticles synthesized by citrate-nitrate auto combustion method. J. Mater. Sci. Mater. Electron. 2018, 29, 6679–6691. [Google Scholar] [CrossRef]
- Mersly, L.E.; El Mouchtari, E.M.; Moujahid, E.M.; Forano, C.; El Haddad, M.; Briche, S.; Tahiri, A.A.; Rafqah, S. ZnCr-LDHs with dual adsorption and photocatalysis capability for the removal of acid Orange 7 dye in aqueous solution. J. Sci. Adv. Mater. Dev. 2021, 6, 118–126. [Google Scholar] [CrossRef]
- Das, S.; Mishra, S. Insight into the isotherm modelling, kinetic and thermodynamic exploration of iron adsorption from aqueous media by activated carbon developed from Limonia acidissima shell. Mater. Chem. Phys. 2020, 245, 122751. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, S.; Wang, K.; Lou, L. Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7. J. Photochem. Photobiol. A 2005, 172, 47–54. [Google Scholar] [CrossRef]
- Xu, S.; Ng, J.; Zhang, X.; Bai, H.; Sun, D.D. Adsorption and photocatalytic degradation of Acid Orange 7 over hydrothermally synthesized mesoporous TiO2 nanotube. Colloids Surf. A 2011, 379, 169–175. [Google Scholar] [CrossRef]
- Awitor, K.O.; Rafqah, S.; Géranton, G.; Sibaud, Y.; Larson, P.R.; Bokalawela, R.S.P.; Jernigen, J.D.; Johnson, M.B. Photo-catalysis using titanium dioxide nanotube layers. J. Photochem. Photobiol. A 2008, 199, 250–254. [Google Scholar] [CrossRef]
- Turhan, G.D.; Kartal, Ö.E. Photocatalytic activity of La3+-doped TiO2 synthesized via sol-gel method. Nanomater. Energy 2013, 2, 148–157. [Google Scholar] [CrossRef]
- Sajjad, A.K.L.; Shamaila, S.; Tian, B.; Chen, F.; Zhang, J. Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst. J. Hazard. Mater. 2010, 177, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Paušová, Š.; Krýsa, J.; Jirkovský, J.; Forano, C.; Mailhot, G.; Prevot, V. Insight into the photocatalytic activity of ZnCr-CO3 LDH and derived mixed oxides. Appl. Catal. B—Environ. 2015, 170, 25–33. [Google Scholar] [CrossRef]
- Wang, X.; Xu, G.; Tu, Y.; Wu, D.; Li, A.; Xie, X. BiOBr/PBCD-B-D dual-function catalyst with oxygen vacancies for Acid Orange 7 removal: Evaluation of adsorption-photocatalysis performance and synergy mechanism. Chem. Eng. J. 2021, 411, 128456. [Google Scholar] [CrossRef]
- Ji, P.; Tian, B.; Chen, F.; Zhang, J. CeO2 mediated photocatalytic degradation studies of C.I. acid orange 7. Environ. Technol. 2012, 33, 467–472. [Google Scholar] [CrossRef]
- Chennakesavulu, K.; Reddy, G.R. Synthesis and characterization of carbon microtube/tantalum oxide composites and their photocatalytic activity under visible irradiation. RSC Adv. 2015, 5, 56391–56400. [Google Scholar] [CrossRef]
Pr-Doped CeO2 | Pr Contents (%) | ||||||
---|---|---|---|---|---|---|---|
Undoped | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | |
Practical Pr content (%) | / | 0.92 | 2.11 | 3.06 | 3.92 | 5.23 | 5.59 |
Grain size (nm) | 16.3 | 16.2 | 11.8 | 10.4 | 10.7 | 13.2 | 15.7 |
Lattice parameter (nm) | 0.54157 | 0.54246 | 0.54213 | 0.54332 | 0.54278 | 0.54292 | 0.54235 |
[VO]XPS (%) | 24.36 | 33.30 | 31.67 | / | / | / | / |
[VO]Raman | 0.676 | 0.813 | 0.785 | 0.777 | 0.761 | 0.751 | 0.752 |
Pr-Doped CeO2 | Pr Contents (%) | ||||||
---|---|---|---|---|---|---|---|
Undoped | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | |
k (1/h) | 0.0939 | 0.1239 | 0.1624 | 0.1292 | 0.0857 | 0.0896 | 0.0556 |
R2 | 0.9775 | 0.9778 | 0.9599 | 0.9686 | 0.9631 | 0.9427 | 0.9332 |
Catalyst | [Catalyst]; [AO7]; V | Adsorption (%) | Light Source | Degradation (%) | Time (h) |
---|---|---|---|---|---|
TiO2 (P25) [50] | 1.0 g/L; 40 ppm | ~3 | Two UV lamps (6 W; 365 nm) | ~32 | 4 |
Mesoporous TiO2 nanotube [51] | 1.0 g/L; 300 ppm; 200 mL (pH = 3) | ~39 | Immersed UVP Pen-Ray lamp (11 W; 254 nm) | 100 | 3 |
TiO2 nanotube layers annealed at 500 °C [52] | − 5 × 10−5 mol/L; 15 mL | ~32 | Philips-TDL UV lamps (8 W; 350–400 nm) | ~92 | 40 |
La3+-doped TiO2 [53] | 4.0 g/L; 50 ppm; 500 mL | ~18 | Topbulb, F8T5/DL fluorescent daylight lamps (116 W) | 79 | 6 |
4.0% WOx/TiO2 [54] | 1.0 g/L; 25 ppm; 100 mL | ~35 | Halogen lamp with 20,000 lm luminescence (1000 W; 420 nm) | 100 | 4 |
ZnCr-SO4 [48] | 0.4g/L; 50 ppm; 50 mL | ~25 | Ultra-Vitalux lamp (300 W) | ~66 | 2 |
ZnCr-CO3 [55] | 0.5 g/L; 5 × 10−5 mol/L; 60 mL | ~6 | Philips HPW high-pressure mercury lamp (125 W; 365 nm) | ~66 | 5 |
BiOBr/32% PBCD-B-D [56] | 1.0 g/L; 0.2 mM; 40 mL | ~55 | Xenon lamp (500 W; 420 nm) | 92.1 | 6 |
CeO2 nanopaticles [57] | 1.0 g/L; 50 ppm; 50 mL (pH = 6.8) | ~25 | Halogen-tungsten lamp (1000 W; <420 nm) | 98 | 11 |
1% Pr-doped CeO2 in this work | 1.0 g/L; 20 ppm; 100mL | 40.2 | Medical ultraviolet disinfection lamp (300 W; 254 nm) | ~100 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Wu, P.; Wu, M.; Gu, Y.; Yu, H.; Ding, Z. Solvothermal Synthesis, Structural Characterization and Optical Properties of Pr-Doped CeO2 and Their Degradation for Acid Orange 7. Materials 2022, 15, 6953. https://doi.org/10.3390/ma15196953
Xu Y, Wu P, Wu M, Gu Y, Yu H, Ding Z. Solvothermal Synthesis, Structural Characterization and Optical Properties of Pr-Doped CeO2 and Their Degradation for Acid Orange 7. Materials. 2022; 15(19):6953. https://doi.org/10.3390/ma15196953
Chicago/Turabian StyleXu, Yaohui, Pingkeng Wu, Mingjin Wu, Yuehe Gu, Hongguang Yu, and Zhao Ding. 2022. "Solvothermal Synthesis, Structural Characterization and Optical Properties of Pr-Doped CeO2 and Their Degradation for Acid Orange 7" Materials 15, no. 19: 6953. https://doi.org/10.3390/ma15196953
APA StyleXu, Y., Wu, P., Wu, M., Gu, Y., Yu, H., & Ding, Z. (2022). Solvothermal Synthesis, Structural Characterization and Optical Properties of Pr-Doped CeO2 and Their Degradation for Acid Orange 7. Materials, 15(19), 6953. https://doi.org/10.3390/ma15196953