Seeing Structural Mechanisms of Optimized Piezoelectric and Thermoelectric Bulk Materials through Structural Defect Engineering
Abstract
:1. Introduction
2. Piezoelectrics: Nano-Scale Coexistence of Phases with Gradual Polarization Rotation for High Piezoelectricity
2.1. (K,Na)NbO3-Based Piezoelectrics with Constructed R-T Phase Boundary
2.2. BaTiO3-Based Piezoelectrics with Constructed Wild R-O-T Phase Boundary Region
2.3. BiFeO3-Based Piezoelectrics with Strain-Driven R-T Phase Boundary
3. Perovskite Thermoelectric Oxides: The Bridge between Piezoelectrics/Ferroelectrics and Thermoelectrics
4. Thermoelectrics: Structural Defect Engineering for Carrier and Phonon Transport
5. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tilley, R.J.D. Defects in Solids; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Kelly, A.; Knowles, K.M. Crystallography and Crystal Defects; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Wu, L.; Meng, Q.; Jooss, C.; Zheng, J.-C.; Inada, H.; Su, D.; Li, Q.; Zhu, Y. Origin of Phonon Glass–Electron Crystal Behavior in Thermoelectric Layered Cobaltate. Adv. Funct. Mater. 2013, 23, 5728–5736. [Google Scholar] [CrossRef]
- Xiao, Y.; Wu, H.; Li, W.; Yin, M.; Pei, Y.; Zhang, Y.; Fu, L.; Chen, Y.; Pennycook, S.J.; Huang, L.; et al. Remarkable Roles of Cu To Synergistically Optimize Phonon and Carrier Transport in n-Type PbTe-Cu2Te. J. Am. Chem. Soc. 2017, 139, 18732–18738. [Google Scholar] [CrossRef] [PubMed]
- Cahill, D.G.; Pohl, R.O. Lattice Vibrations and Heat Transport in Crystals and Glasses. Annu. Rev. Phys. Chem. 1988, 39, 93–121. [Google Scholar] [CrossRef]
- Yang, Z.; Yin, L.; Lee, J.; Ren, W.; Cheng, H.-M.; Ye, H.; Pantelides, S.T.; Pennycook, S.J.; Chisholm, M.F. Direct Observation of Atomic Dynamics and Silicon Doping at a Topological Defect in Graphene. Angew. Chem. Int. Ed. 2014, 53, 8908–8912. [Google Scholar] [CrossRef] [PubMed]
- Pennycook, S.J.; Zhou, W.; Pantelides, S.T. Watching Atoms Work: Nanocluster Structure and Dynamics. ACS Nano 2015, 9, 9437–9440. [Google Scholar] [CrossRef]
- Zhao, L.-D.; Tan, G.; Hao, S.; He, J.; Pei, Y.; Chi, H.; Wang, H.; Gong, S.; Xu, H.; Dravid, V.P.; et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016, 351, 141–144. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.; Wu, M.; He, D.; Pei, Y.; Wu, C.-F.; Wu, X.; Yu, H.; Zhu, F.; Wang, K.; Chen, Y.; et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 2018, 360, 778–783. [Google Scholar] [CrossRef] [Green Version]
- Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G.J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Liu, Y.; Fu, C.; Heremans, J.P.; Snyder, J.G.; Zhao, X. Compromise and Synergy in High-Efficiency Thermoelectric Materials. Adv. Mater. 2017, 29, 1605884. [Google Scholar] [CrossRef]
- Zhao, L.-D.; Lo, S.-H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373. [Google Scholar] [CrossRef]
- Zhao, L.D.; Wu, H.J.; Hao, S.Q.; Wu, C.I.; Zhou, X.Y.; Biswas, K.; He, J.Q.; Hogan, T.P.; Uher, C.; Wolverton, C.; et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ. Sci. 2013, 6, 3346–3355. [Google Scholar] [CrossRef]
- Wu, H.J.; Zhao, L.D.; Zheng, F.S.; Wu, D.; Pei, Y.L.; Tong, X.; Kanatzidis, M.G.; He, J.Q. Broad temperature plateau for thermoelectric figure of merit ZT > 2 in phase-separated PbTe0.7S0.3. Nat. Commun. 2014, 5, 4515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, T.; Yue, X.; Wu, H.; Fu, C.; Zhu, T.; Liu, X.; Hu, L.; Ying, P.; He, J.; Zhao, X. Enhanced thermoelectric performance of PbTe bulk materials with figure of merit ZT > 2 by multi-functional alloying. J. Mater. 2016, 2, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Pei, Y.-L.; Wu, H.; Sui, J.; Li, J.; Berardan, D.; Barreteau, C.; Pan, L.; Dragoe, N.; Liu, W.-S.; He, J.; et al. High thermoelectric performance in n-type BiAgSeS due to intrinsically low thermal conductivity. Energy Environ. Sci. 2013, 6, 1750–1755. [Google Scholar] [CrossRef]
- Li, J.Q.; Lu, Z.W.; Wu, H.J.; Li, H.T.; Liu, F.S.; Ao, W.Q.; Luo, J.; He, J.Q. High thermoelectric performance of Ge1−xPbxSe0.5Te0.5 due to (Pb, Se) co-doping. Acta Mater. 2014, 74, 215–223. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, L.-D.; Hao, S.; Jiang, Q.; Zheng, F.; Doak, J.W.; Wu, H.; Chi, H.; Gelbstein, Y.; Uher, C.; et al. Origin of the High Performance in GeTe-Based Thermoelectric Materials upon Bi2Te3 Doping. J. Am. Chem. Soc. 2014, 136, 11412–11419. [Google Scholar] [CrossRef]
- Fu, C.; Wu, H.; Liu, Y.; He, J.; Zhao, X.; Zhu, T. Enhancing the Figure of Merit of Heavy-Band Thermoelectric Materials Through Hierarchical Phonon Scattering. Adv. Sci. 2016, 3, 1600035. [Google Scholar] [CrossRef]
- Pei, Y.; Chang, C.; Wang, Z.; Yin, M.; Wu, M.; Tan, G.; Wu, H.; Chen, Y.; Zheng, L.; Gong, S.; et al. Multiple Converged Conduction Bands in K2Bi8Se13: A Promising Thermoelectric Material with Extremely Low Thermal Conductivity. J. Am. Chem. Soc. 2016, 138, 16364–16371. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Pei, Y.; Wang, Z.; Wu, H.; Huang, L.; Zhao, L.-D.; He, J. Significantly Enhanced Thermoelectric Performance in n-type Heterogeneous BiAgSeS Composites. Adv. Funct. Mater. 2014, 24, 7763–7771. [Google Scholar] [CrossRef]
- Pei, Y.-L.; Wu, H.; Wu, D.; Zheng, F.; He, J. High Thermoelectric Performance Realized in a BiCuSeO System by Improving Carrier Mobility through 3D Modulation Doping. J. Am. Chem. Soc. 2014, 136, 13902–13908. [Google Scholar] [CrossRef]
- Sui, J.; Li, J.; He, J.; Pei, Y.-L.; Berardan, D.; Wu, H.; Dragoe, N.; Cai, W.; Zhao, L.-D. Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides. Energy Environ. Sci. 2013, 6, 2916–2920. [Google Scholar] [CrossRef]
- Guo, F.; Cui, B.; Geng, H.; Zhang, Y.; Wu, H.; Zhang, Q.; Yu, B.; Pennycook, S.J.; Cai, W.; Sui, J. Simultaneous Boost of Power Factor and Figure-of-Merit in In–Cu Codoped SnTe. Small 2019, 15, 1902493. [Google Scholar] [CrossRef]
- Guo, F.; Wu, H.; Zhu, J.; Yao, H.; Zhang, Y.; Cui, B.; Zhang, Q.; Yu, B.; Pennycook, S.J.; Cai, W.; et al. Synergistic boost of output power density and efficiency in In-Li–codoped SnTe. Proc. Natl. Acad. Sci. USA 2019, 116, 21998–22003. [Google Scholar] [CrossRef]
- He, W.; Wang, D.; Wu, H.; Xiao, Y.; Zhang, Y.; He, D.; Feng, Y.; Hao, Y.-J.; Dong, J.-F.; Chetty, R.; et al. High thermoelectric performance in low-cost SnS0.91Se0.09 crystals. Science 2019, 365, 1418–1424. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhang, Y.; Wu, H.; Pennycook, S.J.; Zhao, L.-D. Enhancing Thermoelectric Performance of p-Type PbSe through Suppressing Electronic Thermal Transports. ACS Appl. Energy Mater. 2019, 2, 8236–8243. [Google Scholar] [CrossRef]
- Liang, G.; Lyu, T.; Hu, L.; Qu, W.; Zhi, S.; Li, J.; Zhang, Y.; He, J.; Li, J.; Liu, F.; et al. (GeTe)1−x(AgSnSe2)x: Strong Atomic Disorder-Induced High Thermoelectric Performance near the Ioffe—Regel Limit. ACS Appl. Mater. Interfaces 2021, 13, 47081–47089. [Google Scholar] [CrossRef]
- Liu, X.; Wang, D.; Wu, H.; Wang, J.; Zhang, Y.; Wang, G.; Pennycook, S.J.; Zhao, L.-D. Intrinsically Low Thermal Conductivity in BiSbSe3: A Promising Thermoelectric Material with Multiple Conduction Bands. Adv. Funct. Mater. 2019, 29, 1806558. [Google Scholar] [CrossRef]
- Qian, X.; Wang, D.; Zhang, Y.; Wu, H.; Pennycook, S.J.; Zheng, L.; Poudeu, P.F.P.; Zhao, L.-D. Contrasting roles of small metallic elements M (M = Cu, Zn, Ni) in enhancing the thermoelectric performance of n-type PbM0.01Se. J. Mater. Chem. A 2020, 8, 5699–5708. [Google Scholar] [CrossRef]
- Qian, X.; Wu, H.; Wang, D.; Zhang, Y.; Pennycook, S.J.; Gao, X.; Zheng, L.; Zhao, L.D. Synergistically optimizing interdependent thermoelectric parameters of n-type PbSe through introducing a small amount of Zn. Mater. Today Phys. 2019, 9, 100102. [Google Scholar] [CrossRef]
- Qin, B.; Hu, X.; Zhang, Y.; Wu, H.; Pennycook, S.J.; Zhao, L.-D. Comprehensive Investigation on the Thermoelectric Properties of p-Type PbTe-PbSe-PbS Alloys. Adv. Electron. Mater. 2019, 5, 1900609. [Google Scholar] [CrossRef]
- Qin, B.; Wang, D.; He, W.; Zhang, Y.; Wu, H.; Pennycook, S.J.; Zhao, L.-D. Realizing High Thermoelectric Performance in p-Type SnSe through Crystal Structure Modification. J. Am. Chem. Soc. 2019, 141, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Zhang, Y.; Wang, D.; Zhao, Q.; Gu, B.; Wu, H.; Zhang, H.; Ye, B.; Pennycook, S.J.; Zhao, L.-D. Ultrahigh Average ZT Realized in p-Type SnSe Crystalline Thermoelectrics through Producing Extrinsic Vacancies. J. Am. Chem. Soc. 2020, 142, 5901–5909. [Google Scholar] [CrossRef]
- Qin, D.; Wu, H.; Cai, S.; Zhu, J.; Cui, B.; Yin, L.; Qin, H.; Shi, W.; Zhang, Y.; Zhang, Q.; et al. Enhanced Thermoelectric and Mechanical Properties in Yb0.3Co4Sb12 with In Situ Formed CoSi Nanoprecipitates. Adv. Energy Mater. 2019, 9, 1902435. [Google Scholar] [CrossRef]
- Qin, H.; Sun, S.; Liu, Y.; Yin, L.; Zhang, Y.; Sun, Y.; Xie, L.; Qin, D.; Guo, M.; Guo, F.; et al. Constructing multi-type defects in In0.1Sb1.9Te3-(MgB2)x composites: Simultaneously enhancing the thermoelectric and mechanical properties. Nano Energy 2021, 90, 106530. [Google Scholar] [CrossRef]
- Qin, H.; Zhu, J.; Li, N.; Wu, H.; Guo, F.; Sun, S.; Qin, D.; Pennycook, S.J.; Zhang, Q.; Cai, W.; et al. Enhanced mechanical and thermoelectric properties enabled by hierarchical structure in medium-temperature Sb2Te3 based alloys. Nano Energy 2020, 78, 105228. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, Y.; Ning, S.; Zhao, L.-D.; Pennycook, S.J. Seeing atomic-scale structural origins and foreseeing new pathways to improved thermoelectric materials. Mater. Horiz. 2019, 6, 1548–1570. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, W.; Zhang, Y.; Wang, D.; Shi, H.; Wang, S.; Jin, Y.; Qu, W.; Wu, H.; Ding, X.; et al. Rationally optimized carrier effective mass and carrier density leads to high average ZT value in n-type PbSe. J. Mater. Chem. A 2021, 9, 23011–23018. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, D.; Zhang, Y.; Chen, C.; Zhang, S.; Wang, K.; Wang, G.; Pennycook, S.J.; Snyder, G.J.; Wu, H.; et al. Band Sharpening and Band Alignment Enable High Quality Factor to Enhance Thermoelectric Performance in n-Type PbS. J. Am. Chem. Soc. 2020, 142, 4051–4060. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Wu, H.; Wang, D.; Niu, C.; Pei, Y.; Zhang, Y.; Spanopoulos, I.; Witting, I.T.; Li, X.; Pennycook, S.J.; et al. Amphoteric Indium Enables Carrier Engineering to Enhance the Power Factor and Thermoelectric Performance in n-Type AgnPb100InnTe100+2n (LIST). Adv. Energy Mater. 2019, 9, 1900414. [Google Scholar] [CrossRef]
- Xin, J.; Zhang, Y.; Wu, H.; Zhu, T.; Fu, T.; Shen, J.; Pennycook, S.J.; Zhao, X. Multiscale Defects as Strong Phonon Scatters to Enhance Thermoelectric Performance in Mg2Sn1−xSbx Solid Solutions. Small Methods 2019, 3, 1900412. [Google Scholar] [CrossRef]
- Tang, Y.L.; Zhu, Y.L.; Ma, X.L.; Borisevich, A.Y.; Morozovska, A.N.; Eliseev, E.A.; Wang, W.Y.; Wang, Y.J.; Xu, Y.B.; Zhang, Z.D.; et al. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 2015, 348, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Wu, H.; Wu, J.; Xiao, D.; Zhu, J.; Pennycook, S.J. Giant Piezoelectricity and High Curie Temperature in Nanostructured Alkali Niobate Lead-Free Piezoceramics through Phase Coexistence. J. Am. Chem. Soc. 2016, 138, 15459–15464. [Google Scholar] [CrossRef] [PubMed]
- Cantoni, C.; Gazquez, J.; Miletto Granozio, F.; Oxley, M.P.; Varela, M.; Lupini, A.R.; Pennycook, S.J.; Aruta, C.; di Uccio, U.S.; Perna, P.; et al. Electron Transfer and Ionic Displacements at the Origin of the 2D Electron Gas at the LAO/STO Interface: Direct Measurements with Atomic-Column Spatial Resolution. Adv. Mater. 2012, 24, 3952–3957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biškup, N.; Salafranca, J.; Mehta, V.; Oxley, M.P.; Suzuki, Y.; Pennycook, S.J.; Pantelides, S.T.; Varela, M. Insulating Ferromagnetic LaCoO3 − δ Films: A Phase Induced by Ordering of Oxygen Vacancies. Phys. Rev. Lett. 2014, 112, 087202. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Kumar, A.; Hatt, A.; Morozovska, A.N.; Tselev, A.; Biegalski, M.D.; Ivanov, I.; Eliseev, E.A.; Pennycook, S.J.; Rondinelli, J.M.; et al. Interplay of Octahedral Tilts and Polar Order in BiFeO3 Films. Adv. Mater. 2013, 25, 2497–2504. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-M.; He, J.; Biegalski, M.D.; Ambaye, H.; Lauter, V.; Christen, H.M.; Pantelides, S.T.; Pennycook, S.J.; Kalinin, S.V.; Borisevich, A.Y. Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level. Nat. Mater. 2012, 11, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Bruno, F.Y.; Grisolia, M.N.; Visani, C.; Valencia, S.; Varela, M.; Abrudan, R.; Tornos, J.; Rivera-Calzada, A.; Ünal, A.A.; Pennycook, S.J.; et al. Insight into spin transport in oxide heterostructures from interface-resolved magnetic mapping. Nat. Commun. 2015, 6, 6306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, P.; Chu, Y.-H.; Ramesh, R. Oxide interfaces: Pathways to novel phenomena. Mater. Today 2012, 15, 320–327. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, Z.; Wu, H.; Xu, Y.; Li, R.-W.; Pennycook, S.J.; Zhang, S.; Wu, Y. Anomalous Hall magnetoresistance in a ferromagnet. Nat. Commun. 2018, 9, 2255. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, C.; Wu, H.; Gao, J.; Yang, S.; Song, X.; Ren, X. Premartensite serving as an intermediary state between strain glass and martensite in ferromagnetic Ni-Fe-Mn-Ga. Mater. Des. 2018, 152, 102–109. [Google Scholar] [CrossRef]
- Li, Y.; Weng, Y.; Yin, X.; Yu, X.; Kumar, S.R.S.; Wehbe, N.; Wu, H.; Alshareef, H.N.; Pennycook, S.J.; Breese, M.B.H.; et al. Orthorhombic Ti2O3: A Polymorph-Dependent Narrow-Bandgap Ferromagnetic Oxide. Adv. Funct. Mater. 2018, 28, 1705657. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, C.; Wu, H.; Gao, J.; Yang, S.; Wang, D.; Ding, X.; Song, X.; Ren, X. Spontaneous strain glass to martensite transition in ferromagnetic Ni-Co-Mn-Ga strain glass. Appl. Phys. Lett. 2013, 102, 141909. [Google Scholar] [CrossRef]
- Dong, G.; Li, S.; Li, T.; Wu, H.; Nan, T.; Wang, X.; Liu, H.; Cheng, Y.; Zhou, Y.; Qu, W.; et al. Periodic Wrinkle-Patterned Single-Crystalline Ferroelectric Oxide Membranes with Enhanced Piezoelectricity. Adv. Mater. 2020, 32, 2004477. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wu, H.; Ong, K.P.; Yang, T.; Yang, P.; Das, P.K.; Chi, X.; Zhang, Y.; Diao, C.; Wong, W.K.A.; et al. Giant piezoelectricity in oxide thin films with nanopillar structure. Science 2020, 369, 292–297. [Google Scholar] [CrossRef]
- Yin, J.; Zong, H.; Tao, H.; Tao, X.; Wu, H.; Zhang, Y.; Zhao, L.-D.; Ding, X.; Sun, J.; Zhu, J.; et al. Nanoscale bubble domains with polar topologies in bulk ferroelectrics. Nat. Commun. 2021, 12, 3632. [Google Scholar] [CrossRef]
- Zhang, N.; Zheng, T.; Li, N.; Zhao, C.; Yin, J.; Zhang, Y.; Wu, H.; Pennycook, S.J.; Wu, J. Symmetry of the Underlying Lattice in (K,Na)NbO3-Based Relaxor Ferroelectrics with Large Electromechanical Response. ACS Appl. Mater. Interfaces 2021, 13, 7461–7469. [Google Scholar] [CrossRef]
- Zheng, T.; Zhang, Y.; Ke, Q.; Wu, H.; Heng, L.W.; Xiao, D.; Zhu, J.; Pennycook, S.J.; Yao, K.; Wu, J. High-performance potassium sodium niobate piezoceramics for ultrasonic transducer. Nano Energy 2020, 70, 104559. [Google Scholar] [CrossRef]
- Zhou, W.X.; Wu, H.J.; Zhou, J.; Zeng, S.W.; Li, C.J.; Li, M.S.; Guo, R.; Xiao, J.X.; Huang, Z.; Lv, W.M.; et al. Artificial two-dimensional polar metal by charge transfer to a ferroelectric insulator. Commun. Phys. 2019, 2, 125. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Cabral, M.J.; Xu, B.; Cheng, Z.; Dickey, E.C.; LeBeau, J.M.; Wang, J.; Luo, J.; Taylor, S.; Hackenberger, W.; et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science 2019, 364, 264–268. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, W.; Wang, H.; Xie, L.; Liang, Y.; Wei, F.; Idrobo, J.-C.; Pennycook, S.J.; Dai, H. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nano 2012, 7, 394–400. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, J.; Guan, P.; Liu, C.; Huang, H.; Xue, F.; Dong, X.; Pennycook, S.J.; Chisholm, M.F. Catalytically active single-atom niobium in graphitic layers. Nat. Commun. 2013, 4, 1924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Zhou, W.; Liu, J.-X.; Si, R.; Sun, G.; Zhong, M.-Q.; Su, H.-Y.; Zhao, H.-B.; Rodriguez, J.A.; Pennycook, S.J.; et al. Platinum-Modulated Cobalt Nanocatalysts for Low-Temperature Aqueous-Phase Fischer–Tropsch Synthesis. J. Am. Chem. Soc. 2013, 135, 4149–4158. [Google Scholar] [CrossRef]
- Xu, X.; Randorn, C.; Efstathiou, P.; Irvine, J.T.S. A red metallic oxide photocatalyst. Nat. Mater. 2012, 11, 595. [Google Scholar] [CrossRef]
- Wan, D.Y.; Zhao, Y.L.; Cai, Y.; Asmara, T.C.; Huang, Z.; Chen, J.Q.; Hong, J.; Yin, S.M.; Nelson, C.T.; Motapothula, M.R.; et al. Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate. Nat. Commun. 2017, 8, 15070. [Google Scholar] [CrossRef] [Green Version]
- Guan, C.; Xiao, W.; Wu, H.; Liu, X.; Zang, W.; Zhang, H.; Ding, J.; Feng, Y.P.; Pennycook, S.J.; Wang, J. Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy 2018, 48, 73–80. [Google Scholar] [CrossRef]
- Guan, C.; Wu, H.; Ren, W.; Yang, C.; Liu, X.; Ouyang, X.; Song, Z.; Zhang, Y.; Pennycook, S.J.; Cheng, C.; et al. Metal-organic framework-derived integrated nanoarrays for overall water splitting. J. Mater. Chem. A 2018, 6, 9009–9018. [Google Scholar] [CrossRef]
- Li, X.; Wu, H.; Elshahawy, A.M.; Wang, L.; Pennycook, S.J.; Guan, C.; Wang, J. Cactus-Like NiCoP/NiCo-OH 3D Architecture with Tunable Composition for High-Performance Electrochemical Capacitors. Adv. Funct. Mater. 2018, 28, 1800036. [Google Scholar] [CrossRef]
- Guan, C.; Liu, X.; Elshahawy, A.M.; Zhang, H.; Wu, H.; Pennycook, S.J.; Wang, J. Metal-organic framework derived hollow CoS2 nanotube arrays: An efficient bifunctional electrocatalyst for overall water splitting. Nanoscale Horiz. 2017, 2, 342–348. [Google Scholar] [CrossRef]
- Xin, J.; Wu, H.; Liu, X.; Zhu, T.; Yu, G.; Zhao, X. Mg vacancy and dislocation strains as strong phonon scatterers in Mg2Si1−xSbx thermoelectric materials. Nano Energy 2017, 34, 428–436. [Google Scholar] [CrossRef]
- Elshahawy, A.M.; Guan, C.; Li, X.; Zhang, H.; Hu, Y.; Wu, H.; Pennycook, S.J.; Wang, J. Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor. Nano Energy 2017, 39, 162–171. [Google Scholar] [CrossRef]
- Guan, C.; Sumboja, A.; Wu, H.; Ren, W.; Liu, X.; Zhang, H.; Liu, Z.; Cheng, C.; Pennycook, S.J.; Wang, J. Hollow Co3O4 Nanosphere Embedded in Carbon Arrays for Stable and Flexible Solid-State Zinc—Air Batteries. Adv. Mater. 2017, 29, 1704117. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Z.; Zhang, H.; Zhang, Z.; Wu, H.; Jin, M.; Wu, C.; Yang, D.; Yin, Y. Lattice-Mismatch-Induced Twinning for Seeded Growth of Anisotropic Nanostructures. ACS Nano 2015, 9, 3307–3313. [Google Scholar] [CrossRef] [Green Version]
- Zheng, P.; Wu, H.; Guo, J.; Dong, J.; Jia, S.; Zhu, Z. P–N co-doping induced structural recovery of TiO2 for overall water splitting under visible light irradiation. J. Alloys Compd. 2014, 615, 79–83. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Z.G.; Wang, L.; Weng, Y.; Tang, C.S.; Yin, X.; Han, K.; Wu, H.; Yu, X.; Wong, L.M.; et al. Electronic-reconstruction-enhanced hydrogen evolution catalysis in oxide polymorphs. Nat. Commun. 2019, 10, 3149. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Han, N.; Ning, S.; Chen, T.; Zhu, C.; Pan, C.; Wu, H.; Pennycook, S.J.; Guan, C. Single-Atom Tungsten-Doped CoP Nanoarrays as a High-Efficiency pH-Universal Catalyst for Hydrogen Evolution Reaction. ACS Sustain. Chem. Eng. 2020, 8, 14825–14832. [Google Scholar] [CrossRef]
- Zhao, X.X.; Kotakoski, J.; Meyer, J.C.; Sutter, E.; Sutter, P.; Krasheninnikov, A.V.; Kaiser, U.; Zhou, W. Engineering and modifying two-dimensional materials by electron beams. Mrs Bull. 2017, 42, 667–676. [Google Scholar] [CrossRef] [Green Version]
- Pennycook, S.J. Fulfilling Feynman‘s dream: “Make the electron microscope 100 times better”—Are we there yet? MRS Bull. 2015, 40, 71–78. [Google Scholar] [CrossRef]
- Zhao, X.X.; Fu, D.Y.; Ding, Z.J.; Zhang, Y.Y.; Wan, D.Y.; Tan, S.J.R.; Chen, Z.X.; Leng, K.; Dan, J.D.; Fu, W.; et al. Mo-Terminated Edge Reconstructions in Nanoporous Molybdenum Disulfide Film. Nano Lett. 2018, 18, 482–490. [Google Scholar] [CrossRef]
- Zhao, X.; Ding, Z.; Chen, J.; Dan, J.; Poh, S.M.; Fu, W.; Pennycook, S.J.; Zhou, W.; Loh, K.P. Strain Modulation by van der Waals Coupling in Bilayer Transition Metal Dichalcogenide. ACS Nano 2018, 12, 1940–1948. [Google Scholar] [CrossRef]
- Zhou, W.; Lee, J.; Nanda, J.; Pantelides, S.T.; Pennycook, S.J.; Idrobo, J.-C. Atomically localized plasmon enhancement in monolayer graphene. Nat. Nano 2012, 7, 161–165. [Google Scholar] [CrossRef]
- Zhou, W.; Kapetanakis, M.D.; Prange, M.P.; Pantelides, S.T.; Pennycook, S.J.; Idrobo, J.-C. Direct Determination of the Chemical Bonding of Individual Impurities in Graphene. Phys. Rev. Lett. 2012, 109, 206803. [Google Scholar] [CrossRef]
- Lin, J.; Cretu, O.; Zhou, W.; Suenaga, K.; Prasai, D.; Bolotin, K.I.; Cuong, N.T.; Otani, M.; Okada, S.; Lupini, A.R.; et al. Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers. Nat. Nano 2014, 9, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Dan, J.; Chen, J.; Ding, Z.; Zhou, W.; Loh, K.P.; Pennycook, S.J. Atom-by-Atom Fabrication of Monolayer Molybdenum Membranes. Adv. Mater. 2018, 30, 1707281. [Google Scholar] [CrossRef]
- Jianyi, C.; Xiaoxu, Z.; Gustavo, G.; Zhongxin, C.; Tan, S., Jr.; Wei, F.; Zijing, D.; Ibrahim, A.; Yi, L.; Dechao, G.; et al. Homoepitaxial Growth of Large-Scale Highly Organized Transition Metal Dichalcogenide Patterns. Adv. Mater. 2018, 30, 1704674. [Google Scholar]
- Oh, S.H.; Benthem, K.V.; Molina, S.I.; Borisevich, A.Y.; Luo, W.; Werner, P.; Zakharov, N.D.; Kumar, D.; Pantelides, S.T.; Pennycook, S.J. Point Defect Configurations of Supersaturated Au Atoms Inside Si Nanowires. Nano Lett. 2008, 8, 1016–1019. [Google Scholar] [CrossRef] [Green Version]
- Pennycook, S.J. The impact of STEM aberration correction on materials science. Ultramicroscopy 2017, 180, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zheng, F.; Wu, D.; Ge, Z.-H.; Liu, X.; He, J. Advanced electron microscopy for thermoelectric materials. Nano Energy 2015, 13, 626–650. [Google Scholar] [CrossRef]
- Pennycook, S.J.; Li, C.; Li, M.; Tang, C.; Okunishi, E.; Varela, M.; Kim, Y.-M.; Jang, J.H. Material structure, properties, and dynamics through scanning transmission electron microscopy. J. Anal. Sci. Technol. 2018, 9, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Zhao, X.; Song, D.; Tian, F.; Wang, J.; Loh, K.P.; Pennycook, S.J. Progress and prospects of aberration-corrected STEM for functional materials. Ultramicroscopy 2018, 194, 182–192. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, X.; Guan, C.; Zhao, L.-D.; Wu, J.; Song, D.; Li, C.; Wang, J.; Loh, K.P.; Venkatesan, T.V.; et al. The Atomic Circus: Small Electron Beams Spotlight Advanced Materials Down to the Atomic Scale. Adv. Mater. 2018, 30, 1802402. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, L.; Chisholm, M.F.; Zhou, X.; Ye, H.; Pennycook, S.J. Precipitation of binary quasicrystals along dislocations. Nat. Commun. 2018, 9, 809. [Google Scholar] [CrossRef]
- Gázquez, J.; Sánchez-Santolino, G.; Biškup, N.; Roldán, M.A.; Cabero, M.; Pennycook, S.J.; Varela, M. Applications of STEM-EELS to complex oxides. Mater. Sci. Semicond. Process. 2017, 65, 49–63. [Google Scholar] [CrossRef]
- Liu, Z.; Meng, X.; Qin, D.; Cui, B.; Wu, H.; Zhang, Y.; Pennycook, S.J.; Cai, W.; Sui, J. New insights into the role of dislocation engineering in N-type filled skutterudite CoSb3. J. Mater. Chem. C 2019, 7, 13622–13631. [Google Scholar] [CrossRef]
- Gleiter, H. Nanostructured materials: Basic concepts and microstructure. Acta Mater. 2000, 48, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Logothetidis, S.E. Nanostructured Materials and Their Applications; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Minnich, A.J.; Dresselhaus, M.S.; Ren, Z.F.; Chen, G. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2009, 2, 466–479. [Google Scholar] [CrossRef]
- Zhu, T.; Hu, L.; Zhao, X.; He, J. New Insights into Intrinsic Point Defects in V2VI3 Thermoelectric Materials. Adv. Sci. 2016, 3, 1600004. [Google Scholar] [CrossRef]
- Hu, L.; Wu, H.; Zhu, T.; Fu, C.; He, J.; Ying, P.; Zhao, X. Tuning Multiscale Microstructures to Enhance Thermoelectric Performance of n-Type Bismuth-Telluride-Based Solid Solutions. Adv. Energy Mater. 2015, 5, 1500411. [Google Scholar] [CrossRef]
- Lipeng, H.; Tiejun, Z.; Xiaohua, L.; Xinbing, Z. Point Defect Engineering of High-Performance Bismuth-Telluride-Based Thermoelectric Materials. Adv. Funct. Mater. 2014, 24, 5211–5218. [Google Scholar]
- Tang, J.; Gao, B.; Lin, S.; Li, J.; Chen, Z.; Xiong, F.; Li, W.; Chen, Y.; Pei, Y. Manipulation of Band Structure and Interstitial Defects for Improving Thermoelectric SnTe. Adv. Funct. Mater. 2018, 28, 1803586. [Google Scholar] [CrossRef]
- Lipeng, H.; Yang, Z.; Haijun, W.; Yamei, L.; Junqin, L.; Jian, H.; Weiqin, A.; Fusheng, L.; John, P.S.; Xierong, Z. Synergistic Compositional-Mechanical-Thermal Effects Leading to a Record High zT in n-Type V2VI3 Alloys through Progressive Hot Deformation. Adv. Funct. Mater. 2018, 28, 1803617. [Google Scholar]
- Xiao, Y.; Wu, H.; Cui, J.; Wang, D.; Fu, L.; Zhang, Y.; Chen, Y.; He, J.; Pennycook, S.J.; Zhao, L.-D. Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity. Energy Environ. Sci. 2018, 11, 2486–2495. [Google Scholar] [CrossRef]
- Guo, F.; Cui, B.; Liu, Y.; Meng, X.; Cao, J.; Zhang, Y.; He, R.; Liu, W.; Wu, H.; Pennycook, S.J.; et al. Thermoelectric SnTe with Band Convergence, Dense Dislocations, and Interstitials through Sn Self-Compensation and Mn Alloying. Small 2018, 14, 1802615. [Google Scholar] [CrossRef]
- Wu, D.; Wu, L.; He, D.; Zhao, L.-D.; Li, W.; Wu, M.; Jin, M.; Xu, J.; Jiang, J.; Huang, L.; et al. Direct observation of vast off-stoichiometric defects in single crystalline SnSe. Nano Energy 2017, 35, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Varela, M.; Lupini, A.R.; Benthem, K.V.; Borisevich, A.Y.; Chisholm, M.F.; Shibata, N.; Abe, E.; Pennycook, S.J. Materials Characterization in the Aberration-Corrected Scanning Transmission Electron Microscope. Annu. Rev. Mater. Res. 2005, 35, 539–569. [Google Scholar] [CrossRef]
- Pennycook, S.J. A Scan through the History of STEM. In Scanning Transmission Electron Microscopy; Pennycook, S.J., Nellist, P.D., Eds.; Springer: New York, NY, USA, 2011; pp. 1–90. [Google Scholar]
- Pennycook, S.J.; Jesson, D.E. High-Resolution Z-Contrast Imaging of Crystals. Ultramicroscopy 1991, 37, 14–38. [Google Scholar] [CrossRef] [Green Version]
- Pennycook, S.J. Z-contrast stem for materials science. Ultramicroscopy 1989, 30, 58–69. [Google Scholar] [CrossRef]
- Pennycook, S.J.; Boatner, L.A. Chemically Sensitive Structure-Imaging with a Scanning-Transmission Electron-Microscope. Nature 1988, 336, 565–567. [Google Scholar] [CrossRef]
- Pennycook, S.J.; Zhao, X.; Lu, J.; Zang, W.; Wu, H.; Wang, J. Designing Energy Materials via Atomic-resolution Microscopy and Spectroscopy. Microsc. Microanal. 2019, 25, 1998–1999. [Google Scholar] [CrossRef] [Green Version]
- Yonggang, Y.; Chao, Z.; Duchao, L.; Dong, W.; Haijun, W.; Yaodong, Y.; Xiaobing, R. Large piezoelectricity and dielectric permittivity in BaTiO3 − xBaSnO3 system: The role of phase coexisting. EPL Europhys. Lett. 2012, 98, 27008. [Google Scholar]
- Zheng, T.; Wu, H.; Yuan, Y.; Lv, X.; Li, Q.; Men, T.; Zhao, C.; Xiao, D.; Wu, J.; Wang, K.; et al. The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ. Sci. 2017, 10, 528–537. [Google Scholar] [CrossRef]
- Gao, J.; Xue, D.; Wang, Y.; Wang, D.; Zhang, L.; Wu, H.; Guo, S.; Bao, H.; Zhou, C.; Liu, W.; et al. Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics. Appl. Phys. Lett. 2011, 99, 092901. [Google Scholar] [CrossRef]
- Wu, J.; Xiao, D.; Zhu, J. Potassium–Sodium Niobate Lead-Free Piezoelectric Materials: Past, Present, and Future of Phase Boundaries. Chem. Rev. 2015, 115, 2559–2595. [Google Scholar] [CrossRef]
- Liu, W.; Ren, X. Large Piezoelectric Effect in Pb-Free Ceramics. Phys. Rev. Lett. 2009, 103, 257602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; Xue, D.; Wu, H.; Ji, Y.; Ding, X.; Wang, D.; Yang, Y.; Ren, X. Time-dependent ferroelectric transition in Pb(1−x)(Zr0.4Ti0.6)(1−x/4)O3−xLa system. Appl. Phys. Lett. 2013, 102, 222907. [Google Scholar] [CrossRef]
- Rödel, J.; Jo, W.; Seifert, K.T.P.; Anton, E.-M.; Granzow, T.; Damjanovic, D. Perspective on the Development of Lead-free Piezoceramics. J. Am. Ceram. Soc. 2009, 92, 1153–1177. [Google Scholar] [CrossRef]
- Tao, H.; Wu, H.; Liu, Y.; Zhang, Y.; Wu, J.; Li, F.; Lyu, X.; Zhao, C.; Xiao, D.; Zhu, J.; et al. Ultrahigh Performance in Lead-Free Piezoceramics Utilizing a Relaxor Slush Polar State with Multiphase Coexistence. J. Am. Chem. Soc. 2019, 141, 13987–13994. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Qin, X.; Yao, K.; Pennycook, S.J.; Tay, F.E.H. Outstanding Piezoelectric Performance in Lead-Free 0.95(K,Na)(Sb,Nb)O3-0.05(Bi,Na,K)ZrO3 Thick Films with Oriented Nanophase Coexistence. Adv. Electron. Mater. 2019, 5, 1800691. [Google Scholar] [CrossRef]
- Wu, H.; Ning, S.; Waqar, M.; Liu, H.; Zhang, Y.; Wu, H.-H.; Li, N.; Wu, Y.; Yao, K.; Lookman, T.; et al. Alkali-deficiency driven charged out-of-phase boundaries for giant electromechanical response. Nat. Commun. 2021, 12, 2841. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, Y.; Wu, J.; Wang, J.; Pennycook, S.J. Microstructural Origins of High Piezoelectric Performance: A Pathway to Practical Lead-Free Materials. Adv. Funct. Mater. 2019, 29, 1902911. [Google Scholar] [CrossRef]
- Waqar, M.; Wu, H.; Chen, J.; Yao, K.; Wang, J. Evolution from Lead-Based to Lead-Free Piezoelectrics: Engineering of Lattices, Domains, Boundaries, and Defects Leading to Giant Response. Adv. Mater. 2021, e2106845. [Google Scholar] [CrossRef]
- Li, F.; Lin, D.; Chen, Z.; Cheng, Z.; Wang, J.; Li, C.; Xu, Z.; Huang, Q.; Liao, X.; Chen, L.-Q.; et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 2018, 17, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.; Balachandran, P.V.; Wu, H.; Yuan, R.; Zhou, Y.; Ding, X.; Sun, J.; Lookman, T. Material descriptors for morphotropic phase boundary curvature in lead-free piezoelectrics. Appl. Phys. Lett. 2017, 111, 032907. [Google Scholar] [CrossRef]
- Zhao, C.; Wu, H.; Li, F.; Cai, Y.; Zhang, Y.; Song, D.; Wu, J.; Lyu, X.; Yin, J.; Xiao, D.; et al. Practical High Piezoelectricity in Barium Titanate Ceramics Utilizing Multiphase Convergence with Broad Structural Flexibility. J. Am. Chem. Soc. 2018, 140, 15252–15260. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xue, D.; Wu, H.; Ding, X.; Lookman, T.; Ren, X. Adaptive ferroelectric state at morphotropic phase boundary: Coexisting tetragonal and rhombohedral phases. Acta Mater. 2014, 71, 176–184. [Google Scholar] [CrossRef]
- Wu, H.; Xue, D.; Lv, D.; Gao, J.; Guo, S.; Zhou, Y.; Ding, X.; Zhou, C.; Yang, S.; Yang, Y.; et al. Microstructure at morphotropic phase boundary in Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramic: Coexistence of nano-scaled {110}-type rhombohedral twin and {110}-type tetragonal twin. J. Appl. Phys. 2012, 112, 052004. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.M.; Wang, Y.U.; Khachaturyan, A.G.; Li, J.F.; Viehland, D. Conformal Miniaturization of Domains with Low Domain-Wall Energy: Monoclinic Ferroelectric States near the Morphotropic Phase Boundaries. Phys. Rev. Lett. 2003, 91, 197601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Zhu, J.; Zhang, X.W.; Tang, Y.X.; Luo, H.S. Domain structure of adaptive orthorhombic phase in [110]-poled Pb(Mg1/3Nb2/3)O3–30.5%PbTiO3 single crystal. Appl. Phys. Lett. 2008, 92, 132906. [Google Scholar] [CrossRef]
- Tang, Y.L.; Zhu, Y.L.; Hong, Z.J.; Eliseev, E.A.; Morozovska, A.N.; Wang, Y.J.; Liu, Y.; Xu, Y.B.; Wu, B.; Chen, L.Q.; et al. 3D polarization texture of a symmetric 4-fold flux closure domain in strained ferroelectric PbTiO3 films. J. Mater. Res. 2016, 32, 957–967. [Google Scholar] [CrossRef]
- Gong, Y.; Liu, Z.; Lupini, A.R.; Shi, G.; Lin, J.; Najmaei, S.; Lin, Z.; Elías, A.L.; Berkdemir, A.; You, G.; et al. Band Gap Engineering and Layer-by-Layer Mapping of Selenium-Doped Molybdenum Disulfide. Nano Lett. 2014, 14, 442–449. [Google Scholar] [CrossRef]
- Jia, C.-L.; Urban, K.W.; Alexe, M.; Hesse, D.; Vrejoiu, I. Direct Observation of Continuous Electric Dipole Rotation in Flux-Closure Domains in Ferroelectric Pb(Zr,Ti)O3. Science 2011, 331, 1420. [Google Scholar] [CrossRef]
- Jia, C.-L.; Nagarajan, V.; He, J.-Q.; Houben, L.; Zhao, T.; Ramesh, R.; Urban, K.; Waser, R. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nat. Mater. 2007, 6, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Abrahams, S.C.; Kurtz, S.K.; Jamieson, P.B. Atomic Displacement Relationship to Curie Temperature and Spontaneous Polarization in Displacive Ferroelectrics. Phys. Rev. 1968, 172, 551–553. [Google Scholar] [CrossRef]
- Wu, J.; Fan, Z.; Xiao, D.; Zhu, J.; Wang, J. Multiferroic bismuth ferrite-based materials for multifunctional applications: Ceramic bulks, thin films and nanostructures. Prog. Mater. Sci. 2016, 84, 335–402. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Neaton, J.B.; Zheng, H.; Nagarajan, V.; Ogale, S.B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D.G.; Waghmare, U.V.; et al. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science 2003, 299, 1719–1722. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J. Orientation dependence of ferroelectric behavior of BiFeO3 thin films. J. Appl. Phys. 2009, 106, 104111. [Google Scholar] [CrossRef]
- Liu, H.; Yang, P.; Yao, K.; Ong, K.P.; Wu, P.; Wang, J. Origin of a Tetragonal BiFeO3 Phase with a Giant c/a Ratio on SrTiO3 Substrates. Adv. Funct. Mater. 2012, 22, 937–942. [Google Scholar] [CrossRef]
- Zeches, R.J.; Rossell, M.D.; Zhang, J.X.; Hatt, A.J.; He, Q.; Yang, C.-H.; Kumar, A.; Wang, C.H.; Melville, A.; Adamo, C.; et al. A Strain-Driven Morphotropic Phase Boundary in BiFeO3. Science 2009, 326, 977–980. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Qiao, S.; Wang, J.; Xiao, D.; Zhu, J. A giant polarization value of Zn and Mn co-modified bismuth ferrite thin films. Appl. Phys. Lett. 2013, 102, 052904. [Google Scholar] [CrossRef]
- Haeni, J.H.; Irvin, P.; Chang, W.; Uecker, R.; Reiche, P.; Li, Y.L.; Choudhury, S.; Tian, W.; Hawley, M.E.; Craigo, B.; et al. Room-temperature ferroelectricity in strained SrTiO3. Nature 2004, 430, 758–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, R.; Huang, J.; Barnard, E.S.; Hong, S.S.; Singh, P.; Wong, E.K.; Jansen, T.; Harbola, V.; Xiao, J.; Wang, B.Y.; et al. Strain-induced room-temperature ferroelectricity in SrTiO3 membranes. Nat. Commun. 2020, 11, 3141. [Google Scholar] [CrossRef]
- Kleemann, W.; Dec, J.; Tkach, A.; Vilarinho, P.M. SrTiO3—Glimpses of an Inexhaustible Source of Novel Solid State Phenomena. Condens. Matter. 2020, 5, 58. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, H.; Lei, W.; Sinclair, D.C.; Reaney, I.M. High-Figure-of-Merit Thermoelectric La-Doped A-Site-Deficient SrTiO3 Ceramics. Chem. Mater. 2016, 28, 925–935. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, B.-Y.; Kang, H.-J.; Li, Y.; Yaer, X.; Li, J.-F.; Tan, Q.; Zhang, S.; Fan, G.-H.; Liu, C.-Y.; et al. Record high thermoelectric performance in bulk SrTiO3 via nano-scale modulation doping. Nano Energy 2017, 35, 387–395. [Google Scholar] [CrossRef]
- Shi, X.-L.; Wu, H.; Liu, Q.; Zhou, W.; Lu, S.; Shao, Z.; Dargusch, M.; Chen, Z.-G. SrTiO3-based thermoelectrics: Progress and challenges. Nano Energy 2020, 78, 105195. [Google Scholar] [CrossRef]
- Li, J.-B.; Wang, J.; Li, J.-F.; Li, Y.; Yang, H.; Yu, H.-Y.; Ma, X.-B.; Yaer, X.; Liu, L.; Miao, L. Broadening the temperature range for high thermoelectric performance of bulk polycrystalline strontium titanate by controlling the electronic transport properties. J. Mater. Chem. C 2018, 6, 7594–7603. [Google Scholar] [CrossRef]
- He, J.; Kanatzidis, M.G.; Dravid, V.P. High performance bulk thermoelectrics via a panoscopic approach. Mater. Today 2013, 16, 166–176. [Google Scholar] [CrossRef]
- Biswas, K.; He, J.; Blum, I.D.; Wu, C.-I.; Hogan, T.P.; Seidman, D.N.; Dravid, V.P.; Kanatzidis, M.G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414. [Google Scholar] [CrossRef] [PubMed]
- Biswas, K.; He, J.; Zhang, Q.; Wang, G.; Uher, C.; Dravid, V.P.; Kanatzidis, M.G. Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 2011, 3, 160. [Google Scholar] [CrossRef] [PubMed]
- Zhai, R.; Hu, L.; Wu, H.; Xu, Z.; Zhu, T.-J.; Zhao, X.-B. Enhancing Thermoelectric Performance of n-Type Hot Deformed Bismuth-Telluride-Based Solid Solutions by Nonstoichiometry-Mediated Intrinsic Point Defects. ACS Appl. Mater. Interfaces 2017, 9, 28577–28585. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, H.; Pei, Y.; Zhou, Y.; Gong, S.; He, J.; Zhao, L.-D. Investigation on thermal transport and structural properties of InFeO3(ZnO)m with modulated layer structures. Acta Mater. 2017, 136, 235–241. [Google Scholar] [CrossRef]
- Zhou, Y.M.; Wu, H.J.; Pei, Y.L.; Chang, C.; Xiao, Y.; Zhang, X.; Gong, S.K.; He, J.Q.; Zhao, L.D. Strategy to optimize the overall thermoelectric properties of SnTe via compositing with its property-counter CuInTe2. Acta Mater. 2017, 125, 542–549. [Google Scholar] [CrossRef]
- Zhu, T.; Yu, G.; Xu, J.; Wu, H.; Fu, C.; Liu, X.; He, J.; Zhao, X. The Role of Electron–Phonon Interaction in Heavily Doped Fine-Grained Bulk Silicons as Thermoelectric Materials. Adv. Electron. Mater. 2016, 2, 1600171. [Google Scholar] [CrossRef]
- Li, J.; Wu, H.; Wu, D.; Wang, C.; Zhang, Z.; Li, Y.; Liu, F.; Ao, W.-q.; He, J. Extremely Low Thermal Conductivity in Thermoelectric Ge0.55Pb0.45Te Solid Solutions via Se Substitution. Chem. Mater. 2016, 28, 6367–6373. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, H.; Zhu, T.; Fu, C.; Liu, X.; Hu, L.; He, J.; He, J.; Zhao, X. Attaining high mid-temperature performance in (Bi,Sb)2Te3 thermoelectric materials via synergistic optimization. NPG Asia Mater. 2016, 8, e302. [Google Scholar] [CrossRef]
- Wu, H.; Chang, C.; Feng, D.; Xiao, Y.; Zhang, X.; Pei, Y.; Zheng, L.; Wu, D.; Gong, S.; Chen, Y.; et al. Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe. Energy Environ. Sci. 2015, 8, 3298–3312. [Google Scholar] [CrossRef]
- Callaway, J.; von Baeyer, H.C. Effect of Point Imperfections on Lattice Thermal Conductivity. Phys. Rev. 1960, 120, 1149–1154. [Google Scholar] [CrossRef]
- He, J.; Girard, S.N.; Kanatzidis, M.G.; Dravid, V.P. Microstructure-Lattice Thermal Conductivity Correlation in Nanostructured PbTe0.7S0.3 Thermoelectric Materials. Adv. Funct. Mater. 2010, 20, 764–772. [Google Scholar] [CrossRef]
- Gorai, P.; Stevanović, V.; Toberer, E.S. Computationally guided discovery of thermoelectric materials. Nat. Rev. Mater. 2017, 2, 17053. [Google Scholar] [CrossRef]
- Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; et al. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science 2008, 320, 634–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Carrete, J.; Zhang, Z.; Qu, Y.; Shen, X.; Wang, Z.; Zhao, L.-D.; He, J. Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics. NPG Asia Mater. 2014, 6, e108. [Google Scholar] [CrossRef]
- Yu, B.; Zebarjadi, M.; Wang, H.; Lukas, K.; Wang, H.; Wang, D.; Opeil, C.; Dresselhaus, M.; Chen, G.; Ren, Z. Enhancement of Thermoelectric Properties by Modulation-Doping in Silicon Germanium Alloy Nanocomposites. Nano Lett. 2012, 12, 2077–2082. [Google Scholar] [CrossRef]
- Zebarjadi, M.; Joshi, G.; Zhu, G.; Yu, B.; Minnich, A.; Lan, Y.; Wang, X.; Dresselhaus, M.; Ren, Z.; Chen, G. Power Factor Enhancement by Modulation Doping in Bulk Nanocomposites. Nano Lett. 2011, 11, 2225–2230. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wu, H.; Cui, J.; Xiao, Y.; Zhang, Y.; He, J.; Chen, Y.; Cao, J.; Cai, W.; Pennycook, S.J.; et al. Extraordinary thermoelectric performance in n-type manganese doped Mg3Sb2 Zintl: High band degeneracy, tuned carrier scattering mechanism and hierarchical microstructure. Nano Energy 2018, 52, 246–255. [Google Scholar] [CrossRef]
- He, J.; Zhao, L.-D.; Zheng, J.-C.; Doak, J.W.; Wu, H.; Wang, H.-Q.; Lee, Y.; Wolverton, C.; Kanatzidis, M.G.; Dravid, V.P. Role of Sodium Doping in Lead Chalcogenide Thermoelectrics. J. Am. Chem. Soc. 2013, 135, 4624–4627. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, X.; Feng, D.; Wu, H.; Carrete, J.; Zhao, L.-D.; Li, C.; Cheng, S.; Peng, B.; Yang, G.; et al. Understanding Phonon Scattering by Nanoprecipitates in Potassium-Doped Lead Chalcogenides. ACS Appl. Mater. Interfaces 2017, 9, 3686–3693. [Google Scholar] [CrossRef] [Green Version]
- Okhay, O.; Tkach, A. Impact of Graphene or Reduced Graphene Oxide on Performance of Thermoelectric Composites. C J. Carbon Res. 2021, 7, 37. [Google Scholar] [CrossRef]
- Okhay, O.; Zlotnik, S.; Xie, W.; Orlinski, K.; Hortiguela Gallo, M.J.; Otero-Irurueta, G.; Fernandes, A.J.S.; Pawlak, D.A.; Weidenkaff, A.; Tkach, A. Thermoelectric performance of Nb-doped SrTiO3 enhanced by reduced graphene oxide and Sr deficiency cooperation. Carbon 2019, 143, 215–222. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, D.; Wu, H.; Yin, M.; Pei, Y.; Gong, S.; Huang, L.; Pennycook, S.J.; He, J.; Zhao, L.-D. Simultaneously enhancing the power factor and reducing the thermal conductivity of SnTe via introducing its analogues. Energy Environ. Sci. 2017, 10, 2420–2431. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Yang, J.; Li, S. Recent Advances of Layered Thermoelectric Materials. Adv. Sustain. Syst. 2018, 2, 1800046. [Google Scholar] [CrossRef]
- Eivari, H.A.; Sohbatzadeh, Z.; Mele, P.; Assadi, M.H.N. Low thermal conductivity: Fundamentals and theoretical aspects in thermoelectric applications. Mater. Today Energy 2021, 21, 100744. [Google Scholar] [CrossRef]
- Ishikawa, R.; Lupini, A.R.; Hinuma, Y.; Pennycook, S.J. Large-angle illumination STEM: Toward three-dimensional atom-by-atom imaging. Ultramicroscopy 2015, 151, 122–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishikawa, R.; Pennycook, S.J.; Lupini, A.R.; Findlay, S.D.; Shibata, N.; Ikuhara, Y. Single atom visibility in STEM optical depth sectioning. Appl. Phys. Lett. 2016, 109, 163102. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Qu, W.; Peng, G.; Zhang, C.; Liu, Z.; Liu, J.; Li, S.; Wu, H.; Meng, L.; Gao, L. Seeing Structural Mechanisms of Optimized Piezoelectric and Thermoelectric Bulk Materials through Structural Defect Engineering. Materials 2022, 15, 487. https://doi.org/10.3390/ma15020487
Zhang Y, Qu W, Peng G, Zhang C, Liu Z, Liu J, Li S, Wu H, Meng L, Gao L. Seeing Structural Mechanisms of Optimized Piezoelectric and Thermoelectric Bulk Materials through Structural Defect Engineering. Materials. 2022; 15(2):487. https://doi.org/10.3390/ma15020487
Chicago/Turabian StyleZhang, Yang, Wanbo Qu, Guyang Peng, Chenglong Zhang, Ziyu Liu, Juncheng Liu, Shurong Li, Haijun Wu, Lingjie Meng, and Lumei Gao. 2022. "Seeing Structural Mechanisms of Optimized Piezoelectric and Thermoelectric Bulk Materials through Structural Defect Engineering" Materials 15, no. 2: 487. https://doi.org/10.3390/ma15020487
APA StyleZhang, Y., Qu, W., Peng, G., Zhang, C., Liu, Z., Liu, J., Li, S., Wu, H., Meng, L., & Gao, L. (2022). Seeing Structural Mechanisms of Optimized Piezoelectric and Thermoelectric Bulk Materials through Structural Defect Engineering. Materials, 15(2), 487. https://doi.org/10.3390/ma15020487