Effect of Organizational Evolution on the Stress Corrosion Cracking of the Cr-Co-Ni-Mo Series of Ultra-High Strength Stainless Steel
Abstract
:1. Introduction
2. Experimental Methods
2.1. Preparation of Specimens and Experimental Methods
2.2. Electrochemical Analyses
2.3. Microstructure Characterization and Fracture Analysis
3. Results
3.1. Microstructure
3.2. Results of the Electrochemical Tests
3.3. Tensile Properties
3.4. Fractography
4. Discussion
4.1. Effect of Ageing Treatment on Corrosion Resistance
4.2. Effect of Ageing Treatment on SCC
5. Conclusions
- (1)
- The precipitation of the Mo- and Cr-enriched clusters and Laves phase reduces the corrosion resistance of specimens, while the increased content of reverted austenite improves the corrosion resistance of the specimens.
- (2)
- The crack initiation of SCC for the specimens in 3.5 wt.% NaCl solution originates from pitting. The pitting is caused by the precipitation of the Mo- and Cr-enriched clusters and Laves phase during the ageing process, which results in local Mo- and Cr-depleted areas. The morphology of intergranular fractures and quasi-cleavage fractures in SCC is the result of the HE mechanism.
- (3)
- The precipitation and growth of the Mo- and Cr-enriched clusters and Laves phase lead to a decrease in the corrosion resistance and an increase in the strength of the underaged and peak-aged specimens, which then show increased SCC sensitivity. As a stable hydrogen trap in steel, austenite effectively improves the SCC resistance of the specimens. However, under the action of H and stress, the stacking fault energy of austenite decreases, martensitic phase transformation occurs, and the weaker martensitic interface becomes the preferred location for crack initiation and extension.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Zhan, D.; Qi, X.; Jiang, Z. Austenite and precipitation in secondary-hardening ultra-high-strength stainless steel. Mater. Charact. 2018, 144, 393–399. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhan, D.; Qi, X.; Jiang, Z. Effect of tempering temperature on the microstructure and properties of ultra-high-strength stainless steel. J. Mater. Sci. Technol. 2019, 35, 1240–1249. [Google Scholar] [CrossRef]
- Abdelshehid, M.; Mahmodieh, K.; Mori, K.; Chen, L.; Stoyanov, P.; Davlantes, D.; Foyos, J.; Ogren, J.; Clark, R.; Es-Said, O.S. On the correlation between fracture toughness and precipitation hardening heat treatments in 15-5PH Stainless Steel. Eng. Fail. Anal. 2007, 14, 626–631. [Google Scholar] [CrossRef]
- Hiromoto, K.; Rintaro, U.; Nobuhiro, T.; Yoritoshi, M. Crystallographic features of lath martensite in low-carbon steel. Acta Mater. 2006, 54, 1279–1288. [Google Scholar] [CrossRef]
- Peng, G.; Wynne, B.P.; Knowles, A.J.; Turk, A.; Ma, L.; Galindo-Nava, E.; Rainforth, W.M. Effect of ageing on the microstructural evolution in a new design of maraging steels with carbon. Acta Mater. 2020, 196, 101–121. [Google Scholar] [CrossRef]
- Bajguirani, H. The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel. Mater. Sci. Eng. A 2002, 338, 142–159. [Google Scholar] [CrossRef]
- Guo, Z.; Sha, W.; Vaumousse, D. Microstructural evolution in a PH13-8 stainless steel after ageing. Acta Mater. 2003, 51, 101–116. [Google Scholar] [CrossRef]
- Leitner, H.; Schnitzer, R.; Schober, M.; Zinner, S. Precipitate modification in PH13-8 Mo type maraging steel. Acta Mater. 2011, 59, 5012–5022. [Google Scholar] [CrossRef]
- Bulloch, J.H. Some effects of yield strength on the stress corrosion cracking behaviour of low alloy steels in aqueous environments at ambient temperatures. Eng. Fail. Anal. 2004, 11, 843–856. [Google Scholar] [CrossRef]
- Wang, M.; Akiyama, E.; Tsuzaki, K. Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test. Corros. Sci. 2007, 49, 4081–4097. [Google Scholar] [CrossRef]
- Hardie, D.; Charles, E.A.; Lopez, A.H. Hydrogen embrittlement of high strength pipeline steels. Corros. Sci. 2006, 48, 4378–4385. [Google Scholar] [CrossRef]
- Fan, R.; Gao, M.; Ma, Y.; Zha, X.; Hao, X.; Liu, K. Effects of Heat Treatment and Nitrogen on Microstructure and Mechanical Properties of 1Cr12NiMo Martensitic Stainless Steel. J. Mater. Sci. Technol. 2012, 28, 1059–1066. [Google Scholar] [CrossRef]
- Wu, G.; Singh, P.M. Effect of Plastic Deformation on Pitting Mechanism of SS304. Metall. Materi. Trans. A 2019, 50, 4750–4757. [Google Scholar] [CrossRef]
- Cigada, A.; Mazza, B.; Pedeferri, P.; Sinigaglia, D. Influence of cold plastic deformation on critical pitting potential of AISI 316 L and 304 L steels in an artificial physiological solution simulating the aggressiveness of the human body. J. Biomed. Mater. Res. 1977, 11, 503–512. [Google Scholar] [CrossRef]
- Bonagani, S.K.; Bathula, V.; Kain, V. Influence of tempering treatment on microstructure and pitting corrosion of 13wt.% Cr martensitic stainless steel. Corros. Sci. 2017, 131, 340–354. [Google Scholar] [CrossRef]
- Kaneko, K.; Fukunaga, T.; Yamada, K.; Nakada, N.; Kikuchi, M.; Saghi, Z.; Barnard, J.S.; Midgley, P.A. Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel. Scr. Mater. 2011, 65, 509–512. [Google Scholar] [CrossRef]
- Arioka, K.; Yamada, T.; Terachi, T.; Chiba, G. Influence of Carbide Precipitation and Rolling Direction on Intergranular Stress Corrosion Cracking of Austenitic Stainless Steels in Hydrogenated High-Temperature Water. Corrosion 2006, 62, 74–83. [Google Scholar] [CrossRef]
- Luo, H.; Yu, Q.; Dong, C.; Sha, G.; Liu, Z.; Liang, J.; Wang, L.; Han, G.; Li, X. Influence of the aging time on the microstructure and electrochemical behaviour of a 15-5PH ultra-high strength stainless steel. Corros. Sci. 2018, 139, 185–196. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, B.; Zhou, Y.; Wu, Y.; Zhu, H. Evaluation of pitting corrosion in duplex stainless steel Fe20Cr9Ni for nuclear power application. Acta Mater. 2020, 197, 172–183. [Google Scholar] [CrossRef]
- Lopez, N.; Cid, M.; Puiggali, M. Influence of o-phase on mechanical properties and corrosion resistance of duplex stainless steels. Corros. Sci. 1999, 41, 1615–1631. [Google Scholar] [CrossRef]
- Han, Y.; Zou, D.; Zhang, W.; Huang, R. Sigma Phase Precipitation of Duplex Stainless Steel and its Effect on Corrosion Resistance. Mater. Sci. Forum 2009, 620–622, 391–394. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, H.; Zhang, H.; Yu, Z.; Hu, J.; He, L.; Li, J. Effect of isothermal aging on the pitting corrosion resistance of UNS S82441 duplex stainless steel based on electrochemical detection. Corros. Sci. 2015, 93, 120–125. [Google Scholar] [CrossRef]
- Yu, Q.; Dong, C.; Liang, J.; Liu, Z.; Xiao, K.; Li, X. Stress corrosion cracking behavior of PH13-8Mo stainless steel in Cl− solutions. J. Iron Steel Res. Int. 2017, 24, 282–289. [Google Scholar] [CrossRef]
- Cooper, K.R.; Kelly, R.G. Crack tip chemistry and electrochemistry of environmental cracks in AA 7050. Corros. Sci. 2007, 49, 2636–2662. [Google Scholar] [CrossRef]
- Zadorozne, N.S.; Giordano, M.C.; Ares, A.E.; Carranza, R.M.; Rebak, R.B. Anodic characteristics and stress corrosion cracking behavior of nickel rich alloys in bicarbonate and buffer solutions. Corros. Sci. 2016, 108, 1–10. [Google Scholar] [CrossRef]
- Lu, Y.; Peng, Q.; Sato, T.; Shoji, T. An ATEM study of oxidation behavior of SCC crack tips in 304L stainless steel in high temperature oxygenated water. J. Nucl. Mater. 2005, 347, 52–68. [Google Scholar] [CrossRef]
- Galvele, J.R. Comments on “notes on the surface mobility mechanism of stress-corrosion cracking”, by K. Sieradzki and F. J. Friedersdorf. Corros. Sci. 1994, 36, 901–910. [Google Scholar] [CrossRef]
- Troiano, A.R. The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metals. Metallogr. Microstruct. Anal. 2016, 5, 557–569. [Google Scholar] [CrossRef]
- Bond, G.M.; Robertson, I.M.; Birnbaum, H.K. On the mechanisms of hydrogen embrittlement of Ni3Al alloys. Acta Metall. 1989, 37, 1407–1413. [Google Scholar] [CrossRef]
- Luu, W.C.; Liu, P.; Wu, J. Hydrogen transport and degradation of a commercial duplex stainless steel. Corros. Sci. 2002, 44, 1783–1791. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, S.; Liu, Z.; Du, C.; Li, X. Effect of cathodic polarisation on stress corrosion cracking behaviour of a Ni(Fe, Al)-maraging steel in artificial seawater. Corros. Sci. 2021, 179, 109176. [Google Scholar] [CrossRef]
- Dafft, E.G.; Bohnenkamp, K.; Engell, H.J. Investigations of the hydrogen evolution kinetics and hydrogen absorption by iron electrodes during cathodic polarization. Corros. Sci. 1979, 19, 591–612. [Google Scholar] [CrossRef]
- Liu, Z.; Du, C.; Li, C.; Li, X. Stress Corrosion Cracking of Welded API X70 Pipeline Steel in Simulated Underground Water. J. Mater. Eng. Perform. 2013, 22, 2550–2556. [Google Scholar] [CrossRef]
- Hashimoto, M.; Latanision, R.M. The role of dislocations during transport of hydrogen in hydrogen embrittlement of iron. Metall. Trans. A 1988, 19, 2799–2803. [Google Scholar] [CrossRef]
- Mohtadi-Bonab, M.A.; Eskandari, M.; Szpunar, J.A. Texture, local misorientation, grain boundary and recrystallization fraction in pipeline steels related to hydrogen induced cracking. Mater. Sci. Eng. A 2015, 620, 97–106. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, S.M. Hydrogen trapping phenomena in metals with B.C.C. and F.C.C. crystals structures by the desorption thermal analysis technique. Surf. Coat. Technol. 1986, 28, 301–314. [Google Scholar] [CrossRef]
- Shen, S.; Li, X.; Zhang, P.; Nan, Y.; Yang, G.; Song, X. Effect of solution-treated temperature on hydrogen embrittlement of 17-4 PH stainless steel. Mater. Sci. Eng. A 2017, 703, 413–421. [Google Scholar] [CrossRef]
- Wang, G.; Yan, Y.; Li, J.; Huang, J.; Qiao, L.; Volinsky, A.A. Microstructure effect on hydrogen-induced cracking in TM210 maraging steel. Mater. Sci. Eng. A 2013, 586, 142–148. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Wang, Y.; Shen, S.; Song, X. Effect of hydrogen on tensile properties and fracture behavior of PH 13-8 Mo steel. Mater. Des. 2016, 108, 608–617. [Google Scholar] [CrossRef]
- Tsay, L.W.; Chen, H.H.; Chiang, M.F.; Chen, C. The influence of aging treatments on sulfide stress corrosion cracking of PH 13-8 Mo steel welds. Corros. Sci. 2007, 49, 2461–2473. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, B.; Yi, H.; Hao, G.; Sun, Y.; Wang, J.; Han, E.H.; Ke, W. The role of reversed austenite in hydrogen embrittlement fracture of S41500 martensitic stainless steel. Acta Mater. 2017, 139, 188–195. [Google Scholar] [CrossRef]
- Wang, L.; Dong, C.; Yu, Q.; Man, C.; Hu, Y.; Dai, Z.; Li, X. The Correlation between the Distribution/Size of Carbides and Electrochemical Behavior of 17Cr-1Ni Ferritic-Martensitic Stainless Steel. Metall. Mater. Trans. A 2018, 50, 388–400. [Google Scholar] [CrossRef]
- GB/T 15970.7-2000. Slow strain rate testing. Guangdong Special Equipment Testing and Research Institute: Foshan, China, 2000.
- Wang, J.A.; Ren, F.; Tan, T.; Liu, K. The development of in situ fracture toughness evaluation techniques in hydrogen environment. Int. J. Hydrog. Energy 2015, 40, 2013–2024. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, D.; Koyama, M.; Hamada, S.; Noguchi, H. Tensile properties of precracked tempered martensitic steel specimens tested at ultralow strain rates in high-pressure hydrogen atmosphere. Philos. Mag. Lett. 2015, 95, 260–268. [Google Scholar] [CrossRef]
- An, L.; Cao, J.; Wu, L.; Mao, H.; Yang, Y. Effects of Mo and Mn on Pitting Behavior of Duplex Stainless Steel. J. Iron Steel Res. Int. 2016, 23, 1333–1341. [Google Scholar] [CrossRef]
- Wanklyn, J.N. The role of molybdenum in the crevice corrosion of stainless steels. Corros. Sci. 1981, 21, 211–225. [Google Scholar] [CrossRef]
- Pardo, A.; Merino, M.C.; Coy, A.E.; Viejo, F.; Arrabal, R.; Matykina, E. Pitting corrosion behaviour of austenitic stainless steels–combining effects of Mn and Mo additions. Corros. Sci. 2008, 50, 1796–1806. [Google Scholar] [CrossRef]
- Newman, R.C. The dissolution and passivation kinetics of stainless alloys containing molybdenum-1. Coulometric studies of Fe Cr and Fe Cr Mo alloys. Corros. Sci. 1985, 25, 331–339. [Google Scholar] [CrossRef]
- Yamashita, M.; Shimizu, T.; Konishi, H.; Mizuki, J.; Uchida, H. Structure and protective performance of atmospheric corrosion product of Fe–Cr alloy film analyzed by Mssbauer spectroscopy and with synchrotron radiation X-rays. Corros. Sci. 2003, 45, 381–394. [Google Scholar] [CrossRef]
- Song, Y.; Li, X.; Rong, L.; Li, Y. The influence of tempering temperature on the reversed austenite formation and tensile properties in Fe-13%Cr-4%Ni-Mo low carbon martensite stainless steels. Mater. Sci. Eng. A 2011, 528, 4075–4079. [Google Scholar] [CrossRef]
- Man, C.; Dong, C.; Kong, D.; Wang, L.; Li, X. Beneficial effect of reversed austenite on the intergranular corrosion resistance of martensitic stainless steel. Corros. Sci. 2019, 151, 108–121. [Google Scholar] [CrossRef]
- Ul-Hamid, A. Diverse scaling behavior of the Ni-20Cr alloy. Mater. Chem. Phys. 2003, 80, 135–142. [Google Scholar] [CrossRef]
- Wu, W.; Liu, Z.; Li, X.; Du, C.; Cui, Z. Influence of different heat-affected zone microstructures on the stress corrosion behavior and mechanism of high-strength low-alloy steel in a sulfurated marine atmosphere. Mater. Sci. Eng. A 2019, 759, 124–141. [Google Scholar] [CrossRef]
- Bechtle, S.; Kumar, M.; Somerday, B.P.; Launey, M.E.; Ritchie, R.O. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials. Acta Mater. 2009, 57, 4148–4157. [Google Scholar] [CrossRef] [Green Version]
- Olden, V.; Thaulow, C.; Johnsen, R. Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels. Mater. Des. 2008, 29, 1934–1948. [Google Scholar] [CrossRef]
- Gesnouin, C.; Hazarabedian, A.; Bruzzoni, P.; Ovejero-García, J.; Bilmes, P.; Llorente, C. Effect of post-weld heat treatment on the microstructure and hydrogen permeation of 13CrNiMo steels. Corros. Sci. 2004, 46, 1633–1647. [Google Scholar] [CrossRef]
- Donovan, J.A. Accelerated evolution of hydrogen from metals during plastic deformation. Metall. Trans. A 1976, 7, 1677–1683. [Google Scholar] [CrossRef]
- Nagao, A.; Dadfarnia, M.; Somerday, B.P.; Sofronis, P.; Ritchie, R.O. Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and “quasi-cleavage” fracture of lath martensitic steels. J. Mech. Phys. Solids 2018, 112, 403–430. [Google Scholar] [CrossRef]
- Pontini, A.E.; Hermida, J.D. X-ray diffraction measurement of the stacking fault energy reduction induced by hydrogen in an AISI 304 steel. Scr. Mater. 1997, 37, 1831–1837. [Google Scholar] [CrossRef]
- Lee, Y.; Gangloff, R.P. Measurement and Modeling of Hydrogen Environment–Assisted Cracking of Ultra-High-Strength Steel. Metall. Trans. A 2007, 38, 2174–2190. [Google Scholar] [CrossRef]
Element | C | Cr | Ni | Mo | Co | Fe |
---|---|---|---|---|---|---|
wt.% | 0.12 ± 0.003 | 13.5 ± 0.005 | 4.52 ± 0.005 | 5.36 ± 0.005 | 14.53 ± 0.005 | Bal. |
Heat Treatment States | Ecorr (V vs. SCE) | Icorr (uAcm−2) | Epit (V vs. SCE) | Ip (µAcm−2) |
---|---|---|---|---|
DC | −0.255±0.02 | 0.125 ± 0.02 | 0.193 ± 0.01 | 1.959 ± 0.02 |
480A-0.5 | −0.231±0.02 | 0.271 ± 0.02 | 0.087 ± 0.01 | 2.983 ± 0.02 |
480A-4 | −0.249±0.02 | 0.326 ± 0.02 | 0.039 ± 0.01 | 3.512 ± 0.02 |
480A-80 | −0.288±0.02 | 0.717 ± 0.02 | - | - |
540A-0.5 | −0.269±0.02 | 0.229 ± 0.02 | 0.026 ± 0.01 | 3.016 ± 0.02 |
540A-4 | −0.285±0.02 | 0.353 ± 0.02 | −0.019 ± 0.01 | 3.787 ± 0.02 |
540A-80 | −0.297±0.02 | 0.373 ± 0.02 | - | - |
600A-0.5 | −0.223±0.02 | 0.171 ± 0.02 | 0.063 ± 0.01 | 1.887 ± 0.02 |
600A-4 | −0.245±0.02 | 0.219 ± 0.02 | −0.066 ± 0.01 | 2.791 ± 0.02 |
600A-80 | −0.258±0.02 | 0.231 ± 0.02 | −0.093 ± 0.01 | 4.397 ± 0.02 |
Heat Treatment States | Rs (Ω cm2) | CPE1 (Ω−1cm2sn) | n1 | R1 (Ωcm2) | CPE2 (Ω−1cm2sn) | n2 | R2 (Ωcm2) |
---|---|---|---|---|---|---|---|
DC | 1.53 | 1.31 × 10−5 | 0.996 | 2.75 × 105 | 1.56 × 10−5 | 0.823 | 5.61 × 105 |
480A-0.5 | 1.19 | 2.57 × 10−5 | 0.863 | 1.49 × 105 | 2.54 × 10−5 | 0.877 | 2.16 × 105 |
480A-4 | 1.63 | 5.39 × 10−5 | 0.919 | 4.61 × 104 | 2.87 × 10−5 | 0.878 | 8.38 × 104 |
480A-80 | 1.45 | 6.88 × 10−5 | 0.915 | 1.55 × 102 | 3.39 × 10−5 | 0.826 | 3.23 × 104 |
540A-0.5 | 1.96 | 5.85 × 10−5 | 0.935 | 8.35 × 103 | 1.27 × 10−5 | 0.829 | 7.99 × 104 |
540A-4 | 1.85 | 6.14 × 10−5 | 0.926 | 2.05 × 102 | 1.19 × 10−5 | 0.802 | 7.12 × 104 |
540A-80 | 1.58 | 2.75 × 10−4 | 0.893 | 1.32 × 102 | 1.23 × 10−4 | 0.795 | 6.28 × 103 |
600A-0.5 | 1.22 | 1.92 × 10−5 | 0.837 | 1.62 × 105 | 2.02 × 10−5 | 0.919 | 2.43 × 105 |
600A-4 | 1.43 | 4.31 × 10−5 | 0.929 | 5.23 × 104 | 2.26 × 10−5 | 0.934 | 1.25 × 105 |
600A-80 | 1.26 | 4.98 × 10−5 | 0.879 | 3.19 × 104 | 2.35 × 10−5 | 0.926 | 1.12 × 105 |
Heat Treatment States | Ultimate Tensile Strength (mpa) | Elongation To Fracture (%) | Reduction of Area (%) | δloss (%) | ψloss (%) |
---|---|---|---|---|---|
DC-A | 1536.09 | 7.48 | 22.13 | 0.67 | 0.36 |
DC-S | 1535.53 | 7.43 | 22.05 | ||
480A-0.5-A | 1546.12 | 16.71 | 48.37 | 12.09 | 49.39 |
480A-0.5-S | 1545.34 | 14.69 | 24.48 | ||
480A-4-A | 1621.52 | 16.07 | 46.09 | 67.08 | 83.16 |
480A-4-S | 1494.19 | 5.29 | 7.76 | ||
480A-80-A | 1880.18 | 11.44 | 38.43 | 81.73 | 95.24 |
480A-80-S | 1300.14 | 2.09 | 1.83 | ||
540A-0.5-A | 1615.22 | 13.91 | 45.04 | 19.81 | 31.71 |
540A-0.5-S | 1599.29 | 9.73 | 30.76 | ||
540A-4-A | 1909.65 | 11.39 | 46.72 | 76.21 | 91.18 |
540A-4-S | 1162.21 | 2.71 | 4.12 | ||
540A-80-A | 1908.98 | 10.99 | 19.13 | 82.98 | 99.63 |
540A-80-S | 1121.16 | 1.87 | 0.07 | ||
600A-0.5-A | 1803.32 | 12.59 | 44.81 | 0.63 | 0.29 |
600A-0.5-S | 1784.99 | 12.51 | 44.68 | ||
600A-4-A | 1726.82 | 11.46 | 15.55 | 74.26 | 82.06 |
600A-4-S | 1387.97 | 2.95 | 2.79 | ||
600A-80-A | 1467.37 | 12.75 | 18.15 | 42.67 | 72.78 |
600A-80-S | 1417.36 | 7.31 | 4.94 |
Heat Treatment States | Mass Fraction of Elements in the Second Phase of the Specimens (wt.%) | |||||||
---|---|---|---|---|---|---|---|---|
Fe | Cr | Ni | Co | Mo | W | V | Σ | |
480A-4 | 0.063 | 0.034 | 0.007 | 0.005 | 0.102 | 0.019 | 0.002 | 0.232 |
540A-4 | 2.262 | 1.211 | 0.266 | 0.583 | 3.367 | 0.645 | 0.023 | 8.357 |
600A-4 | 3.591 | 1.923 | 0.419 | 0.916 | 5.361 | 1.021 | 0.038 | 13.269 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, S.; Liu, Z.; Fu, R.; Dong, C.; Wang, X. Effect of Organizational Evolution on the Stress Corrosion Cracking of the Cr-Co-Ni-Mo Series of Ultra-High Strength Stainless Steel. Materials 2022, 15, 497. https://doi.org/10.3390/ma15020497
Tian S, Liu Z, Fu R, Dong C, Wang X. Effect of Organizational Evolution on the Stress Corrosion Cracking of the Cr-Co-Ni-Mo Series of Ultra-High Strength Stainless Steel. Materials. 2022; 15(2):497. https://doi.org/10.3390/ma15020497
Chicago/Turabian StyleTian, Shuai, Zhenbao Liu, Renli Fu, Chaofang Dong, and Xiaohui Wang. 2022. "Effect of Organizational Evolution on the Stress Corrosion Cracking of the Cr-Co-Ni-Mo Series of Ultra-High Strength Stainless Steel" Materials 15, no. 2: 497. https://doi.org/10.3390/ma15020497
APA StyleTian, S., Liu, Z., Fu, R., Dong, C., & Wang, X. (2022). Effect of Organizational Evolution on the Stress Corrosion Cracking of the Cr-Co-Ni-Mo Series of Ultra-High Strength Stainless Steel. Materials, 15(2), 497. https://doi.org/10.3390/ma15020497