Where ppm Quantities of Silsesquioxanes Make a Difference—Silanes and Cage Siloxanes as TiO2 Dispersants and Stabilizers for Pigmented Epoxy Resins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instrumentation
2.2. Procedure for Hydrosilylation of Octaspherosilicates
2.3. Procedure for Preparation of iBu7SSQ-OEt
2.4. Procedure for Treatment of TiO2 with Organosilicon Compounds
2.5. Procedure for Preparation of TiO2/EP Composites
3. Results and Discussion
3.1. Characterization of the Obtained Products
3.2. Surface Properties of the Obtained Modified TiO2 Pigments
3.3. Microscopic Analysis and the Effect of Processing Methodology on TiO2 Dispersion
3.4. Pigment Stability and Hiding Power Studies
3.5. Mechanical Studies
3.6. Thermal Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chanda, M.; Roy, S.K. Industrial Polymers, Specialty Polymers, and Their Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Xanthos, M. Functional Fillers for Plastics, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2010. [Google Scholar]
- Faulkner, E.B.; Schwartz, R.J. High Performance Pigments, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2009. [Google Scholar]
- Buxbaum, G.; Pfaff, G. Industrial Inroganic Pigments, 3rd ed.; Wiley-VCH: Weinheim, Germany, 2005. [Google Scholar]
- Available online: https://www.icis.com/explore/resources/news/2020/04/17/10497512/europe-tio2-demand-buffeted-by-coronavirus-headwinds-loom (accessed on 8 November 2021).
- Dong, X.; Zhang, X.; Yu, X.; Jiang, Z.; Liu, X.; Li, C.; Sun, Z.; Zheng, S.; Dionysiou, D.D. A novel rutile TiO2/AlPO4 core-shell pigment with substantially suppressed photoactivity and enhanced dispersion stability. Powder Technol. 2020, 366, 537–545. [Google Scholar] [CrossRef]
- Xue, B.; Yan, R.; Wang, C.; Zhang, H.; Yue, Y.; Luo, J. Study on the characterization technology of hiding power of powder coating. J. Phys. Conf. Ser. 2021, 1965, 012046. [Google Scholar] [CrossRef]
- Plueddeman, E.P. Silane Coupling Agents, 2nd ed.; Springer Science + Business Media: New York, NY, USA, 1991. [Google Scholar]
- Kokszul, J. Materiały Polimerowe; Wydawnictwo Politechniki Częstochowskiej: Częstochowa, Poland, 1999. [Google Scholar]
- Misasi, J.M.; Jin, Q.; Knauer, K.M.; Morgan, S.E.; Wiggins, J.S. Hybrid POSS-Hyperbranched polymer additives for simultaneous reinforcement and toughness improvements in epoxy networks. Polymer 2017, 117, 54–63. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Chang, G.-P. Novel approach to preparing epoxy/polyhedral oligometric silsesquioxane hybrid materials possessing high mass fractions of polyhedral oligometric silsesquioxane and good homogeneity. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 1869–1876. [Google Scholar] [CrossRef]
- Strachota, A.; Whelan, P.; Kříž, J.; Brus, J.; Urbanová, M.; Šlouf, M.; Matějka, L. Formation of nanostructured epoxy networks containing polyhedral oligomeric silsesquioxane (POSS) blocks. Polymer 2007, 48, 3041–3058. [Google Scholar] [CrossRef]
- Brus, J.; Urbanová, M.; Strachota, A. Epoxy Networks Reinforced with Polyhedral Oligomeric Silsesquioxanes: Structure and Segmental Dynamics as Studied by Solid-State NMR. Macromolecules 2008, 41, 372–386. [Google Scholar] [CrossRef]
- Suliga, A.; Hamerton, I.; Viquerat, A. Cycloaliphatic epoxy-based hybrid nanocomposites reinforced with POSS or nanosilica for improved environmental stability in low Earth orbit. Compos. Part B Eng. 2018, 138, 66–76. [Google Scholar] [CrossRef]
- Frechette, M.F.; Anh, T.T.; Heid, T.; Vanga-Bouanga, C.; Ghafarizadeh, S.B.; David, E.; El-Khoury, D.; Castellon, J. Dielectric properties of epoxy composites containing both molecular and nanoparticulate silica. In Proceedings of the 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Toronto, ON, Canada, 16–19 October 2016. [Google Scholar] [CrossRef]
- Longhi, M.; Pistor, V.; Zini, L.P.; Kunst, S.R.; Zattera, A.J. Influence of Functionality of Polyhedral Oligomeric Silsesquioxane (POSS) Dispersed in Epoxy Resin for Application in Hybrid Coating. Mater. Sci. Forum 2017, 899, 278–282. [Google Scholar] [CrossRef]
- Heid, T.; Frechette, M.; David, E. Dielectric properties of epoxy/POSS composites. In Proceedings of the 2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Shenzhen, China, 20–23 October 2013. [Google Scholar] [CrossRef]
- Huang, X.; Li, Y.; Liu, F.; Jiang, P.; Iizuka, T.; Tatsumi, K.; Tanaka, T. Electrical properties of epoxy/POSS composites with homogeneous nanostructure. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 1516–1528. [Google Scholar] [CrossRef]
- Jahren, S.; Männle, F.; Graff, J.M.; Olafsen, K. The effect of hybrid nanoparticle additives on epoxy-nanocomposite behavior and morphology. J. Appl. Polym. Sci. 2011, 120, 3212–3216. [Google Scholar] [CrossRef]
- Fu, B.X.; Namani, M.; Lee, A. Influence of phenyl-trisilanol polyhedral silsesquioxane on properties of epoxy network glasses. Polymer 2003, 44, 7739–7747. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Yang, R. Blowing-out effect and temperature profile in condensed phase in flame retarding epoxy resins by phosphorus-containing oligomeric silsesquioxane. Polym. Adv. Technol. 2013, 24, 951–961. [Google Scholar] [CrossRef]
- Anoop, V.; Sankaraiah, S.; Jaisankar, S.N.; Chakraborty, S.; Mary, N.L. Enhanced mechanical, thermal and adhesion properties of polysilsesquioxane spheres reinforced epoxy nanocomposite adhesives. J. Adhes. 2019, 97, 1–18. [Google Scholar] [CrossRef]
- Bahrami, Z.; Akbari, A.; Eftekhari-Sis, B. Double network hydrogel of sodium alginate/polyacrylamide cross-linked with POSS: Swelling, dye removal and mechanical properties. Int. J. Biol. Macromol. 2019, 129, 187–197. [Google Scholar] [CrossRef]
- Wahab, M.A.; Kim, I.; Ha, C.-S. Microstructure and properties of polyimide/poly(vinylsilsesquioxane) hybrid composite films. Polymer 2003, 44, 4705–4713. [Google Scholar] [CrossRef]
- Anh, T.T.; Fréchette, M.; David, É.; Veillette, R.; Moraille, P. Effect of POSS-grafted titanium dioxide on the electrical and thermal properties of LDPE/TiO2 polymer nanocomposite. J. Appl. Polym. Sci. 2017, 135, 46095. [Google Scholar] [CrossRef]
- Zazoum, B.; Frechette, M.; David, E. Effect of POSS as compatibilizing agent on structure and dielectric response of LDPE/TiO2 nanocomposites. In Proceedings of the 2015 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Ann Arbor, MI, USA, 18–21 October 2015. [Google Scholar] [CrossRef]
- Li, X.; Mao, H.; Liu, Y.; Nie, M.; Wang, Q. Compatibilization of polyhedral oligomeric silsesquioxane for polypropylene-titanium dioxide composites and effect of the processing temperature. J. Appl. Polym. Sci. 2017, 134, 44766. [Google Scholar] [CrossRef]
- Wheeler, P.A.; Misra, R.; Cook, R.D.; Morgan, S.E. Polyhedral oligomeric silsesquioxane trisilanols as dispersants for titanium oxide nanopowder. J. Appl. Polym. Sci. 2008, 108, 2503–2508. [Google Scholar] [CrossRef]
- Peng, D.; Qin, W.; Wu, X. Improvement of the atomic oxygen resistance of carbon fiber-reinforced cyanate ester composites modified by POSS-graphene-TiO2. Polym. Degrad. Stab. 2016, 133, 211–218. [Google Scholar] [CrossRef]
- Dias Filho, N.L.; De Aquino, H.A.; Pires, G.; Caetano, L. Relationship between the Dielectric and Mechanical Properties and the Ratio of Epoxy Resin to Hardener of the Hybrid Thermosetting Polymers. J. Braz. Chem. Soc. 2006, 17, 533–541. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Wu, Y.; Zhang, W.; Yang, R. Synthesis of incompletely caged silsesquioxane (T7-POSS) compounds via a versatile three-step approach. Res. Chem. Intermed. 2018, 44, 4277–4294. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, Y.; Deng, Y.; Yang, C.; Chen, J.; Dai, L. Morphology and thermal properties of organic–inorganic hybrid material involving monofunctional-anhydride POSS and epoxy resin. Mater. Chem. Phys. 2011, 125, 174–183. [Google Scholar] [CrossRef]
- Brząkalski, D.; Przekop, R.E.; Dobrosielska, M.; Sztorch, B.; Marciniak, P.; Marciniec, B. Highly bulky spherosilicates as functional additives for polyethylene processing—Influence on mechanical and thermal properties. Polym. Compos. 2020, 41, 3389–3402. [Google Scholar] [CrossRef]
- Leito, I.; Herodes, K.; Huopolainen, M.; Virro, K.; Künnapas, A.; Kruve, A.; Tanner, R. Towards the electrospray ionization mass spectrometry ionization efficiency scale of organic compounds. Rapid Commun. Mass Spectrom. 2008, 22, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Cech, N.B.; Enke, C.G. Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom. Rev. 2001, 20, 362–387. [Google Scholar] [CrossRef] [PubMed]
- Przekop, R.E.; Jakubowska, P.; Sztorch, B.; Kozera, R.; Dydek, K.; Jałbrzykowski, M.; Osiecki, T.; Marciniak, P.; Martyła, A.; Kloziński, A.; et al. Opoka—Sediment Rock as New Type of Hybrid Mineral Filler for Polymer Composites. AppliedChem 2021, 1, 90–110. [Google Scholar] [CrossRef]
- Kochkar, H.; Figueras, F. Synthesis of Hydrophobic TiO2–SiO2 Mixed Oxides for the Epoxidation of Cyclohexene. J. Catal. 1997, 171, 420–430. [Google Scholar] [CrossRef]
- Nguyen, V.G.; Thai, H.; Mai, D.H.; Tran, H.T.; Tran, D.L.; Vu, M.T. Effect of titanium dioxide on the properties of polyethylene/TiO2 nanocomposites. Compos. Part B Eng. 2013, 45, 1192–1198. [Google Scholar] [CrossRef]
- Tuan, V.M.; Jeong, D.W.; Yoon, H.J.; Kang, S.; Vu Giang, N.; Hoang, T.; Thinh, T.I.; Kim, M.Y. Using Rutile TiO2Nanoparticles Reinforcing High Density Polyethylene Resin. Int. J. Polym. Sci. 2014, 2014, 758351. [Google Scholar] [CrossRef]
- Dobrosielska, M.; Dobrucka, R.; Gloc, M.; Brząkalski, D.; Szymański, M.; Kurzydłowski, K.J.; Przekop, R.E. A New Method of Diatomaceous Earth Fractionation—A Bio-Raw Material Source for Epoxy-Based Composites. Materials 2021, 14, 1663. [Google Scholar] [CrossRef]
- Yamini, S.; Young, R.J. Stability of crack propagation in epoxy resins. Polymer 1977, 18, 1075–1080. [Google Scholar] [CrossRef]
- Dobrosielska, M.; Dobrucka, R.; Brząkalski, D.; Gloc, M.; Rębiś, J.; Głowacka, J.; Kurzydłowski, K.J.; Przekop, R.E. Methodological Aspects of Obtaining and Characterizing Composites Based on Biogenic Diatomaceous Silica and Epoxy Resins. Materials 2021, 14, 4607. [Google Scholar] [CrossRef] [PubMed]
- Mayes, A.M. Softer at the boundary. Nat. Mater. 2005, 4, 651–652. [Google Scholar] [CrossRef]
- Bansal, A.; Yang, H.; Li, C.; Cho, K.; Benicewicz, B.C.; Kumar, S.K.; Schadler, L.S. Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat. Mater. 2005, 4, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Ash, B.J.; Schadler, L.S.; Siegel, R.W. Glass transition behavior of alumina/polymethylmethacrylate nanocomposites. Mater. Lett. 2002, 55, 83–87. [Google Scholar] [CrossRef]
Name | Abbreviation |
---|---|
Isobutyltrimethoxysilane | iBuTMOS |
3-glycidoxypropyltriethoxysilane | GPTES |
ethoxyhepta(isobutyl)octasilsesquioxane | iBu7SSQ-OEt |
hexa(3-glycidoxypropyl)di(trimethoxysilylethyl)octaspherosilicate | SS-6GP-2TMOS |
penta(3-glycidoxypropyl)tri(trimethoxysilylethyl)octaspherosilicate | SS-5GP-3TMOS |
Sample Name | Organosilicon Coupling Agent Type | Organosilicon Coupling Agent Amount [%] 1 | TiO2 Amount [%] | Mixing Method | Sample Code |
---|---|---|---|---|---|
1 | none | - | 1 | Mechanical stirrer | 1Ti(s) |
2 | none | - | 1 | Mixing pump | 1Ti(p) |
3 | none | - | 2 | Mixing pump | 2Ti(p) |
4 | iBuTMOS | 0.5 | 1 | Mixing pump | 1Ti05iBuTMOS(p) |
5 | iBuTMOS | 0.5 | 2 | Mixing pump | 2Ti05iBuTMOS(p) |
6 | iBuTMOS | 1.5 | 1 | Mechanical stirrer | 1Ti15iBuTMOS(s) |
7 | iBuTMOS | 1.5 | 1 | Mixing pump | 1Ti15iBuTMOS(p) |
8 | iBuTMOS | 1.5 | 2 | Mixing pump | 2Ti15iBuTMOS(p) |
9 | GPTES | 0.5 | 1 | Mixing pump | 1Ti05GPTES(p) |
10 | GPTES | 0.5 | 2 | Mixing pump | 2Ti05GPTES(p) |
11 | GPTES | 1.5 | 1 | Mechanical stirrer | 1Ti15GPTES(s) |
12 | GPTES | 1.5 | 1 | Mixing pump | 1Ti15GPTES(p) |
13 | GPTES | 1.5 | 2 | Mixing pump | 2Ti15GPTE (p) |
14 | iBu7SSQ-OEt | 0.5 | 1 | Mixing pump | 1Ti05iBu7SSQ-OEt(p) |
15 | iBu7SSQ-OEt | 0.5 | 2 | Mixing pump | 2Ti05iBu7SSQ-OEt(p) |
16 | iBu7SSQ-OEt | 1.5 | 1 | Mechanical stirrer | 1Ti15iBu7SSQ-OEt(s) |
17 | iBu7SSQ-OEt | 1.5 | 1 | Mixing pump | 1Ti15iBu7SSQ-OEt(p) |
18 | iBu7SSQ-OEt | 1.5 | 2 | Mixing pump | 2Ti15iBu7SSQ-OEt(p) |
19 | SS-6GP-2TMOS | 0.5 | 1 | Mixing pump | 1Ti05 SS-6GP-2TMOS (p) |
20 | SS-6GP-2TMOS | 0.5 | 2 | Mixing pump | 2Ti05 SS-6GP-2TMOS (p) |
21 | SS-6GP-2TMOS | 1.5 | 1 | Mechanical stirrer | 1Ti15 SS-6GP-2TMOS (s) |
22 | SS-6GP-2TMOS | 1.5 | 1 | Mixing pump | 1Ti15 SS-6GP-2TMOS (p) |
23 | SS-6GP-2TMOS | 1.5 | 2 | Mixing pump | 2Ti15 SS-6GP-2TMOS (p) |
24 | SS-5GP-3TMOS | 0.5 | 1 | Mixing pump | 1Ti05 SS-5GP-3TMOS (p) |
25 | SS-5GP-3TMOS | 0.5 | 2 | Mixing pump | 2Ti05 SS-5GP-3TMOS (p) |
26 | SS-5GP-3TMOS | 1.5 | 1 | Mixing pump | 1Ti15 SS-5GP-3TMOS (p) |
27 | SS-5GP-3TMOS | 1.5 | 2 | Mixing pump | 2Ti15 SS-5GP-3TMOS (p) |
Silane Coupling Agent Type | Silane Coupling Agent Amount [%] 1 | Water Contact Angle [°] |
---|---|---|
None | - | 0 |
iBuTMOS | 0.5 | 0 |
iBuTMOS | 1.5 | Superhydrophobic 2 |
GPTES | 0.5 | 0 |
GPTES | 1.5 | 0 |
iBu7SSQ-OEt | 0.5 | 0 |
iBu7SSQ-OEt | 1.5 | Superhydrophobic 2 |
SS-6GP-2TMOS | 0.5 | 0 |
SS-6GP-2TMOS | 1.5 | 0 |
SS-5GP-3TMOS | 0.5 | 0 |
SS-5GP-3TMOS | 1.5 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brząkalski, D.; Przekop, R.E.; Frydrych, M.; Pakuła, D.; Dobrosielska, M.; Sztorch, B.; Marciniec, B. Where ppm Quantities of Silsesquioxanes Make a Difference—Silanes and Cage Siloxanes as TiO2 Dispersants and Stabilizers for Pigmented Epoxy Resins. Materials 2022, 15, 494. https://doi.org/10.3390/ma15020494
Brząkalski D, Przekop RE, Frydrych M, Pakuła D, Dobrosielska M, Sztorch B, Marciniec B. Where ppm Quantities of Silsesquioxanes Make a Difference—Silanes and Cage Siloxanes as TiO2 Dispersants and Stabilizers for Pigmented Epoxy Resins. Materials. 2022; 15(2):494. https://doi.org/10.3390/ma15020494
Chicago/Turabian StyleBrząkalski, Dariusz, Robert E. Przekop, Miłosz Frydrych, Daria Pakuła, Marta Dobrosielska, Bogna Sztorch, and Bogdan Marciniec. 2022. "Where ppm Quantities of Silsesquioxanes Make a Difference—Silanes and Cage Siloxanes as TiO2 Dispersants and Stabilizers for Pigmented Epoxy Resins" Materials 15, no. 2: 494. https://doi.org/10.3390/ma15020494
APA StyleBrząkalski, D., Przekop, R. E., Frydrych, M., Pakuła, D., Dobrosielska, M., Sztorch, B., & Marciniec, B. (2022). Where ppm Quantities of Silsesquioxanes Make a Difference—Silanes and Cage Siloxanes as TiO2 Dispersants and Stabilizers for Pigmented Epoxy Resins. Materials, 15(2), 494. https://doi.org/10.3390/ma15020494