Effects of Aging Torque Controllers on Screw Tightening Force and Bacterial Micro-Leakage on the Implant-Abutment Complex
Abstract
:1. Introduction
2. Materials and Methods
- Control: Tightening measurements of torque controllers before tightening the abutments and the aging processes;
- Mechanical aging: Tightening the system to simulate clinical use without sterilization;
- Chemical aging: Tightening the system to simulate clinical use plus chemical sterilization after tightening, by immersing the devices in 2% phenol and an aldehyde-free, non-fixing disinfectant (Deconex 53 plus, Borer Chemie, Zuchwil, Switzerland) for 20 min;
- Temperature and pressure aging: Tightening the system to simulate clinical use plus autoclaving for 15 min at 135 °C after tightening;
- Combined aging: Tightening the system to simulate clinical use, plus applying chemical sterilization after tightening. Moreover, it was autoclaved at every tightening over a period of 30 days to simulate clinical use.
2.1. Experimental Design
- F. nucleatum: Sherdler broth (Becton, Dickinson and Company, Franklin Lakes, NJ, USA).
- P. gingivalis—Wilkins Chalgren Anaerobe broth (Oxoid Ltd., Hampshire, England).
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jemt, T. Failures and complications in 391 consecutively inserted fixed prostheses supported by Brånemark implants in edentulous jaws: A study of treatment from the time of prosthesis placement to the first annual checkup. Int. J. Oral Maxillofac. Implant. 1991, 6, 270–276. [Google Scholar] [CrossRef]
- Jemt, T.; Laney, W.R.; Harris, D.; Henry, P.J.; Krogh, P.H.; Polizzi, G.; A Zarb, G.; Herrmann, I. Osseointegrated implants for single tooth replacement: A 1-year report from a multicenter prospective study. Int. J. Oral Maxillofac. Implant. 1991, 6, 29–36. [Google Scholar]
- Dellinges, M.A.; Tebrock, O.C. A Measurement of Torque Values Obtained with Hand-Held Drivers in a Simulated Clinical Setting. J. Prosthodont. 1993, 2, 212–214. [Google Scholar] [CrossRef] [PubMed]
- McGlumphy, E.A.; Mendel, D.A.; Holloway, J.A. Implant screw mechanics. Dent. Clin. N. Am. 1998, 42, 71–89. [Google Scholar] [PubMed]
- Gratton, D.G.; Aquilino, S.A.; Stanford, C.M. Micromotion and dynamic fatigue properties of the dental implant-abutment interface. J. Prosthet. Dent. 2001, 85, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Neugebauer, J.; Petermöller, S.; Scheer, M.; Happe, A.; Faber, F.-J.; Zoeller, J. Comparison of Design and Torque Measurements of Various Manual Wrenches. Int. J. Oral Maxillofac. Implant. 2015, 30, 526–533. [Google Scholar] [CrossRef] [Green Version]
- A Weinberg, L. The biomechanics of force distribution in implant-supported prostheses. Int. J. Oral Maxillofac. Implant. 1993, 8, 19–31. [Google Scholar]
- Goheen, K.L.; Vermilyea, S.G.; Vossoughi, J.; Agar, J.R. Torque generated by handheld screwdrivers and mechanical torquing devices for osseointegrated implants. Int. J. Oral Maxillofac. Implant. 1994, 9, 149–155. [Google Scholar]
- Dellinges, M.; Curtis, D. Effects of infection control procedures on the accuracy of a new mechanical torque wrench system for implant restorations. J. Prosthet. Dent. 1996, 75, 93–98. [Google Scholar] [CrossRef]
- Steinebrunner, L.; Wolfart, S.; Bössmann, K.; Kern, M. In vitro evaluation of bacterial leakage along the implant-abutment interface of different implant systems. Int. J. Oral Maxillofac. Implant. 2006, 20, 875–881. [Google Scholar]
- McCracken, M.S.; Mitchell, L.; Hegde, R.; Mavalli, M.D. Variability of Mechanical Torque-Limiting Devices in Clinical Service at a US Dental School. J. Prosthodont. 2010, 19, 20–24. [Google Scholar] [CrossRef]
- Gross, M.; Abramovich, I.; Weiss, I.E. Microleakage at the abutment-implant interface of osseointegrated implants: A comparative study. Int. J. Oral Maxillofac. Implant. 1999, 14, 94–100. [Google Scholar]
- Larrucea, C.; Conrado, A.; Olivares, D.; Padilla, C.; Barrera, A.; Lobos, O. Bacterial microleakage at the abutment-implant interface, in vitro study. Clin. Implant. Dent. Relat. Res. 2018, 20, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Besimo, E.C.; Guindy, J.S.; Lewetag, D.; Meyer, J. Prevention of bacterial leakage into and from prefabricated screw-retained crowns on implants in vitro. Int. J. Oral Maxillofac. Implant. 1999, 14, 654–660. [Google Scholar]
- Mahshid, M.; Saboury, A.; Sadr, S.J.; Fayyaz, A.; Kadkhodazadeh, M. The combined effect of dismantling for steam sterilization and aging on the accuracy of spring-style mechanical torque devices. J. Periodontal Implant. Sci. 2013, 43, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Koutouzis, T.; Wallet, S.; Calderon, N.; Lundgren, T. Bacterial Colonization of the Implant-abutment Interface Using an In Vitro Dynamic Loading Model. J. Periodontol. 2011, 82, 613–618. [Google Scholar] [CrossRef]
- Cannata, M.; Grandi, T.; Samarani, R.; Svezia, L.; Grandi, G. A comparison of two implants with conical vs internal hexconnections: 1-year post-loading results from a multicentre, randomized controlled trial. Eur. J. Oral Implantol. 2017, 10, 161–168. [Google Scholar]
- Guerra, E.; Pereira, C.; Faria, R.; Jorge, A.O.C.; Bottino, M.A.; de Melo, R.M. The impact of conical and nonconical abutments on bacterial infiltration at the implant-abutment interface. Int. J. Periodont. Rest. Dent. 2016, 36, 825–831. [Google Scholar] [CrossRef] [Green Version]
- Do Nascimento, C.; Miani, P.K.; Pedrazzi, V.; Gonçalves, R.B.; Ribeiro, R.F.; Faria, A.C.L.; Macedo, A.P.; de Albuquerque, R.F., Jr. Leakage of saliva through the implant-abutment interface: In vitro evaluation of three different implant connections under unloaded and loaded conditions. Int. J. Oral Maxillofac. Implant. 2012, 27, 551–560. [Google Scholar]
- Da Silva-Neto, J.P.; Prudente, M.S.; Dantas, T.S.; Senna, P.; Ribeiro, R.F.; das Neves, F.D. Microleakage at Different Implant-Abutment Connections under Unloaded and Loaded Conditions. Implant. Dent. 2017, 26, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.K.; Chowdhary, R.; Kumari, S. Microleakage at the different implant abutment interface: A systematic review. J. Clin. Diagn. Res. 2017, 11, 10–15. [Google Scholar] [CrossRef]
- Signat, B.; Roques, C.; Poulet, P.; Duffaut, D. Role of Fusobacterium nucleatum in Periodontal Health and Disease. Curr. Issues Mol. Biol. 2011, 13, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, T.; Kita, M.; Oseko, F.; Nakamura, T.; Imanishi, J.; Kanamura, N. Cytokine production in human periodontal ligament cells stimulated with Porphyromonas gingivalis. J. Periodontal Res. 2006, 41, 554–559. [Google Scholar] [CrossRef]
- Pischon, N.; Rohner, E.; Hocke, A.; N’Guessan, P.; Muller, H.C.; Matziolis, G.; Kanitz, V.; Purucker, P.; Kleber, B.-M.; Bernimoulin, J.-P.; et al. Effects of Porphyromonas gingivalis on cell cycle progression and apoptosis of primary human chondrocytes. Ann. Rheum. Dis. 2009, 68, 1902–1907. [Google Scholar] [CrossRef]
- Diaz-Zuniga, J.; Monasterio, G.; Alvarez, C.; Melgar-Rodríguez, S.; Benítez, A.; Ciuchi, P.; García, M.; Arias, J.; Sanz, M.; Vernal, R. Variability of the dendritic cell response triggered by the different serotypes of Aggregatibacter actinomycetemcomitans or Porphyromonas gingivalis toll-like receptor 2 (TLR2) or TLR4 dependent. J. Periodontol. 2015, 86, 108–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdem, M.A.; Karatasli, B.; Kose, O.D.; Kose, T.E.; Çene, E.; Aya, S.A.; Cankaya, A.B. The Accuracy of New and Aged Mechanical Torque Devices Employed in Five Dental Implant Systems. BioMed Res. Int. 2017, 2017, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Saboury, A.; Sadr, S.J.; Fayaz, A.; Mahshid, M. The Effect of Aging on the Accuracy of New Friction-Style Mechanical Torque Limiting Devices for Dental Implants. J. Dent. (Tehran, Iran) 2013, 10, 41–50. [Google Scholar]
- Broggini, N.; McManus, L.; Hermann, J.; Medina, R.; Oates, T.; Schenk, R.; Buser, D.; Mellonig, J.; Cochran, D. Persistent Acute Inflammation at the Implant-Abutment Interface. J. Dent. Res. 2003, 82, 232–237. [Google Scholar] [CrossRef] [PubMed]
- L’Homme-Langlois, E.; Yilmaz, B.; Chien, H.H.; McGlumphy, E. Accuracy of mechanical torque-limiting devices for dental implants. J. Prosthet. Dent. 2015, 114, 524–528. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, B.; L’Homme-Langlois, E.; Beck, F.M.; McGlumphy, E. Accuracy of mechanical torque-limiting devices for dental implants after clinical service. J. Prosthet. Dent. 2015, 114, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Mahshid, M.; Saboury, A.; Fayaz, A.; Sadr, S.J.; Lampert, F.; Mir, M. The effect of steam sterilization on the accuracy of spring-style mechanical torque devices for dental implants. Clin. Cosmet. Investig Dent. 2012, 31, 29–35. [Google Scholar]
- Vallee, M.C.; Conrad, H.J.; Basu, S.; Seong, W.-J. Accuracy of friction-style and spring-style mechanical torque limiting devices for dental implants. J. Prosthet. Dent. 2008, 100, 86–92. [Google Scholar] [CrossRef]
- Do Nascimento, C.; Barbosa, R.E.S.; Issa, J.P.M.; Watanabe, E.; Ito, I.Y.; Albuquerque, R.F., Jr. Bacterial leakage along the implant-abutment interface of premachined or cast components. Int. J. Oral Maxillofac. Surg. 2008, 37, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Holt, S.C.; Ebersole, J.L. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: The ’red complex’, a prototype polybacterial pathogenic consortium in periodontitis. Periodontol. 2000 2005, 38, 72–122. [Google Scholar] [CrossRef] [PubMed]
- Tsuruta, K.; Ayukawa, Y.; Matsuzaki, T.; Kihara, M.; Koyano, K. The influence of implant-abutment connection on the screw loosening and microleakage. Int. J. Implant Dent. 2018, 4, 11. [Google Scholar] [CrossRef]
- Baj, A.; Beltramini, G.A.; Bolzoni, A.; Cura, F.; Palmieri, A.; Scarano, A.; Ottria, L.; Gianni, A. Bacterial colonization of the implant-abutment interface of conical connection with an internal octagon: An in vitro study using real-time PCR. J. Boil. Regul. Homeost. Agents 2017, 31, 163–168. [Google Scholar]
- Bueno, A.B.; Bittencourt, C.; Lamartine, C.; de Moraes, M.N.; Penitente, P.A.; Piza Pellizzer, E.; dos Santos, D.M.; Goiato, M.C. Comparison of the Morse Cone Connection with the Internal Hexagon and External Hexagon Connections Based on Microleakage—Review. Prague Med Report 2021, 122, 181–190. [Google Scholar]
- Vargas-Reus, M.A.; Memarzadeh, K.; Huang, J.; Ren, G.G.; Allaker, R.P. Antimicrobial activity of nano particulate metal oxides against peri-implantitis pathogens. Int. J. Antimicrob. Agents 2012, 40, 135–139. [Google Scholar] [CrossRef]
Mold Number | Type of Implant Connection | Type of Torque Controller | Implant Number | Type of Aging | Bacteria | Group |
---|---|---|---|---|---|---|
1 | Hex | Spring | 1–3 | Chemical | P. gingivalis | C |
5 | Conical | Spring | 4–6 | Mechanical | P. gingivalis | B |
2 | Hex | Spring | 7–9 | Combined | F. nucleatum | E |
6 | Conical | Spring | 10–12 | Temperature Pressure | F. nucleatum | D |
3 | Hex | Friction | 1–3 | Chemical | F. nucleatum | C |
7 | Conical | Friction | 4–6 | Mechanical | F. nucleatum | B |
4 | Hex | Friction | 7–9 | Combined | P. gingivalis | E |
8 | Conical | Friction | 10–12 | Temperature Pressure | P. gingivalis | D |
Device | Aging Method | Control ± SD | Day 10 ± SD | Day 20 ± SD | Day 30 ± SD |
---|---|---|---|---|---|
Friction style | Chemical | 32.67 ± 0.47 | 31.05 ± 0.23 | 30.66 ± 0.63 | 31.39 ± 0.47 |
Friction style | Mechanical | 33.44 ± 0.23 | 29.56 ± 0.84 | 32.33 ± 0.42 | 32.39 ± 0.41 |
Friction style | Combined | 32.28 ± 0.23 | 29.72 ± 0.40 | 29.55 ± 0.42 | 29.72 ± 0.31 |
Friction style | Autoclave | 32.33 ± 0.13 | 30.11 ± 0.41 | 30.33 ± 061 | 29.94 ± 0.412 |
Spring style | Chemical | 33.05 ± 1.61 | 30.44 ± 0.81 | 29.22 ± 0.93 | 31.61 ± 0.62 |
Spring style | Mechanical | 35.44 ± 1.81 | 30.88 ± 0.41 | 30.77 ± 0.42 | 30.97 ± 0.51 |
Spring style | Combined | 44.22 ± 1.55 | 29.78 ± 0.71 | 30.50 ± 0.81 | 29.55 ± 0. 64 |
Spring style | Autoclave | 41.72 ± 2.41 | 31.56 ± 0.71 | 31.06 ± 0.94 | 30.83 ± 0.73 |
Bacteria | Device | Aging Method | Abutment | No. of Penetrated Bacteria—HEX—Control | SD | No. of Penetrated Bacteria—HEX—Final | SD | Abutment | No. of Penetrated Bacteria—Conical—Control | SD | No. of Penetrated Bacteria–Conical—Final | SD |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pg | Spring style | Chemical | HEX | 201 | 34.32 ± 0.72 | 1,563,004 | 26.07 ± 0.04 | Conical | 23,841 | 31.9 ± 0.36 | 86,580,914 | 20.46 ± 0.04 |
Pg | Spring style | Chemical | HEX | 2694 | 30.21 ± 0.10 | 2,609,534 | 25.35 ± 0.06 | Conical | 371,311 | 28.07 ± 0.11 | 33,972,949 | 21.77 ± 0.01 |
Pg | Spring style | Chemical | HEX | N/A | >35 ** | 1,863,102 | 25.82 ± 0.16 | Conical | 909,712 | 26.82 ± 0.19 | 9,864,718 | 23.49 ± 0.05 |
Pg | Spring style | Mechanical | HEX | 2537 | 30.31 ± 0.02 | 1,035,009 | 26.64 ± 0.01 | Conical | 174,294 | 29.12 ± 0.10 | 252,850,757 | 18.97 ± 0.07 |
Pg | Spring style | Mechanical | HEX | 904 | 31.94 ± 0.66 | 21,939,182 | 22.38 ± 0.03 | Conical | 169,975 | 29.16 ± 0.14 | 24,168,534 | 22.25 ± 0.05 |
Pg | Spring style | Mechanical | HEX | N/A | >35 ** | 5,845,369 | 24.23 ± 0.02 | Conical | 936,175 | 26.78 ± 0.01 | 6,893,161 | 24.00 ± 0.01 |
Pg | Friction style | Combined | HEX | 1320 | 31.34 ± 0.38 | 4,748,162 | 24.52 ± 0.04 | Conical | 678,043 | 27.23 ± 0.07 | 5,441,000 | 24.33 ± 0.09 |
Pg | Friction style | Combined | HEX | 443 | 33.07 ± 0.71 | 48,098,276 | 21.29 ± 0.04 | Conical | 1,803,958 | 25.86 ± 0.02 | 108,515,532 | 20.15 ± 0.16 |
Pg | Friction style | Combined | HEX | 567 | 32.68 ± 0.04 | 214,570 | 28.84 ± 0.06 | Conical | 25,871,815 | 22.15 ± 0.09 | 52,044,650 | 21.18 ± 0.04 |
Pg | Friction style | Autoclave | HEX | 921 | 31.91 ± 0.14 | 103,279 | 29.86 ± 0.46 | Conical | 2,134,960 | 25.63 ± 0.15 | 12,769,220 | 23.14 ± 0.02 |
Pg | Friction style | Autoclave | HEX | 493 | 32.90 ± 0.47 | 3,305,998 | 25.02 ± 0.11 | Conical | 22,658,459 | 22.33 ± 0.26 | 21,860,685 | 22.39 ± 0.01 |
Pg | Friction style | Autoclave | HEX | 362 | 33.39 ± 0.98 | 5,499,823 | 24.31 ± 0.25 | Conical | 11,843,347 | 23.24 ± 0.12 | 16,004,206 | 22.82 ± 0.27 |
Fn | Friction style | Chemical | HEX | 10,330 | 28.08 ± 0.10 | 2,198,798 | 19.59 ± 0.01 | Conical | N/A | >35 ** | 8,221,682 | 17.50 ± 0.11 |
Fn | Friction style | Mechanical | HEX | 4449 | 29.42 ± 0.18 | 2,632,031 | 19.30 ± 0.07 | Conical | 1322 | 31.33 ± 0.18 | 370,979 | 22.41 ± 0.08 |
Fn | Friction style | Mechanical | HEX | 7164 | 28.66 ± 0.08 | 18,113 | 27.19 ± 0.10 | Conical | 2226 | 30.50 ± 0.03 | 1,356,854 | 20.35 ± 0.04 |
Fn | Friction style | Mechanical | HEX | 655 | 32.45 ± 0.01 | 3,631,275 | 18.79 ± 0.03 | Conical | 430 | 33.11 ± 0.15 | 15,020,465 | 16.54 ± 0.01 |
Fn | Spring style | Combined | HEX | 2989 | 30.05 ± 0.05 | 360,593 | 22.45 ± 0.03 | Conical | 587 | 32.61 ± 0.02 | 1,054,171 | 20.75 ± 0.14 |
Fn | Spring style | Combined | HEX | 2404 | 30.39 ± 0.06 | 207,596 | 23.33 ± 0.18 | Conical | N/A | >35 ** | 900,321 | 21.00 ± 0.06 |
Fn | Spring style | Combined | HEX | 474 | 32.97 ± 0.09 | 1,593,739 | 20.10 ± 0.02 | Conical | 3806 | 29.65 ± 0.007 | 1,365,443 | 20.34 ± 0.18 |
Fn | Spring style | Autoclave | HEX | 7752 | 28.54 ± 0.02 | 17,774 | 27.22 ± 0.01 | Conical | 548 | 32.72 ± 0.007 | 7,574,143 | 17.63 ± 0.06 |
Fn | Spring style | Autoclave | HEX | 1438 | 31.21 ± 0.22 | 2,269,280 | 19.54 ± 0.06 | Conical | 438 | 33.08 ± 0.24 | 5,057,527 | 18.27 ± 0.05 |
Fn | Spring style | Autoclave | HEX | 248 | 33.99 ± 0.41 | 1,774,216 | 19.93 ± 0.05 | Conical | 717 | 32.3 ± 0.01 | 1,199,754 | 20.55 ± 0.09 |
Fn | Friction style | Chemical | HEX | 849 | 32.04 ± 0.21 | 1,735,460 | 19.96 ± 0.01 | Conical | 1623 | 31.00 ± 0.07 | 745,042 | 21.30 ± 0.03 |
Fn | Friction style | Chemical | HEX | 1743 | 27.06 ± 0.04 | 19,724 | 27.06 ± 0.04 | Conical | 246 | 33.99 ± 0.47 | 1,257,901 | 20.47 ± 0.04 |
Variable | DF | Sum sq. | Mean sq. | F-Value | Pr (>F) |
Bacteria | 1 | 7.492 × 1015 | 7.492 × 1015 | 5.050 | 0.0301 * |
Connection | 1 | 5.090 × 1015 | 5.090 × 1015 | 3.431 | 0.0712 |
Controller | 1 | 1.187 × 1015 | 1.187 × 1015 | 0.800 | 0.3762 |
Chemical a. | 3 | 3.301 × 1015 | 1.100 × 1015 | 0.742 | 0.5333 |
Residuals | 41 | 6.082 × 1016 | 1.483 × 1015 | ||
Variable | DF | Sum sq. | Mean sq. | F-Value | Pr (>F) |
Bacteria | 1 | 7.492 × 1015 | 7.492 × 1015 | 5.050 | 0.0301 * |
Connection | 1 | 5.090 × 1015 | 5.090 × 1015 | 3.431 | 0.0712 |
Controller | 1 | 1.187 × 1015 | 1.187 × 1015 | 0.800 | 0.3762 |
Chemical a. | 3 | 3.301 × 1015 | 1.100 × 1015 | 0.742 | 0.5333 |
Residuals | 41 | 6.082 × 1016 | 1.483 × 1015 |
Estimate | Std. Error | t Value | Pr (>|t|) | |
---|---|---|---|---|
Intercept | 33,912,159 | 14,708,550 | 2.306 | 0.0263 * |
P. gingivalis | −24,986,453 | 11,118,619 | −2.247 | 0.0301 * |
Conical c. | 20,594,575 | 11,118,619 | 1.852 | 0.0712 |
Friction t. | −9,946,210 | 11,118,619 | −0.895 | 0.3762 |
Chemical a. | −13,986,462 | 15,724,102 | −0.889 | 0.3789 |
Autoclave a. | −23,082,246 | 15,724,102 | −1.468 | 0.1497 |
Combined a. | −9,842,443 | 15,724,102 | −0.626 | 0.5348 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiries, Y.; Brosh, T.; Matalon, S.; Perlis, V.; Ormianer, Z. Effects of Aging Torque Controllers on Screw Tightening Force and Bacterial Micro-Leakage on the Implant-Abutment Complex. Materials 2022, 15, 620. https://doi.org/10.3390/ma15020620
Jiries Y, Brosh T, Matalon S, Perlis V, Ormianer Z. Effects of Aging Torque Controllers on Screw Tightening Force and Bacterial Micro-Leakage on the Implant-Abutment Complex. Materials. 2022; 15(2):620. https://doi.org/10.3390/ma15020620
Chicago/Turabian StyleJiries, Yousef, Tamar Brosh, Shlomo Matalon, Vladimir Perlis, and Zeev Ormianer. 2022. "Effects of Aging Torque Controllers on Screw Tightening Force and Bacterial Micro-Leakage on the Implant-Abutment Complex" Materials 15, no. 2: 620. https://doi.org/10.3390/ma15020620
APA StyleJiries, Y., Brosh, T., Matalon, S., Perlis, V., & Ormianer, Z. (2022). Effects of Aging Torque Controllers on Screw Tightening Force and Bacterial Micro-Leakage on the Implant-Abutment Complex. Materials, 15(2), 620. https://doi.org/10.3390/ma15020620