Investigation of Impact Resistance of High-Strength Portland Cement Concrete Containing Steel Fibers
Abstract
:1. Introduction
2. Research Background
3. Materials and Methods
3.1. Materials
3.2. Mixing of Concrete and Casting of the Test Specimens
3.3. Tests
4. Results and Discussion
4.1. Compressive Strength
4.2. Splitting Tensile Strength
4.3. Impact Strength
4.3.1. First Crack Strength
4.3.2. Failure Strength
4.3.3. The Frequency of Blows after the Initial Crack
4.3.4. Ductility Index and Impact Energy
4.3.5. Prediction of Impact Failure Strength
4.4. Validation of Results
5. Conclusions
- The presence of different steel fibers improves the compressive strength by 22% to 40%, and 5 cm corrugated fibers allow the greatest increase in strength. In addition, humid-cured samples have higher compressive strength (up to 12%).
- The presence of different steel fibers improves the tensile strength by 17% to 60%, and 3 cm hooked-end steel fibers allow the greatest increase in strength. The humid-cured samples also have higher tensile strength (up to 21%).
- The presence of steel fibers in concrete improves some parameters. For example, the number of blows for first-crack strength, failure strength, and energy absorption increase by 1.194–2.288 times, 1.224–3.033 times, and 1.83–6.5 times, respectively. Fiber shape also had an impact on the strength of the concrete, with the best performance being the 3 cm hooks.
- The comparison of F2 and F5 shows that taking into account the ratio of length to diameter, the presence of crimped fibers with a higher ratio of length to diameter has a better performance in increasing the strength of the first crack and failure.
- The relationships obtained in this study indicate a high correlation between first-crack strength and failure strength. Statistical analysis (Kolmogorov–Smirnov and Kruskal–Wallis) also shows a more normal distribution of humid environments and a significant difference in steel-reinforced concrete by p-value.
- In addition to adding fibers to concrete, proper curing can also improve impact strength. This shows the importance of the hydration process for concrete.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
CS | compressive strength |
C | cellulose fiber |
E | impact energy |
FS | flexural strength |
Fc | first crack |
g | gravitation acceleration |
HSC | high-strength concrete |
HPC | high-performance concrete |
h | height of drop |
INPB | the increase in the number of post-first-crack blows |
IS | impact strength |
K-S | the Kolmogorov–Smirnov test |
K-W | the Kruskal–Wallis test |
l/d | the length/diameter |
MK | metakaolin |
M | mass of hammer |
MAD | the mean absolute deviation |
MAPE | the mean absolute percentage error |
Nfirst | first visual crack |
Nfail | ultimate crack |
Np-fail | the failure strength |
Np | the predicted fracture strength |
NM | the failure strength measured |
PP | polypropylene |
PCC | Portland cement concrete |
RG | recycled glass |
RC | recycled Carbon |
R2 | the coefficient of determination |
SF | steel fiber |
TS | tensile strength |
UC | ultimate crack |
W/B | water-to-binder ratio |
λ | ductility index |
References
- Afroughsabet, V.; Biolzi, L.; Monteiro, P.J. The effect of steel and polypropylene fibers on the chloride diffusivity and drying shrinkage of high-strength concrete. Compos. Part B Eng. 2018, 139, 84–96. [Google Scholar] [CrossRef]
- Celik, K.; Meral, C.; Mancio, M.; Mehta, P.K.; Monteiro, P.J. A comparative study of self-consolidating concretes incorporating high-volume natural pozzolan or high-volume fly ash. Constr. Build. Mater. 2014, 67, 14–19. [Google Scholar] [CrossRef]
- Mansoori, A.; Moein, M.M.; Mohseni, E. Effect of micro silica on fiber-reinforced self-compacting composites containing ceramic waste. J. Compos. Mater. 2021, 55, 95–107. [Google Scholar] [CrossRef]
- Saha, A.K.; Khan, M.N.N.; Sarker, P.K.; Shaikh, F.A.; Pramanik, A. The ASR mechanism of reactive aggregates in concrete and its mitigation by fly ash: A critical review. Constr. Build. Mater. 2018, 171, 743–758. [Google Scholar] [CrossRef]
- Tahmouresi, B.; Nemati, P.; Asadi, M.A.; Saradar, A.; Moein, M.M. Mechanical strength and microstructure of engineered cementitious composites: A new configuration for direct tensile strength, experimental and numerical analysis. Constr. Build. Mater. 2021, 269, 121361. [Google Scholar] [CrossRef]
- Aggarwal, Y.; Siddique, R. Microstructure and properties of concrete using bottom ash and waste foundry sand as partial replacement of fine aggregates. Constr. Build. Mater. 2014, 54, 210–223. [Google Scholar] [CrossRef] [Green Version]
- Ghasemzadeh Mosavinejad, H.; Saradar, A.; Tahmouresi, B. Hoop stress-strain in fiber-reinforced cementitious composite thin-walled cylindrical shells. J. Mater. Civ. Eng. 2018, 30, 04018258. [Google Scholar] [CrossRef]
- Koushkbaghi, M.; Alipour, P.; Tahmouresi, B.; Mohseni, E.; Saradar, A.; Sarker, P.K. Influence of different monomer ratios and recycled concrete aggregate on mechanical properties and durability of geopolymer concretes. Constr. Build. Mater. 2019, 205, 519–528. [Google Scholar] [CrossRef]
- Saradar, A.; Tahmouresi, B.; Mohseni, E.; Shadmani, A. Restrained shrinkage cracking of fiber-reinforced high-strength concrete. Fibers 2018, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Johari, M.M.; Brooks, J.; Kabir, S.; Rivard, P. Influence of supplementary cementitious materials on engineering properties of high strength concrete. Constr. Build. Mater. 2011, 25, 2639–2648. [Google Scholar] [CrossRef]
- Wille, K.; Naaman, A.E.; Parra-Montesinos, G.J. Ultra-High Performance Concrete with Compressive Strength Exceeding 150 MPa (22 ksi): A Simpler Way. ACI Mater. J. 2011, 108, 34–46. [Google Scholar]
- El-Helou, R.G.; Haber, Z.B.; Graybeal, B.A. Mechanical Behavior and Design Properties of Ultra-High-Performance Concrete. ACI Mater. J. 2022, 119, 181–194. [Google Scholar]
- Nia, A.A.; Hedayatian, M.; Nili, M.; Sabet, V.A. An experimental and numerical study on how steel and polypropylene fibers affect the impact resistance in fiber-reinforced concrete. Int. J. Impact Eng. 2012, 46, 62–73. [Google Scholar]
- Sharma, R.; Jang, J.G.; Bansal, P.P. A comprehensive review on effects of mineral admixtures and fibers on engineering properties of ultra-high-performance concrete. J. Build. Eng. 2022, 45, 103314. [Google Scholar] [CrossRef]
- Neville, A.M. Properties of Concrete; Pitman: Wetherby, UK, 1973. [Google Scholar]
- Saradar, A.; Nemati, P.; Paskiabi, A.S.; Moein, M.M.; Moez, H.; Vishki, E.H. Prediction of mechanical properties of lightweight basalt fiber reinforced concrete containing silica fume and fly ash: Experimental and numerical assessment. J. Build. Eng. 2020, 32, 101732. [Google Scholar] [CrossRef]
- Abbass, W.; Khan, M.I.; Mourad, S. Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete. Constr. Build. Mater. 2018, 168, 556–569. [Google Scholar] [CrossRef]
- El-Dieb, A.S. Mechanical, durability and microstructural characteristics of ultra-high-strength self-compacting concrete incorporating steel fibers. Mater. Des. 2009, 30, 4286–4292. [Google Scholar] [CrossRef]
- Nili, M.; Afroughsabet, V. Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete. Int. J. Impact Eng. 2010, 37, 879–886. [Google Scholar] [CrossRef] [Green Version]
- ACI Committee 544. Measurement of Properties of Fiber Reinforced Concrete; American Concrete Institute: Farmington Hills, MI, USA, 1988; pp. 583–593. [Google Scholar]
- Rahmani, T.; Kiani, B.; Shekarchi, M.; Safari, A. Statistical and experimental analysis on the behavior of fiber reinforced concretes subjected to drop weight test. Constr. Build. Mater. 2012, 37, 360–369. [Google Scholar] [CrossRef]
- Güneyisi, E.; Gesoğlu, M.; Akoi, A.O.M.; Mermerdaş, K. Combined effect of steel fiber and metakaolin incorporation on mechanical properties of concrete. Compos. Part B Eng. 2014, 56, 83–91. [Google Scholar] [CrossRef]
- Chen, G.; He, Y.; Yang, H.; Chen, J.; Guo, Y. Compressive behavior of steel fiber reinforced recycled aggregate concrete after exposure to elevated temperatures. Constr. Build. Mater. 2014, 71, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Nataraja, M.; Nagaraj, T.; Basavaraja, S. Reproportioning of steel fibre reinforced concrete mixes and their impact resistance. Cem. Concr. Res. 2005, 35, 2350–2359. [Google Scholar] [CrossRef]
- Nataraja, M.; Dhang, N.; Gupta, A. Statistical variations in impact resistance of steel fiber-reinforced concrete subjected to drop weight test. Cem. Concr. Res. 1999, 29, 989–995. [Google Scholar] [CrossRef]
- Song, P.; Wu, J.; Hwang, S.; Sheu, B. Assessment of statistical variations in impact resistance of high-strength concrete and high-strength steel fiber-reinforced concrete. Cem. Concr. Res. 2005, 35, 393–399. [Google Scholar] [CrossRef]
- Olivito, R.; Zuccarello, F. An experimental study on the tensile strength of steel fiber reinforced concrete. Compos. Part B Eng. 2010, 41, 246–255. [Google Scholar] [CrossRef]
- Gesoğlu, M.; Güneyisi, E.; Alzeebaree, R.; Mermerdaş, K. Effect of silica fume and steel fiber on the mechanical properties of the concretes produced with cold bonded fly ash aggregates. Constr. Build. Mater. 2013, 40, 982–990. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Gohil, U.; Gries, T.; Yoon, Y.-S. Comparative low-velocity impact response of textile-reinforced concrete and steel-fiber-reinforced concrete beams. J. Compos. Mater. 2016, 50, 2421–2431. [Google Scholar] [CrossRef]
- Rizzuti, L.; Bencardino, F. Effects of fibre volume fraction on the compressive and flexural experimental behaviour of SFRC. Contemp. Eng. Sci. 2014, 7, 379–390. [Google Scholar] [CrossRef]
- Nili, M.; Afroughsabet, V. Property assessment of steel–fibre reinforced concrete made with silica fume. Constr. Build. Mater. 2012, 28, 664–669. [Google Scholar] [CrossRef]
- Nili, M.; Ghorbankhani, A.; AlaviNia, A.; Zolfaghari, M. Assessing the impact strength of steel fibre-reinforced concrete under quasi-static and high velocity dynamic impacts. Constr. Build. Mater. 2016, 107, 264–271. [Google Scholar] [CrossRef]
- Yan, H.; Sun, W.; Chen, H. The effect of silica fume and steel fiber on the dynamic mechanical performance of high-strength concrete. Cem. Concr. Res. 1999, 29, 423–426. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L. Experimental study on static and dynamic mechanical properties of steel fiber reinforced lightweight aggregate concrete. Constr. Build. Mater. 2013, 38, 1146–1151. [Google Scholar] [CrossRef]
- Atiş, C.D.; Karahan, O. Properties of steel fiber reinforced fly ash concrete. Constr. Build. Mater. 2009, 23, 392–399. [Google Scholar] [CrossRef]
- Nazarimofrad, E.; Shaikh, F.U.A.; Nili, M. Effects of steel fibre and silica fume on impact behaviour of recycled aggregate concrete. J. Sustain. Cem.-Based Mater. 2017, 6, 54–68. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, G. Properties of steel fibre reinforced concrete containing larger coarse aggregate. Cem. Concr. Compos. 1995, 17, 199–206. [Google Scholar] [CrossRef]
- Altun, F.; Haktanir, T.; Ari, K. Effects of steel fiber addition on mechanical properties of concrete and RC beams. Constr. Build. Mater. 2007, 21, 654–661. [Google Scholar] [CrossRef]
- Mohammadi, Y.; Singh, S.; Kaushik, S. Properties of steel fibrous concrete containing mixed fibres in fresh and hardened state. Constr. Build. Mater. 2008, 22, 956–965. [Google Scholar] [CrossRef]
- Mahakavi, P.; Chithra, R. Impact resistance, microstructures and digital image processing on self-compacting concrete with hooked end and crimped steel fiber. Constr. Build. Mater. 2019, 220, 651–666. [Google Scholar] [CrossRef]
- Carneiro, J.A.; Lima, P.R.L.; Leite, M.B.; Toledo Filho, R.D. Compressive stress–strain behavior of steel fiber reinforced-recycled aggregate concrete. Cem. Concr. Compos. 2014, 46, 65–72. [Google Scholar] [CrossRef]
- Afroughsabet, V.; Biolzi, L.; Ozbakkaloglu, T. Influence of double hooked-end steel fibers and slag on mechanical and durability properties of high performance recycled aggregate concrete. Compos. Struct. 2017, 181, 273–284. [Google Scholar] [CrossRef]
- Ibrahim, I.; Bakar, M.C. Effects on mechanical properties of industrialised steel fibres addition to normal weight concrete. Procedia Eng. 2011, 14, 2616–2626. [Google Scholar] [CrossRef] [Green Version]
- Huo, W.; Zhang, S. Research and Statistical Analysis on Impact Resistance of Steel Fiber Expanded Polystyrene Concrete and Expanded Polystyrene Concrete. Materials 2022, 15, 4216. [Google Scholar] [CrossRef]
- Eren, Ö.; Marar, K. Effects of limestone crusher dust and steel fibers on concrete. Constr. Build. Mater. 2009, 23, 981–988. [Google Scholar] [CrossRef]
- Düzgün, O.A.; Gül, R.; Aydin, A.C. Effect of steel fibers on the mechanical properties of natural lightweight aggregate concrete. Mater. Lett. 2005, 59, 3357–3363. [Google Scholar] [CrossRef]
- Alrawashdeh, A.; Eren, O. Mechanical and physical characterisation of steel fibre reinforced self-compacting concrete: Different aspect ratios and volume fractions of fibres. Results Eng. 2022, 13, 100335. [Google Scholar] [CrossRef]
- Kachouh, N.; El-Hassan, H.; El-Maaddawy, T. Effect of steel fibers on the performance of concrete made with recycled concrete aggregates and dune sand. Constr. Build. Mater. 2019, 213, 348–359. [Google Scholar] [CrossRef]
- Rai, B.; Singh, N.K. Statistical and experimental study to evaluate the variability and reliability of impact strength of steel-polypropylene hybrid fiber reinforced concrete. J. Build. Eng. 2021, 44, 102937. [Google Scholar] [CrossRef]
- Ghorpade, V.G.; Rao, H.S. Strength and permeability characteristics of Fibre reinforced recycled aggregate concrete with different fibres. Nat. Environ. Pollut. Technol. 2010, 9, 179–188. [Google Scholar]
- Lee, S.-C.; Oh, J.-H.; Cho, J.-Y. Compressive behavior of fiber-reinforced concrete with end-hooked steel fibers. Materials 2015, 8, 1442–1458. [Google Scholar] [CrossRef] [Green Version]
- Bywalski, C.; Kamiński, M.; Maszczak, M.; Balbus, Ł. Influence of steel fibres addition on mechanical and selected rheological properties of steel fibre high-strength reinforced concrete. Arch. Civ. Mech. Eng. 2015, 15, 742–750. [Google Scholar] [CrossRef]
- Pham, K.V.A.; Nguyen, K.T.; Le, T.A.; Lee, K. Investigation of impact behavior of innovative non-curing steel fiber geopolymer composites. Case Stud. Constr. Mater. 2022, 16, e01011. [Google Scholar] [CrossRef]
- Mastali, M.; Dalvand, A.; Sattarifard, A.; Abdollahnejad, Z.; Illikainen, M. Characterization and optimization of hardened properties of self-consolidating concrete incorporating recycled steel, industrial steel, polypropylene and hybrid fibers. Compos. Part B Eng. 2018, 151, 186–200. [Google Scholar] [CrossRef]
- Hu, H.; Papastergiou, P.; Angelakopoulos, H.; Guadagnini, M.; Pilakoutas, K. Mechanical properties of SFRC using blended recycled tyre steel cords (RTSC) and recycled tyre steel fibres (RTSF). Constr. Build. Mater. 2018, 187, 553–564. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, L. Flexural performance and evaluation method of steel fiber reinforced recycled coarse aggregate concrete. Constr. Build. Mater. 2018, 159, 126–136. [Google Scholar] [CrossRef]
- Ismail, M.K.; Hassan, A.A. Impact resistance and mechanical properties of self-consolidating rubberized concrete reinforced with steel fibers. J. Mater. Civ. Eng. 2017, 29, 04016193. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, L.; Zhao, J.; You, P. Durability of steel fibre-reinforced recycled coarse aggregate concrete. Constr. Build. Mater. 2020, 232, 117119. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, Z.; Lu, Z.; Sun, M. Coupling effects of silica fume and steel-fiber on the compressive behaviour of recycled aggregate concrete after exposure to elevated temperature. Constr. Build. Mater. 2018, 184, 752–764. [Google Scholar] [CrossRef]
- Söylev, T.; Özturan, T. Durability, physical and mechanical properties of fiber-reinforced concretes at low-volume fraction. Constr. Build. Mater. 2014, 73, 67–75. [Google Scholar] [CrossRef]
- Chen, X.-y.; Ding, Y.-n.; Azevedo, C. Combined effect of steel fibres and steel rebars on impact resistance of high performance concrete. J. Cent. South Univ. 2011, 18, 1677–1684. [Google Scholar] [CrossRef] [Green Version]
- Ou, Y.-C.; Tsai, M.-S.; Liu, K.-Y.; Chang, K.-C. Compressive behavior of steel-fiber-reinforced concrete with a high reinforcing index. J. Mater. Civ. Eng. 2012, 24, 207–215. [Google Scholar] [CrossRef]
- Murali, G.; Prasad, N.; Abid, S.R.; Vatin, N.I. Response of Functionally Graded Preplaced Aggregate Fibrous Concrete with Superior Impact Strength. Buildings 2022, 12, 563. [Google Scholar] [CrossRef]
- Ameri, F.; de Brito, J.; Madhkhan, M.; Taheri, R.A. Steel fibre-reinforced high-strength concrete incorporating copper slag: Mechanical, gamma-ray shielding, impact resistance, and microstructural characteristics. J. Build. Eng. 2020, 29, 101118. [Google Scholar] [CrossRef]
- Koushkbaghi, M.; Kazemi, M.J.; Mosavi, H.; Mohseni, E. Acid resistance and durability properties of steel fiber-reinforced concrete incorporating rice husk ash and recycled aggregate. Constr. Build. Mater. 2019, 202, 266–275. [Google Scholar] [CrossRef]
- Yazıcı, Ş.; İnan, G.; Tabak, V. Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Constr. Build. Mater. 2007, 21, 1250–1253. [Google Scholar] [CrossRef]
- Reddy, S.V.B.; Rao, P.S. Experimental studies on mechanical properties and impact characteristics of ternary concrete with steel fiber. Mater. Today Proc. 2020, 27, 788–797. [Google Scholar] [CrossRef]
- Xie, J.-h.; Guo, Y.-c.; Liu, L.-s.; Xie, Z.-h. Compressive and flexural behaviours of a new steel-fibre-reinforced recycled aggregate concrete with crumb rubber. Constr. Build. Mater. 2015, 79, 263–272. [Google Scholar] [CrossRef]
- Abdallah, S.; Rees, D.W.; Ghaffar, S.H.; Fan, M. Understanding the effects of hooked-end steel fibre geometry on the uniaxial tensile behaviour of self-compacting concrete. Constr. Build. Mater. 2018, 178, 484–494. [Google Scholar] [CrossRef] [Green Version]
- Soutsos, M.; Le, T.; Lampropoulos, A. Flexural performance of fibre reinforced concrete made with steel and synthetic fibres. Constr. Build. Mater. 2012, 36, 704–710. [Google Scholar] [CrossRef]
- Naraganti, S.R.; Pannem, R.M.R.; Putta, J. Impact resistance of hybrid fibre reinforced concrete containing sisal fibres. Ain Shams Eng. J. 2019, 10, 297–305. [Google Scholar] [CrossRef]
- ACI Committee 308 b. Guide to Curing Concrete, ACI 308R-01, ACI Manual of Concrete Practice; American Concrete Institute: Farmington Hills, MI, USA, 2001. [Google Scholar]
- Yilmaz, H. Shear-bond strength testing of thin spray-on liners. J. S. Afr. Inst. Min. Metall. 2007, 107, 519–530. [Google Scholar]
- Yilmaz, H. Tensile strength testing of thin spray-on liner products (TSLs) and shotcrete. J. S. Afr. Inst. Min. Metall. 2010, 110, 559–569. [Google Scholar]
- ASTM C39/C39M-21; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2003.
- BS EN 12350-2:2009; Testing Fresh Concrete. British Standard Institution: London, UK, 2009.
- ASTM C496-96; Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2004.
- Mastali, M.; Dalvand, A. The impact resistance and mechanical properties of self-compacting concrete reinforced with recycled CFRP pieces. Compos. Part B Eng. 2016, 92, 360–376. [Google Scholar] [CrossRef]
- Fakharifar, M.; Dalvand, A.; Arezoumandi, M.; Sharbatdar, M.K.; Chen, G.; Kheyroddin, A. Mechanical properties of high performance fiber reinforced cementitious composites. Constr. Build. Mater. 2014, 71, 510–520. [Google Scholar] [CrossRef]
- Dalvand, A.; Sharbatdar, M.; Kheyroddin, A.; Nikui, A. Assessment of statistical variations in experimental impact resistance and mechanical properties of silica fume concrete. Sci. Iran. 2014, 21, 1577–1590. [Google Scholar]
- Badr, A.; Ashour, A.F.; Platten, A.K. Statistical variations in impact resistance of polypropylene fibre-reinforced concrete. Int. J. Impact Eng. 2006, 32, 1907–1920. [Google Scholar] [CrossRef] [Green Version]
- Bingöl, A.F.; Tohumcu, İ. Effects of different curing regimes on the compressive strength properties of self compacting concrete incorporating fly ash and silica fume. Mater. Des. 2013, 51, 12–18. [Google Scholar] [CrossRef]
- Razzaghi, H.; Madandoust, R.; Aghabarati, H. Point-load test and UPV for compressive strength prediction of recycled coarse aggregate concrete via generalized GMDH-class neural network. Constr. Build. Mater. 2021, 276, 122143. [Google Scholar] [CrossRef]
- Benli, A.; Karataş, M.; Bakir, Y. An experimental study of different curing regimes on the mechanical properties and sorptivity of self-compacting mortars with fly ash and silica fume. Constr. Build. Mater. 2017, 144, 552–562. [Google Scholar] [CrossRef]
- Haghighatnejad, N.; Mousavi, S.Y.; Khaleghi, S.J.; Tabarsa, A.; Yousefi, S. Properties of recycled PVC aggregate concrete under different curing conditions. Constr. Build. Mater. 2016, 126, 943–950. [Google Scholar] [CrossRef]
- Ismail, S.; Kwan, W.H.; Ramli, M. Mechanical strength and durability properties of concrete containing treated recycled concrete aggregates under different curing conditions. Constr. Build. Mater. 2017, 155, 296–306. [Google Scholar] [CrossRef]
- Aghaee, K.; Yazdi, M.A.; Tsavdaridis, K.D. Investigation into the mechanical properties of structural lightweight concrete reinforced with waste steel wires. Mag. Concr. Res. 2015, 67, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Cao, H. Experimental investigation on the static and impact behaviors of basalt fiber-reinforced concrete. Open Civ. Eng. J. 2017, 11, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Jun Li, J.; Gang Niu, J.; Jun Wan, C.; Jin, B.; Liu Yin, Y. Investigation on mechanical properties and microstructure of high performance polypropylene fiber reinforced lightweight aggregate concrete. Constr. Build. Mater. 2016, 118, 27–35. [Google Scholar]
- Prasad, N.; Murali, G. Exploring the impact performance of functionally-graded preplaced aggregate concrete incorporating steel and polypropylene fibres. J. Build. Eng. 2021, 35, 102077. [Google Scholar] [CrossRef]
- Ding, Y.; Li, D.; Zhang, Y.; Azevedo, C. Experimental investigation on the composite effect of steel rebars and macro fibers on the impact behavior of high performance self-compacting concrete. Constr. Build. Mater. 2017, 136, 495–505. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Sun, W.; Zhai, H.; Wang, L.; Dong, H.; Wu, Q. Experimental study on hybrid effect evaluation of fiber reinforced concrete subjected to drop weight impacts. Materials 2018, 11, 2563. [Google Scholar] [CrossRef] [Green Version]
- Nili, M.; Afroughsabet, V. The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Constr. Build. Mater. 2010, 24, 927–933. [Google Scholar] [CrossRef]
- Bodt, B.A. Engineering Statistics: The Industrial Experience; Taylor & Francis: Cambridge, UK, 1997. [Google Scholar]
- Cheng, M.-Y.; Firdausi, P.M.; Prayogo, D. High-performance concrete compressive strength prediction using Genetic Weighted Pyramid Operation Tree (GWPOT). Eng. Appl. Artif. Intell. 2014, 29, 104–113. [Google Scholar] [CrossRef]
- Mastali, M.; Dalvand, A.; Sattarifard, A. The impact resistance and mechanical properties of reinforced self-compacting concrete with recycled glass fibre reinforced polymers. J. Clean. Prod. 2016, 124, 312–324. [Google Scholar] [CrossRef]
- Song, P.; Wu, J.; Hwang, S.; Sheu, B. Statistical analysis of impact strength and strength reliability of steel–polypropylene hybrid fiber-reinforced concrete. Constr. Build. Mater. 2005, 19, 1–9. [Google Scholar] [CrossRef]
Reference | Type of Concrete | Fiber Shape | Fiber Percentage (%) | Fiber Geometry | Mechanical Properties | |||||
---|---|---|---|---|---|---|---|---|---|---|
d (mm) | l (mm) | l/d | ||||||||
Güneyisi et al. [22] | Normal + MK + SF | Hooked-end | 0.25, 0.75 | 0.75 | 30, 60 | 40, 80 | CS | TS | FS | IS |
Chen et al. [23] | Recycled aggregate concrete + SF | Crimped | 0.5, 1, 1.5 | 0.8 | 32 | 40 | CS | TS | FS | IS |
Nataraja et al. [24] | Normal + SF | Crimped | 0.5, 1, 1.5 | 1 | 40 | 40 | CS | TS | FS | IS |
Nataraja et al. [25] | Normal + SF | Crimped | 0.5 | 0.5 | 27.5 | 55 | CS | TS | FS | IS |
Song et al. [26] | High-strength concrete + SF | Hooked-end | 1 | 0.8 | 35 | 40 | CS | TS | FS | IS |
Olivito and Zuccarello [27] | Normal + SF | Undefined | 1, 2 | 0.44, 0.60, 0.8 | 22, 30, 44 | 50 | CS | TS | FS | IS |
Gesoglu et al. [28] | Normal + silica fume +SF | Hooked-end | 0.25, 0.75 | 0.75 | 30, 60 | 40, 80 | CS | TS | FS | IS |
Yoo et al. [29] | Textile-reinforced concrete + SF | Hooked-end | 0.5, 1, 1.5, 2 | 0.5 | 30 | 60 | CS | TS | FS | IS |
Rizzuti and Bencardino [30] | Normal + SF | Hooked-end | 1, 1.6, 3, 5 | 0.55 | 22 | 40 | CS | TS | FS | IS |
Nili and Afroughsabet [19] | Normal+ silica fume +SF | Hooked-end | 0.5, 1 | 0.75 | 60 | 80 | CS | TS | FS | IS |
Nili and Afroughsabet [31] | Normal+ silica fume +SF | Hooked-end | 0.5, 1 | 0.75 | 60 | 80 | CS | TS | FS | IS |
Nili et al. [32] | Normal+ silica fume +SF | Hooked-end | 1 | 0.75 | 50 | 67 | CS | TS | FS | IS |
Yan et al. [33] | High-strength concrete + SF | Straight | 1.5 | 0.417 | 25 | 60 | CS | TS | FS | IS |
Wang [34] | Lightweight aggregate concrete + SF | Slightly enlarged ends | 0.5, 1, 1.5, 2 | 64 | 32 | 50 | CS | TS | FS | IS |
Atis and Karahan [35] | Normal + fly ash + SF | Hooked-end | 0, 0.25, 0.5, 1, 1.5 | 0.55 | 35 | 64 | CS | TS | FS | IS |
Nazarimofrad et al. [36] | Recycled aggregate concrete + SF | Hooked-end | 1 | 0.85 | 50 | 60 | CS | TS | FS | IS |
Huang and Zhao [37] | Normal + SF | Undefined | 1, 2 | 0.58 | 25, 35, 45 | 43, 60, 77 | CS | TS | FS | IS |
Altun et al. [38] | Normal + SF | Hooked-end | 0.5, 1, 1.5 | 0.75 | 60 | 80 | CS | TS | FS | IS |
Rahmani et al. [21] | Normal + SF | Hooked-end | 0.5 | 0.55 | 35 | 64 | CS | TS | FS | IS |
Mohammadi et al. [39] | Normal + SF | Undefined | 1, 1.5, 2 | 1.25 | 25, 50 | 20, 40 | CS | TS | FS | IS |
Abbass et al. [17] | Normal + SF | Hooked-end | 0.5, 1, 1.5 | 0.62, 0.75 | 40, 50, 60 | 65, 80 | CS | TS | FS | IS |
Mahakavi and Chithra [40] | Self-compacting concrete + SF | Hooked-end | 0.25, 0.5, 0.75 | 0.7 | 70 | 100 | CS | TS | FS | IS |
Crimped | 0.25, 0.5 | |||||||||
Carneiro et al. [41] | Recycled aggregate concrete + SF | Hooked-end | 0.75 | 0.55 | 35 | 65 | CS | TS | FS | IS |
Afroughsabet et al. [42] | High-performance recycled aggregate concrete + SF | Hooked-end | 1 | 0.9 | 60 | 67 | CS | TS | FS | IS |
Ibrahim and Bakar [43] | Normal + SF | Hooked-end | 0.5, 0.75, 1, 1.25 | 0.75 | 60 | 80 | CS | TS | FS | IS |
Huo and Zhang [44] | Steel fiber foamed concrete | Crimped | 1 | 48 | 24 | CS | TS | FS | IS | |
Eren and Marar [45] | Limestone crusher dust and steel fibers on concrete | Hooked-end | 0.5, 1, 1.5 | 0.50, 0.75, 0.90 | 50, 60 | 65, 80, 100 | CS | TS | FS | IS |
Düzgün et al. [46] | Lightweight concrete + SF | Hooked-end | 0.5, 1, 1.5 | 0.8 | 60 | 75 | CS | TS | FS | IS |
Alrawashdeh and Eren [47] | Self-compacting concrete + SF | Hooked-end | 0.35, 0.45, 0.55 | 0.5 | 30 | 60 | CS | TS | FS | IS |
0.625 | 50 | 80 | ||||||||
Kachouh et al. [48] | Recycled aggregate concrete + SF | Hooked-end | 1, 2, 3 | 0.55 | 35 | 65 | CS | TS | FS | IS |
Rai and Singh [49] | Normal + SF | Crimped | 0.1, 0.2, 0.3 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.25, 1.5 | 0.6 | 30 | 50 | CS | TS | FS | IS |
Ghorpade and Rao [50] | Recycled aggregate concrete + SF | Undefined | 0.5, 0.75, 1, 1.25 | 1 | 100 | 100 | CS | TS | FS | IS |
Alavi Nia et al. [13] | Normal + SF | Hooked-end | 0.5, 1 | 0.75 | 60 | 80 | CS | TS | FS | IS |
Lee et al. [51] | High-strength concrete + SF | Hooked-end | 0.5, 1, 1.5, 2 | 0.38, 0.55, 1.05 | 30, 35, 50 | 79, 64, 48 | CS | TS | FS | IS |
Bywalski et al. [52] | High-strength concrete + SF | Straight | 1, 2, 3 | 0.2 | 13 | 65 | CS | TS | FS | IS |
Pham et al. [53] | Geopolymer concrete + SF | Hooked-end | 0.5, 1, 1.5 | 0.5 | 30 | 60 | CS | TS | FS | IS |
Mastali et al. [54] | Self-consolidating concrete + SF | Hooked-end | 0.5, 0.75, 1, 1.5 | --- | --- | 47 | CS | TS | FS | IS |
Hu et al. [55] | Normal + SF | Wavy profile | 0.38, 0.45, 0.57 | 0.8, 1.0 | 55, 60 | 69, 60 | CS | TS | FS | IS |
Gao and Zhang [56] | Recycled aggregate concrete + SF | Hooked-end | 0.5, 1, 1.5, 2 | 0.6 | 30.5 | 54.6 | CS | TS | FS | IS |
Ismail et al. [57] | Self-consolidating rubberized concrete + SF | Hooked-end | 0.35, 0.5, 0.75, 1 | 0.55 | 35 | 65 | CS | TS | FS | IS |
0.90 | 60 | 65 | ||||||||
Gao et al. [58] | Recycled aggregate concrete + SF | Hooked-end | 0.5, 1, 1.5, 2 | 0.6 | 30.5 | 54.6 | CS | TS | FS | IS |
Xie et al. [59] | Recycled aggregate concrete + SF | Hooked-end | 1 | 0.2 | 13 | 65 | CS | TS | FS | IS |
Soylev and Ozturan [60] | Normal + SF | Hooked-end | 0.5 | 0.55 | 35 | 64 | CS | TS | FS | IS |
Chen et al. [61] | Normal + SF | Hooked-end | 0.5, 1 | 0.55 | 35 | 64 | CS | TS | FS | IS |
Ou et al. [62] | Normal + SF | Hooked-end | 0.8, 1.6, 2, 2.4, 2.6, 3, 3.4 | 0.5, 0.6, 1.0 | 30, 50, 60 | 50, 60, 70, 100 | CS | TS | FS | IS |
Murali et al. [63] | Functionally graded concrete + SF | Hooked-end crimped | 0.8–3.6 | 1 | 50 | 50 | CS | TS | FS | IS |
Ameri et al. [64] | High-strength concrete + SF | Hooked-end | 1 | 0.55 | 30 | 55 | CS | TS | FS | IS |
Koushkbaghi et al. [65] | Recycled aggregate concrete + SF | Hooked-end | 1.5 | 0.75 | 50 | 67 | CS | TS | FS | IS |
Yazıcı et al. [66] | Normal + SF | Hooked-end | 0.5, 1, 1.5 | 0.62, 0.90, 0.75 | 30, 60, 60 | 45, 65, 80 | CS | TS | FS | IS |
Reddy and Rao [67] | Normal + SF | Crimped | 0.5, 1, 1.5, 2 | 0.5 | 30 | 60 | CS | TS | FS | IS |
Jian-he et al. [68] | Recycled aggregate concrete + SF + rubber crumb | Crimped | 1 | 0.70 | 32 | 45 | CS | TS | FS | IS |
Abdallah et al. [69] | Self-compacting concrete + SF | Single hooked | 0.5, 1 | 0.90 | 60 | 67 | CS | TS | FS | IS |
Double hooked | ||||||||||
Triple hooked | ||||||||||
Soutsos et al. [70] | Normal + SF | Hooked-end | 0.5, 1, 1.5 | 0.9 | 60 | 67 | CS | TS | FS | IS |
Wavy profile | 0.1 | 50, 60 | 50, 60 | |||||||
Flattened end | 0.1 | 50 | 50 |
Chemical Analysis | Cement (wt%) | Silica Fume (wt%) |
---|---|---|
SiO2 | 20.23 | 91.44 |
Al2O3 | 4.86 | 1 |
Fe2O3 | 4.52 | 0.9 |
CaO | 63.86 | 1.69 |
MgO | 2.14 | 1.78 |
SO3 | 2.12 | 0.77 |
K2O | 0.71 | 0.07 |
Na2O | 0.21 | 0.05 |
LOI | 0.85 | 2.01 |
Chemical Base | Physical State | Chlorine Ion | Color | Specific Weight |
---|---|---|---|---|
Polycarboxylates | Liquid | Light brown | 120 ± 0.05 g/cm3 |
Length (mm) | Diameter (mm) | Aspect Ratio (l/d) | Specific Gravity | Tensile Strength (MPa) | Geometry |
---|---|---|---|---|---|
20 | 0.75 | 27 | 7.8 | 1140 | Crimped |
30 | 0.75 | 40 | 7.8 | 1140 | Hooked |
50 | 0.75 | 67 | 7.8 | 1140 | Crimped |
Mix | Cement (kg.m−3) | SF (kg.m−3) | Water (kg.m−3) | Gravel (kg.m−3) | Sand (kg.m−3) | Steel Fibers (%) | ||
---|---|---|---|---|---|---|---|---|
Crimped Fiber | Hooked-End Fiber | Crimped Fiber | ||||||
20 mm | 30 mm | 50 mm | ||||||
R | 405 | 45 | 180 | 900 | 970 | - | - | - |
F2 | 405 | 45 | 180 | 900 | 970 | 1 | - | - |
F3 | 405 | 45 | 180 | 900 | 970 | - | 1 | - |
F5 | 405 | 45 | 180 | 900 | 970 | - | - | 1 |
F2F3 | 405 | 45 | 180 | 900 | 970 | 0.5 | 0.5 | - |
Hardened Concrete | Fresh Concrete | ||||
---|---|---|---|---|---|
Test | Dimension | Standard | Shape | Test | Standard |
Compressive strength | 150 × 150 × 150 mm | ASTM C39-03 [75] | Slump flow time | BS EN 12350-2 [76] | |
Tensile strength | 300 × 150 mm | ASTM C496-04 [77] | |||
Impact strength | 300 × 150 mm | ACI committee 544 [20] |
Ref. | TEST | RI |
---|---|---|
Mastali and Dalvand [78] | First crack strength | 38.45 |
Fakharifar et al. [79] | 43.66 | |
Rahmani et al. [21] | 57.5 | |
Dalvand et al. [80] | 27.56 | |
Badr et al. [81] | 59 | |
Present Work | 44 | |
Mastali and Dalvand [78] | Failure strength | 37.3 |
Fakharifar et al. [79] | 43.66 | |
Rahmani et al. [21] | 48 | |
Dalvand et al. [80] | 26.41 | |
Badr et al. [81] | 50.4 | |
Present Work | 41.4 | |
Mastali and Dalvand [78] | INPB | 59 |
Fakharifar et al. [79] | 49.66 | |
Dalvand et al. [80] | 46.04 | |
Present Work | 58 | |
Mastali and Dalvand [78] | Compressive strength | 6.18 |
Fakharifar et al. [79] | 6.73 | |
Dalvand et al. [80] | 4.37 | |
Badr et al. [81] | 7.55 | |
Present Work | 3.66 | |
Dalvand et al. [80] | Tensile strength | 8.19 |
Present Work | 7.57 | |
Lee et al. [51] | Slump | 25.60 |
Present Work | 11.08 |
Mix | Curing | Strength | Mean (Blows) | Standard Deviation (Blows) | Coefficient of Variation (%) | Standard Error of Mean (Blows) | 95% Confidence Interval | p-Value of K–S Test | |
---|---|---|---|---|---|---|---|---|---|
Upper Bound (Blows) | Lower Bound (Blows) | ||||||||
R | H U M I D | First Crack | 144 | 40 | 27 | 7 | 158 | 130 | 0.093 |
Failure | 150 | 39 | 26 | 7 | 164 | 137 | 0.068 | ||
INPB | 6 | 3 | 45 | 0.515 | 8 | 4 | <0.01 | ||
F2 | First Crack | 172 | 56 | 33 | 9.98 | 191 | 152 | >0.15 | |
Failure | 192 | 57 | 29 | 10 | 211 | 172 | >0.15 | ||
INPB | 20 | 8 | 41 | 1.45 | 23 | 17 | >0.15 | ||
F3 | First Crack | 416 | 321 | 77 | 56.8 | 527 | 305 | <0.01 | |
Failure | 455 | 324 | 71 | 57.3 | 567 | 342 | 0.087 | ||
INPB | 39 | 33 | 86 | 5.84 | 50 | 27 | <0.01 | ||
F5 | First Crack | 223 | 81 | 36 | 14.2 | 251 | 195 | <0.01 | |
Failure | 257 | 81 | 32 | 14.4 | 285 | 229 | >0.15 | ||
INPB | 34 | 23 | 68 | 4.1 | 42 | 26 | 0.031 | ||
F2F3 | First Crack | 173 | 64 | 37 | 11.3 | 195 | 151 | >0.15 | |
Failure | 200 | 69 | 34 | 12.1 | 224 | 176 | >0.15 | ||
INPB | 27 | 16 | 60 | 2.83 | 32 | 21 | 0.024 | ||
R | D R Y | First Crack | 123 | 36 | 29 | 6.39 | 136 | 111 | 0.141 |
Failure | 129 | 36 | 28 | 6.41 | 142 | 117 | 0.075 | ||
INPB | 6 | 2 | 36 | 0.353 | 6 | 4 | <0.01 | ||
F2 | First Crack | 147 | 47 | 32 | 8.3 | 163 | 131 | 0.115 | |
Failure | 158 | 46 | 30 | 8.19 | 174 | 142 | >0.15 | ||
INPB | 11 | 6 | 49 | 0.971 | 13 | 9 | <0.01 | ||
F3 | First Crack | 227 | 199 | 88 | 35.1 | 296 | 158 | <0.01 | |
Failure | 237 | 204 | 86 | 36.1 | 309 | 168 | <0.01 | ||
INPB | 11 | 8 | 71 | 1.43 | 14 | 8 | <0.01 | ||
F5 | First Crack | 158 | 65 | 41 | 11.5 | 180 | 135 | 0.093 | |
Failure | 173 | 64 | 37 | 11.4 | 195 | 151 | 0.022 | ||
INPB | 15 | 9 | 56 | 1.5 | 18 | 12 | <0.01 | ||
F2F3 | First Crack | 144 | 63 | 44 | 11.1 | 166 | 123 | <0.01 | |
Failure | 163 | 67 | 41 | 11.8 | 186 | 140 | <0.01 | ||
INPB | 19 | 13 | 71 | 2.33 | 23 | 14 | 0.048 |
Parameter | HUMID | DRY | |||||||
---|---|---|---|---|---|---|---|---|---|
F2 | F3 | F5 | F2F3 | F2 | F3 | F5 | F2F3 | ||
p-Value of Kruskal–Wallis test | First Crack | 0.029 | 0.000 | 0.000 | 0.049 | 0.030 | 0.001 | 0.021 | 0.321 |
Failure | 0.001 | 0.000 | 0.000 | 0.001 | 0.003 | 0.000 | 0.002 | 0.058 | |
INPB | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
First-crack strength of FRC/First crack of plain concrete | 1.194 | 2.888 | 1.548 | 1.201 | 1.195 | 1.845 | 1.284 | 1.170 | |
Failure strength of FRC/First crack of plain concrete | 1.28 | 3.033 | 1.713 | 1.333 | 1.224 | 1.844 | 1.341 | 1.263 | |
INPB of FRC/INPB of plain concrete | 3.333 | 6.5 | 5.666 | 4.5 | 1.833 | 1.833 | 2.5 | 3.166 |
Mix | Curing | Impact Energy (J) | Ductility Index λ | |
---|---|---|---|---|
First Crack | Failure | |||
R | H U M I D | 2930.4 | 3052.5 | 0.042 |
F2 | 3500.2 | 3907.2 | 0.116 | |
F3 | 8465.6 | 9259.25 | 0.094 | |
F5 | 4538.05 | 5229.95 | 0.152 | |
F2F3 | 3520.55 | 4070 | 0.156 | |
R | D R Y | 2503.05 | 2625.15 | 0.049 |
F2 | 2991.45 | 3215.3 | 0.075 | |
F3 | 4619.45 | 4822.95 | 0.044 | |
F5 | 3215.3 | 3520.55 | 0.095 | |
F2F3 | 2930.4 | 3317.05 | 0.132 |
Mix | Equations | R2 | Mix | Equations | R2 |
R (Humid) | 994 | R(Dry) | 0.996 | ||
F2 (Humid) | 0.978 | F2 (Dry) | 0.984 | ||
F3 (Humid) | 0.988 | F3 (Dry) | 0.998 | ||
F5 (Humid) | 0.919 | F5 (Dry) | 0.982 | ||
F2F3 (Humid) | 0.946 | F2F3 (Dry) | 0.855 |
Accuracy Measures | Humid | Dry | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
R | F2 | F3 | F5 | F2F3 | R | F2 | F3 | F5 | F2F3 | |
MAD | 2.264 | 6.669 | 25.876 | 18.434 | 11.758 | 1.736 | 4.548 | 4.894 | 6.312 | 9.578 |
MAPE (%) | 1.674 | 3.959 | 8.831 | 7.899 | 6.245 | 1.410 | 3.118 | 2.313 | 4.387 | 6.639 |
R2 | 0.994 | 0.978 | 0.988 | 0.919 | 0.946 | 0.996 | 0.984 | 0.998 | 0.982 | 0.855 |
Ref. | Type of Fiber | Fiber (%) | CS | TS | IS | Proposed Equations | MAD | MAPE | R2 | p-Value of K–S Test | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FC | UC | INPB | FC | UC | |||||||||
Mastali and Dalvand [78] | RC | 0.25 | ▲ | ▲ | 43 | 52 | 9 | - | - | 0.9082 | 0.999 | 0.429 | |
0.75 | ▲ | ▲ | 60 | 77 | 17 | - | - | 0.9426 | 0.999 | 0.512 | |||
1.25 | ▲ | ▲ | 79 | 104 | 25 | - | - | 0.269 | 0.684 | 0.999 | |||
Fakharifar et al. [79] | PP | 0.5 | ▲ | - | 40 | 48 | 8 | - | - | 0.94 | >0.15 | >0.15 | |
0.75 | ▲ | 52 | 68 | 16 | - | - | 0.93 | >0.15 | >0.15 | ||||
1 | ▲ | 62 | 81 | 19 | - | - | 0.94 | >0.15 | >0.15 | ||||
Mastali et al. [96] | RG | 0.25 | ▲ | - | 38 | 47 | 9 | - | - | 0.965 | 0.999 | 0.271 | |
0.75 | ▲ | 56 | 71 | 15 | - | - | 0.989 | 0.999 | 0.834 | ||||
1.25 | ▲ | 76 | 98 | 22 | - | - | 0.991 | 0.685 | 0.568 | ||||
Rahmani et al. [21] | C | 0.15 | ▲ | - | 112 | 118 | 6 | 2.522 | 2.261 | 0.996 | >0.15 | >0.15 | |
PP | 0.15 | ▲ | 56 | 71 | 15 | 3.737 | 6.905 | 0.984 | 0.012 | <0.010 | |||
S | 0.5 | ▲ | 123 | 228 | 105 | 81.79 | 37.496 | 0.844 | 0.073 | 0.036 | |||
Song et al. [97] | S | 0.5 | ▲ | - | 234 | 330 | 96 | 44.36 | - | 0.915 | 0.000 | 0.000 | |
S + PP | 0.5 + 0.1 | ▲ | - | 247 | 356 | 109 | 34.73 | - | 0.843 | 0.01 | 0.001 | ||
Rai and Singh [49] | PP | 0.05–0.5 | - | - | 32 | 52 | 7 | 19.86 | 7.34 | 0.918 | >0.05 | >0.05 | |
S | 0.1–1.5 | - | - | 97 | 191 | 94 | 34.42 | 20.53 | 0.827 | 0.042 | 0.044 | ||
S + PP | [0.2–0.5] + [0.2–0.5] | - | - | 137 | 267 | 130 | 2.17 | 5.22 | 0.987 | 0.040 | 0.048 | ||
Song et al. [26] | S | 1 | ▲ | - | 1734 | 1896 | 162 | - | - | 0.980 | next to zero | next to zero |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohtasham Moein, M.; Saradar, A.; Rahmati, K.; Hatami Shirkouh, A.; Sadrinejad, I.; Aramali, V.; Karakouzian, M. Investigation of Impact Resistance of High-Strength Portland Cement Concrete Containing Steel Fibers. Materials 2022, 15, 7157. https://doi.org/10.3390/ma15207157
Mohtasham Moein M, Saradar A, Rahmati K, Hatami Shirkouh A, Sadrinejad I, Aramali V, Karakouzian M. Investigation of Impact Resistance of High-Strength Portland Cement Concrete Containing Steel Fibers. Materials. 2022; 15(20):7157. https://doi.org/10.3390/ma15207157
Chicago/Turabian StyleMohtasham Moein, Mohammad, Ashkan Saradar, Komeil Rahmati, Arman Hatami Shirkouh, Iman Sadrinejad, Vartenie Aramali, and Moses Karakouzian. 2022. "Investigation of Impact Resistance of High-Strength Portland Cement Concrete Containing Steel Fibers" Materials 15, no. 20: 7157. https://doi.org/10.3390/ma15207157
APA StyleMohtasham Moein, M., Saradar, A., Rahmati, K., Hatami Shirkouh, A., Sadrinejad, I., Aramali, V., & Karakouzian, M. (2022). Investigation of Impact Resistance of High-Strength Portland Cement Concrete Containing Steel Fibers. Materials, 15(20), 7157. https://doi.org/10.3390/ma15207157