Improved Enamel Acid Resistance Using Biocompatible Nano-Hydroxyapatite Coating Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Enamel Samples
2.2. Fluoride Application and pH-Cycling Acid Challenge Experiment
2.3. Three-Dimensional Laser Microscopic Observation
2.4. Micro-Vickers Hardness Measurement
2.5. Cross-Section and Surface Morphology through Scanning Electron Microscopy
2.6. Reaction Area Depth Measurement Using Polarizing Microscope
2.7. Contact Microradiography (CMR)
2.8. Statistical Analysis
3. Results
3.1. Alpha-Tricalcium Phosphate (α-TCP) and BioHap Particle Characterization
3.2. Height Difference Profiles Using 3D Laser Microscope
3.3. Micro-Vickers Hardness Measurement after Acid Challenge
3.4. SEM Images of Enamel Surface and Cross-Sections after Acid Challenge
3.5. Polarizing Microscope Image of Enamel Cross-Sections after Acid Challenge
3.6. Mineral Loss Value and Lesion Depth by CMR Analysis
4. Discussion
4.1. Enamel Acid Resistance Effect and BioHap Mechanism
4.2. Safety of the Proposed Method and Application in Preventive Dentistry
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, K.; Wu, C.; Chang, J. Advances in Synthesis of Calcium Phosphate Crystals with Controlled Size and Shape. Acta Biomater. 2014, 10, 4071–4102. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Pan, H.; Tao, J.; Xu, X.; Mao, C.; Gu, X.; Tang, R. Repair of Enamel by Using Hydroxyapatite Nanoparticles as the Building Blocks. J. Mater. Chem. 2008, 18, 4079–4084. [Google Scholar] [CrossRef]
- Shao, C.; Jin, B.; Mu, Z.; Lu, H.; Zhao, Y.; Wu, Z.; Yan, L.; Zhang, Z.; Zhou, Y.; Pan, H.; et al. Repair of Tooth Enamel by a Biomimetic Mineralization Frontier Ensuring Epitaxial Growth. Sci. Adv. 2019, 5, eaaw9569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busch, S. Regeneration of Human Tooth Enamel. Angew. Chem. Int. Ed. 2004, 43, 1428–1431. [Google Scholar] [CrossRef] [PubMed]
- Dorozhkin, S.V.; Epple, M. Biological and Medical Significance of Calcium Phosphates. Angew. Chem. Int. Ed. 2002, 41, 3130–3146. [Google Scholar] [CrossRef]
- Limeback, H.; Enax, J.; Meyer, F. Biomimetic Hydroxyapatite and Caries Prevention: A Systematic Review and Meta-Analysis. Can. J. Dent. Hyg. 2021, 55, 148–159. [Google Scholar]
- Ogata, K.; Warita, S.; Shimazu, K.; Kawakami, T.; Aoyagi, K.; Karibe, H. Combined Effect of Paste Containing Casein Phosphopeptide-Amorphous Calcium Phosphate and Fluoride on Enamel Lesions: An in Vitro PH-Cycling Study. Pediatr. Dent. 2010, 32, 433–438. [Google Scholar]
- Huang, S.B.; Gao, S.S.; Yu, H.Y. Effect of Nano-Hydroxyapatite Concentration on Remineralization of Initial Enamel Lesion in Vitro. Biomed. Mater. Bristol Engl. 2009, 4, 034104. [Google Scholar] [CrossRef] [Green Version]
- Comar, L.P.; Souza, B.M.; Gracindo, L.F.; Buzalaf, M.A.R.; Magalhães, A.C. Impact of Experimental Nano-HAP Pastes on Bovine Enamel and Dentin Submitted to a PH Cycling Model. Braz. Dent. J. 2013, 24, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Whelton, H.P.; Spencer, A.J.; Do, L.G.; Rugg-Gunn, A.J. Fluoride Revolution and Dental Caries: Evolution of Policies for Global Use. J. Dent. Res. 2019, 98, 837–846. [Google Scholar] [CrossRef]
- Marinho, V.C.; Chong, L.-Y.; Worthington, H.V.; Walsh, T. Fluoride Mouthrinses for Preventing Dental Caries in Children and Adolescents. Cochrane Database Syst. Rev. 2016, 7, CD002284. [Google Scholar] [CrossRef]
- Marinho, V.C.; Higgins, J.P.; Logan, S.; Sheiham, A. Topical Fluoride (Toothpastes, Mouthrinses, Gels or Varnishes) for Preventing Dental Caries in Children and Adolescents. Cochrane Database Syst. Rev. 2003, 2003, CD002782. [Google Scholar] [CrossRef]
- Walsh, T.; Worthington, H.V.; Glenny, A.-M.; Marinho, V.C.; Jeroncic, A. Fluoride Toothpastes of Different Concentrations for Preventing Dental Caries. Cochrane Database Syst. Rev. 2019, 3, CD007868. [Google Scholar] [CrossRef]
- Bordea, I.R.; Candrea, S.; Alexescu, G.T.; Bran, S.; Băciuț, M.; Băciuț, G.; Lucaciu, O.; Dinu, C.M.; Todea, D.A. Nano-Hydroxyapatite Use in Dentistry: A Systematic Review. Drug Metab. Rev. 2020, 52, 319–332. [Google Scholar] [CrossRef]
- O’Hagan-Wong, K.; Enax, J.; Meyer, F.; Ganss, B. The Use of Hydroxyapatite Toothpaste to Prevent Dental Caries. Odontology 2022, 110, 223–230. [Google Scholar] [CrossRef]
- ten Cate, J.M.; Duijsters, P.P. Influence of Fluoride in Solution on Tooth Demineralization. I. Chemical Data. Caries Res. 1983, 17, 193–199. [Google Scholar] [CrossRef]
- ten Cate, J.M.; Duijsters, P.P. Influence of Fluoride in Solution on Tooth Demineralization. II. Microradiographical Data. Caries Res. 1983, 17, 513–519. [Google Scholar] [CrossRef]
- Wiegand, A.; Buchalla, W.; Attin, T. Review on Fluoride-Releasing Restorative Materials—Fluoride Release and Uptake Characteristics, Antibacterial Activity and Influence on Caries Formation. Dent. Mater. 2007, 23, 343–362. [Google Scholar] [CrossRef]
- BIOAPATITE. Available online: https://bioapatite.jp/ (accessed on 13 September 2022).
- Schroeder, H.E. Formation and Inhibition of Dental Calculus. J. Periodontol. 1969, 40, 643–646. [Google Scholar] [CrossRef]
- Kodaka, T.; Debari, K.; Abe, M. Hexahedrally Based Crystals in Human Tooth Enamel. Caries Res. 1992, 26, 69–76. [Google Scholar] [CrossRef]
- Kaviya, B.; Balasubramanian, S.K.; Ishwarya, G.; Sekar, M.; Gurusamy, R.; Vijayakumar, D.; Anil, K. Eggshell derived nano-hydroxyapatite incorporated carboxymethyl chitosan scaffold for dentine regeneration: A laboratory investigation. Int. Endod. J. 2022, 55, 89–102. [Google Scholar] [CrossRef]
- Sandra, J.G.; Luis, F.F.; Luis, G.S.; Kelly, J.D.; Linet, Y.C.; José, A.L.; Juan, C.S.; Adriana, P.A. Elaboration and Biocompatibility of an Eggshell-Derived Hydroxyapatite Material Modified with Si/PLGA for Bone Regeneration in Dentistry. Int. J. Dent. 2019, 2019, 5949232. [Google Scholar] [CrossRef]
- Miki, N.; Miake, Y.; Shimoda, S.; Mishima, H. Evaluation of Enamel Acid Resistance and Whitening Effect of the CAP System. Dent. J. 2022, 10, 161. [Google Scholar] [CrossRef]
- Angmar, B.; Carlstrom, D.; Glas, J.E. Studies on the Ultrastructure of Dental Enamel. IV. The Mineralization of Normal Human Enamel. J. Ultrastruct. Res. 1963, 8, 12–23. [Google Scholar] [CrossRef]
- Miake, Y.; Nozue, S.; Moriguchi, M.; Yamazaki, T.; Sawada, T.; Yanagisawa, T. The Ability of Xylitol Containing Gum with Calcified Seaweed in Preventing Demineralization of Tooth Surfaces. J. Hard Tissue Biol. 2011, 20, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Fulmer, M.T.; Ison, I.C.; Hankermayer, C.R.; Constantz, B.R.; Ross, J. Measurements of the Solubilities and Dissolution Rates of Several Hydroxyapatites. Biomaterials 2002, 23, 751–755. [Google Scholar] [CrossRef]
- Saxegaard, E.; Lagerlöf, F.; Rølla, G. Dissolution of Calcium Fluoride in Human Saliva. Acta Odontol. Scand. 1988, 46, 355–359. [Google Scholar] [CrossRef]
- Huang, S.; Gao, S.; Cheng, L.; Yu, H. Remineralization Potential of Nano-Hydroxyapatite on Initial Enamel Lesions: An in Vitro Study. Caries Res. 2011, 45, 460–468. [Google Scholar] [CrossRef]
- Taihei Chemicals Limited. Available online: https://www.taihei-chem.co.jp/ (accessed on 13 September 2022).
- Soares, L.E.S.; da Silva Magalhães, J.; Marciano, F.R.; Lobo, A.O. Surface Characteristics of a Modified Acidulated Phosphate Fluoride Gel with Nano-Hydroxyapatite Coating Applied on Bovine Enamel Subjected to an Erosive Environment. Microsc. Res. Tech. 2018, 81, 1456–1466. [Google Scholar] [CrossRef]
- Suge, T.; Kawasaki, A.; Ishikawa, K.; Matsuo, T.; Ebisu, S. Effects of Calcium Phosphate Precipitation Method on Acid Resistance to Apatite Powder and Bovine Tooth. Dent. Mater. J. 2008, 27, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Demito, C.F.; da Costa, J.V.; Fracasso, M.L.C.; Ramos, A.L. Efficacy of Fluoride Associated with Nano-Hydroxyapatite in Reducing Enamel Demineralization Adjacent to Orthodontic Brackets: In Situ Study. Dent. Press J. Orthod. 2019, 24, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.R.C.; Oliveira, P.H.C.; Oliveira, L.H.C.; Horliana, A.C.R.T.; César, P.F.; Moura, S.K.; Bussadori, S.K. Microhardness of Bovine Enamel after Different Fluoride Application Protocols. Dent. Mater. J. 2019, 38, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Attin, T.; Schmidlin, P.R.; Wegehaupt, F.; Wiegand, A. Influence of Study Design on the Impact of Bleaching Agents on Dental Enamel Microhardness: A Review. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2009, 25, 143–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alencar, C.R.B.; Oliveira, G.C.; Magalhães, A.C.; Buzalaf, M.A.R.; Machado, M.A.A.M.; Honório, H.M.; Rios, D. In Situ Effect of CPP-ACP Chewing Gum upon Erosive Enamel Loss. J. Appl. Oral Sci. 2017, 25, 258–264. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Gao, S.; Cheng, L.; Yu, H. Combined Effects of Nano-Hydroxyapatite and Galla Chinensis on Remineralisation of Initial Enamel Lesion in Vitro. J. Dent. 2010, 38, 811–819. [Google Scholar] [CrossRef] [PubMed]
- Bossù, M.; Saccucci, M.; Salucci, A.; Di Giorgio, G.; Bruni, E.; Uccelletti, D.; Sarto, M.S.; Familiari, G.; Relucenti, M.; Polimeni, A. Enamel Remineralization and Repair Results of Biomimetic Hydroxyapatite Toothpaste on Deciduous Teeth: An Effective Option to Fluoride Toothpaste. J. Nanobiotechnol. 2019, 17, 17. [Google Scholar] [CrossRef] [PubMed]
- Wierichs, R.J.; Wolf, T.G.; Campus, G.; Carvalho, T.S. Efficacy of Nano-Hydroxyapatite on Caries Prevention—A Systematic Review and Meta-Analysis. Clin. Oral Investig. 2022, 26, 3373–3381. [Google Scholar] [CrossRef] [PubMed]
- Juntavee, N.; Juntavee, A.; Plongniras, P. Effectiveness of Nanohydroxyapatite on Demineralization of Enamel and Cementum Surrounding Margin of Yttria-Stabilized Zirconia Polycrystalline Ceramic Restoration. Sci. World J. 2021, 2021, 5540738. [Google Scholar] [CrossRef]
- Lippert, F.; Juthani, K. Fluoride Dose-Response of Human and Bovine Enamel Artificial Caries Lesions under PH-Cycling Conditions. Clin. Oral Investig. 2015, 19, 1947–1954. [Google Scholar] [CrossRef] [Green Version]
- Fumitaka, Y.; Rina, S.; Yuka, A.; Kazunari, S.; Shinji, S.; Takatsugu, Y. Studies on Change in Solubility over Time of the Bioactive Material Amorphous Calcium Phosphate and Precipitation of Hydroxyapatite. J. Hard Tissue Biol. 2022, 31, 1–8. [Google Scholar] [CrossRef]
- Aoki, H.; Yajima, T.; Koyama, T. Apatite as a Marvelous Biomaterial and the Surface Technology. J. Surf. Finish. Soc. Jpn. 2007, 58, 744. [Google Scholar] [CrossRef]
- Mona, A.A.; Ahmed, I.M.; Fahd, F.A.; Ahmed, S.B. Effect of citric acid erosion on enamel and dentin and possible protection by a novel bioactive borate adhesive system. J. Dent. 2022, 124, 104208. [Google Scholar] [CrossRef]
Materials | Composition |
---|---|
BioHap (BIOAPATITE Inc., Shiga, Japan) | (Ca:Mg)10(PO4)6(OH)2; powder |
Citric acid gel (AIWA Co., Ltd., Osaka, Japan) | 5% citric acid, 0.01% malic acid, 5% glycerin, 3% tamarind gum, others (pH 3.0); gel |
Acidulated phosphate fluoride (APF) | 2% sodium fluoride, 1% phosphoric acid, 9048 ppmF (pH 3.6); solution |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satou, R.; Iwasaki, M.; Kamijo, H.; Sugihara, N. Improved Enamel Acid Resistance Using Biocompatible Nano-Hydroxyapatite Coating Method. Materials 2022, 15, 7171. https://doi.org/10.3390/ma15207171
Satou R, Iwasaki M, Kamijo H, Sugihara N. Improved Enamel Acid Resistance Using Biocompatible Nano-Hydroxyapatite Coating Method. Materials. 2022; 15(20):7171. https://doi.org/10.3390/ma15207171
Chicago/Turabian StyleSatou, Ryouichi, Miyu Iwasaki, Hideyuki Kamijo, and Naoki Sugihara. 2022. "Improved Enamel Acid Resistance Using Biocompatible Nano-Hydroxyapatite Coating Method" Materials 15, no. 20: 7171. https://doi.org/10.3390/ma15207171
APA StyleSatou, R., Iwasaki, M., Kamijo, H., & Sugihara, N. (2022). Improved Enamel Acid Resistance Using Biocompatible Nano-Hydroxyapatite Coating Method. Materials, 15(20), 7171. https://doi.org/10.3390/ma15207171