Improved Enamel Acid Resistance by Highly Concentrated Acidulated Phosphate Sodium Monofluorophosphate Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Enamel Samples
2.2. Fluoride Application and pH-Cycling Acid Challenge
2.3. Step Height Profiles Using 3D Laser Microscopy
2.4. Cross-Section and Surface Morphology Using Scanning Electron Microscopy
2.5. Mineral Loss and Demineralization Depth Using Contact Microradiography
2.6. Surface Analysis by X-ray Photoelectron Spectroscopy
2.7. Statistical Analysis
3. Results
3.1. Step Height Profiles by 3D Laser Microscopy after the Acid Challenge
3.2. Enamel Surface and Cross-Section SEM Observations after the Acid Challenge
3.3. Mineral Loss and Demineralization Depth by CMR Analysis
3.4. Surface Analysis by XPS Analysis
4. Discussion
4.1. Effectiveness of High-Concentration MFP-Based Tooth Surface Treatment Method
4.2. Enamel Acid Resistance Mechanism of AP-MFP
4.3. Clinical Application and Challenges of AP-MFP
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whelton, H.P.; Spencer, A.J.; Do, L.G.; Rugg-Gunn, A.J. Fluoride revolution and dental caries: Evolution of policies for global use. J. Dent. Res. 2019, 98, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Marinho, V.C.; Higgins, J.P.; Logan, S.; Sheiham, A. Topical fluoride (toothpastes, mouthrinses, gels or varnishes) for preventing dental caries in children and adolescents. Cochrane Database Syst. Rev. 2003, 4, CD002782. [Google Scholar] [CrossRef]
- Walsh, T.; Worthington, H.V.; Glenny, A.M.; Marinho, V.C.; Jeroncic, A. Fluoride toothpastes of different concentrations for preventing dental caries. Cochrane Database Syst. Rev. 2019, 3, CD007868. [Google Scholar] [CrossRef] [PubMed]
- Volpe, A.R.; Petrone, M.E.; Davies, R.; Proskin, H.M. Clinical anticaries efficacy of NaF and SMFP dentifrices: Overview and resolution of the scientific controversy. J. Clin. Dent. 1995, 6, (Spec No). 1–28. [Google Scholar]
- ten Cate, J.M.; Rempt, H.E. Comparison of the in vivo effect of a 0 and 1,500 ppmF MFP toothpaste on fluoride uptake, acid resistance and lesion remineralization. Caries Res. 1986, 20, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Shourie, K.L.; Hein, J.W.; Hodge, H.C. Preliminary studies of the caries inhibiting potential and acute toxicity of sodium monofluorophosphate. J. Dent. Res. 1950, 29, 529–533. [Google Scholar] [CrossRef] [PubMed]
- White, W.E. Monofluorophosphate – Its beginning. Caries Res. 1983, 17 (Suppl. S1), 2–8. [Google Scholar] [CrossRef]
- Tanizawa, Y.; Tsuchikane, H.; Sawamura, K.; Suzuki, T. Reaction characteristics of hydroxyapatite with F− and PO3F2− ions. Chemical states of fluorine in hydroxyapatite. Faraday Trans. 1991, 87, 2235–2240. [Google Scholar] [CrossRef]
- Atsushi, Y.; Kazuo, K.; Haruo, N. DifferencesinEffectsof SodiumFluorideand SodiumMonofluorophosphate on acid Resistanceof enamel. J. Dent. Health 2007, 57, 13–21. [Google Scholar] [CrossRef]
- Ingram, G.S. The reaction of monofluorophosphate with apatite. Caries Res. 1972, 6, 1–15. [Google Scholar] [CrossRef]
- Eanes, E.D. The reaction of monofluorophosphate with amorphous and apatitic calcium phosphates. Caries Res. 1976, 10, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Angmar, B.; Carlstrom, D.; Glas, J.E. Studies on the ultrastructure of dental enamel. IV. The mineralization of normal human enamel. J. Ultrastruct. Res. 1963, 8, 12–23. [Google Scholar] [CrossRef]
- Miake, Y.; Nozue, S.; Moriguchi, M.; Yamazaki, T.; Sawada, T.; Yanagisawa, T. The ability of xylitol containing gum with calcified seaweed in preventing demineralization of tooth surfaces. J. Hard Tissue Biol. 2011, 20, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Noro, A.; Kaneko, M.; Murata, I.; Yoshinari, M. Influence of surface topography and surface physicochemistry on wettability of zirconia (tetragonal zirconia polycrystal). J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101, 355–363. [Google Scholar] [CrossRef]
- Chow, L.C.; Brown, W.E. Formation of CaHPO4—2H2O in tooth enamel as an intermediate product in topical fluoride treatments. J. Dent. Res. 1975, 54, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Boddé, H.E.; Koops, P.G.; Arends, J. Effect of an APF pretreatment on in vitro remineralization of initial enamel lesions. Caries Res. 1984, 18, 344–347. [Google Scholar] [CrossRef]
- Wiegand, A.; Buchalla, W.; Attin, T. Review on fluoride-releasing restorative materials—Fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent. Mater. 2007, 23, 343–362. [Google Scholar] [CrossRef] [PubMed]
- ten Cate, J.M.; Duijsters, P.P.E. Influence of fluoride in solution on tooth demineralization. II. Microradiographic data. Caries Res. 1983, 17, 513–519. [Google Scholar] [CrossRef]
- Grøn, P.; Brudevold, F.; Aasenden, R. Monofluorophosphate interaction with hydroxyapatite and intact enamel. Caries Res. 1971, 5, 202–214. [Google Scholar] [CrossRef]
- Bruun, C.; Givskov, H.; Thylstrup, A. Whole saliva fluoride after toothbrushing with NaF and MFP dentifrices with different F concentrations. Caries Res. 1984, 18, 282–288. [Google Scholar] [CrossRef]
- Mellberg, J.R.; Mallon, D.E. Acceleration of remineralization in vitro by sodium monofluorophosphate and sodium fluoride. J. Dent. Res. 1984, 63, 1130–1135. [Google Scholar] [CrossRef] [PubMed]
- Körner, P.; Nguyen, T.P.; Hamza, B.; Attin, T.; Wegehaupt, F.J. Enamel Softening Can Be Reduced by Rinsing with a Fluoride Mouthwash Before Dental Erosion but Not with a Calcium Solution. Oral Health Prev. Dent. 2021, 19, 587–594. [Google Scholar] [CrossRef]
- Wegehaupt, F.J.; Tauböck, T.T.; Attin, T. Durability of the anti-erosive effect of surfaces sealants under erosive abrasive conditions. Acta Odontol. Scand. 2013, 71, 1188–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attin, T.; Becker, K.; Wiegand, A.; Tauböck, T.T.; Wegehaupt, F.J. Impact of laminar flow velocity of different acids on enamel calcium loss. Clin. Oral Investig. 2013, 17, 595–600. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satou, R.; Yamagishi, A.; Takayanagi, A.; Iwasaki, M.; Kamijo, H.; Sugihara, N. Improved Enamel Acid Resistance by Highly Concentrated Acidulated Phosphate Sodium Monofluorophosphate Solution. Materials 2022, 15, 7298. https://doi.org/10.3390/ma15207298
Satou R, Yamagishi A, Takayanagi A, Iwasaki M, Kamijo H, Sugihara N. Improved Enamel Acid Resistance by Highly Concentrated Acidulated Phosphate Sodium Monofluorophosphate Solution. Materials. 2022; 15(20):7298. https://doi.org/10.3390/ma15207298
Chicago/Turabian StyleSatou, Ryouichi, Atsushi Yamagishi, Atsushi Takayanagi, Miyu Iwasaki, Hideyuki Kamijo, and Naoki Sugihara. 2022. "Improved Enamel Acid Resistance by Highly Concentrated Acidulated Phosphate Sodium Monofluorophosphate Solution" Materials 15, no. 20: 7298. https://doi.org/10.3390/ma15207298
APA StyleSatou, R., Yamagishi, A., Takayanagi, A., Iwasaki, M., Kamijo, H., & Sugihara, N. (2022). Improved Enamel Acid Resistance by Highly Concentrated Acidulated Phosphate Sodium Monofluorophosphate Solution. Materials, 15(20), 7298. https://doi.org/10.3390/ma15207298