3D Printing Technology for Smart Clothing: A Topic Review
Abstract
:1. Introduction and Motivation
2. The Method of 3D Printing in Clothing
2.1. Fused Deposition Modeling (FDM)
2.2. Selective Laser Sintering (SLS)
3. The Research Progress on 3D Printing in Clothing
3.1. The Progress of 3D Printing in Traditional Clothing
3.1.1. The Basic Application of 3D Printing in Traditional Clothing
3.1.2. The Flexible Structure of 3D Printing in Traditional Clothing
3.2. The Progress of 3D Printing in Smart Clothing
3.2.1. The 3D Printing in Clothing of Functional Devices
3.2.2. The 3D Printing in Clothing of Electronic Textiles
3.2.3. The 3D Printing in Clothing of Exoskeleton Wearing Devices
4. Challenges and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, J.; Tok, J.B.-H.; Bao, Z. Self-healing soft electronics. Nat. Electron. 2019, 2, 144–150. [Google Scholar] [CrossRef]
- Wang, J.; Tang, F.; Wang, Y.; Lu, Q.; Liu, S.; Li, L. Self-Healing and Highly Stretchable Gelatin Hydrogel for Self-Powered Strain Sensor. ACS Appl. Mater. Interfaces 2020, 12, 1558–1566. [Google Scholar] [CrossRef] [PubMed]
- Ge, G.; Lu, Y.; Qu, X.; Zhao, W.; Ren, Y.; Wang, W.; Wang, Q.; Huang, W.; Dong, X. Muscle-Inspired Self-Healing Hydrogels for Strain and Temperature Sensor. ACS Nano 2020, 14, 218–228. [Google Scholar] [CrossRef]
- Zou, Y.; Tan, P.; Shi, B.; Ouyang, H.; Jiang, D.; Liu, Z.; Li, H.; Yu, M.; Wang, C.; Qu, X.; et al. A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat. Commun. 2019, 10, 2695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- 3D Printed clothing house microorganisms. Nat. Biotechnol. 2015, 33, 896. [CrossRef]
- Liu, H.; Dong, M.; Huang, W.; Gao, J.; Dai, K.; Guo, J.; Zheng, G.; Liu, C.; Shen, C.; Guo, Z. Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J. Mater. Chem. C 2017, 5, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Nur, R.; Matsuhisa, N.; Jiang, Z.; Nayeem, M.O.G.; Yokota, T.; Someya, T. A Highly Sensitive Capacitive-type Strain Sensor Using Wrinkled Ultrathin Gold Films. Nano Lett. 2018, 18, 5610–5617. [Google Scholar] [CrossRef]
- Spahiu, T.; Canaj, E.; Shehi, E. 3D printing for clothing production. J. Eng. Fibers Fabr. 2020, 15, 1–8. [Google Scholar] [CrossRef]
- Joshi, S.C.; Sheikh, A.A. 3D printing in aerospace and its long-term sustainability. Virtual Phys. Prototyp. 2015, 10, 175–185. [Google Scholar] [CrossRef]
- Attaran, M. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus. Horiz. 2017, 60, 677–688. [Google Scholar] [CrossRef]
- Shafiee, A.; Atala, A. Printing Technologies for Medical Applications. Trends Mol. Med. 2016, 22, 254–265. [Google Scholar] [CrossRef]
- Liu, C.; Ho, C.; Wang, J. The development of 3D food printer for printing fibrous meat materials. IOP Conf. Ser. Mater. Sci. Eng. 2018, 284, 012019. [Google Scholar] [CrossRef]
- Xiao, Y.-Q.; Kan, C.-W. Review on Development and Application of 3D-Printing Technology in Textile and Fashion Design. Coatings 2022, 12, 267. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, L. Envisioning the era of 3D printing: A conceptual model for the fashion industry. Fash. Text. 2017, 4, 25. [Google Scholar] [CrossRef]
- Nike football accelerates innovation with 3D printed “concept cleat” for shuttle. Nike News 2014. Available online: http://news.nike.com/news/nike-football-accelerates-innovation-with-3d-printed-concept-cleat-for-shuttle (accessed on 15 June 2022).
- Nike zoom superfly flyknit. Nike News 2016. Available online: http://news.nike.com/news/allyson-felix-track-spike (accessed on 15 June 2022).
- McKenna, B. 3D-printed shoe race: How do Nike, Under Armour, and Adidas stack up. 2 April 2016. Available online: https://www.fool.com/investing/general/2016/04/02/3d-printed-shoes-nike-underarmor-adidas-newbalance.aspx (accessed on 15 June 2022).
- Under Armour 3d-architech. 2016. Available online: https://www.underarmour.com/en-us/3d-architech (accessed on 15 June 2022).
- Garfield, L. Under Armour 3D-printed soles for its new $300 sneakers with powder and lasers. Business Insider. 1 July 2016. Available online: http://www.businessinsider.com/under-armour-3d-prints-its-new-architech-shoes-2016-6/#this-is-the-architech-the-sneakers-are-fit-for-any-type-of-sport-the-lighthouses-director-adam-bayer-tells-tech-insider-1 (accessed on 15 June 2022).
- Adidas breaks the mould with 3D-printed performance footwear. Adidas Group. 7 October 2015.
- Burgess, M. Adidas is selling a limited number of 3D-printed runner shoes. 2016. Available online: http://www.wired.co.uk/article/adidas-3d-printed-running-shoe-cost-test (accessed on 15 June 2022).
- Reebok introduces new liquid factory. Reebok News 2016. Available online: http://news.reebok.com/global/latest-news/reebok-introduces-new-liquid-factory/s/8a87d7f7-8a93-49d2-9ddd-efee2d588b76 (accessed on 15 June 2022).
- Lee, S.-L. Study on Modern and Innovative Haute Couture Designer Iris van Herpen. Arch. Des. Res. 2014, 111, 175–195. [Google Scholar] [CrossRef]
- Hemmings, J. Iris van Herpen: Transforming Fashion. Fash. Theory 2019, 24, 287–291. [Google Scholar] [CrossRef]
- Logan, L. The Dutch designer who is pioneering the use of 3D printing in fashion. Smithsonian 2015. Available online: http://www.smithsonianmag.com/innovation/dutch-designer-who-pioneering-use-3d-printing-fashion-180957184/ (accessed on 15 June 2022).
- Luimstra, J. Artist got inspired by waves and created this 3D printed swimsuit. 2015. Available online: https://3dprinting.com/news/artist-got-inspired-waves-created-3d-printed-swimsuit/ (accessed on 15 June 2022).
- Fashion, S. When fashion meets technology, first look at how beautiful the skirt designed by 3D printing technology is. 2015. Available online: http://fashion.sina.com.cn/s/tr/2019-07-02/1609/doc-ihytcitk9184017.shtml (accessed on 15 June 2022).
- Song, H.; Lee, J. Study on the Tendency of Interest of Fashion Product Development based on 3D Printing according to College Students’ Fashion Life Style. J. Fash. Bus. 2019, 23, 101–115. [Google Scholar]
- Kwon, Y.M.; Lee, Y.-A.; Kim, S.J. Case study on 3D printing education in fashion design coursework. Fash. Text. 2017, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Karakurt, I.; Lin, L. 3D printing technologies: Techniques, materials, and post-processing. Curr. Opin. Chem. Eng. 2020, 28, 134–143. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Lalegani Dezaki, M.; Mohd Ariffin, M.K.A.; Hatami, S. An overview of fused deposition modelling (FDM): Research, development and process optimisation. Rapid Prototyp. J. 2021, 27, 562–582. [Google Scholar] [CrossRef]
- Melnikova, R.; Ehrmann, A.; Finsterbusch, K. 3D printing of textile-based structures by Fused Deposition Modelling (FDM) with different polymer materials. IOP Conf. Ser. Mater. Sci. Eng. 2014, 62, 012018. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Kim, J. 3D printed fabric: Techniques for design and 3D weaving programmable textiles. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, New Orleans, LA, USA, 20–23 October 2019; pp. 43–51. [Google Scholar]
- Kim, S.; Seong, H.; Her, Y.; Chun, J. A study of the development and improvement of fashion products using a FDM type 3D printer. Fash. Text. 2019, 6, 9. [Google Scholar] [CrossRef]
- Beecroft, M. Digital interlooping: 3D printing of weft-knitted textile-based tubular structures using selective laser sintering of nylon powder. Int. J. Fash. Des. Technol. Educ. 2019, 12, 218–224. [Google Scholar] [CrossRef] [Green Version]
- 3D printed clothes in 2021: What are the best projects? Sculpteo News 2021. Available online: https://www.sculpteo.com/en/3d-learning-hub/applications-of-3d-printing/3d-printed-clothes/ (accessed on 15 June 2022).
- Cheng, P.; Chen, X.; Gao, H.; Zhang, X.; Tang, Z.; Li, A.; Wang, G. Different dimensional nanoadditives for thermal conductivity enhancement of phase change materials: Fundamentals and applications. Nano Energy 2021, 85, 105948. [Google Scholar] [CrossRef]
- Liu, D.; Lei, C.; Wu, K.; Fu, Q. A Multidirectionally Thermoconductive Phase Change Material Enables High and Durable Electricity via Real-Environment Solar-Thermal-Electric Conversion. ACS Nano 2020, 14, 15738–15747. [Google Scholar] [CrossRef] [PubMed]
- Min, P.; Liu, J.; Li, X.; An, F.; Liu, P.; Shen, Y.; Koratkar, N.; Yu, Z.-Z. Thermally Conductive Phase Change Composites Featuring Anisotropic Graphene Aerogels for Real-Time and Fast-Charging Solar-Thermal Energy Conversion. Adv. Funct. Mater. 2018, 28, 1805365. [Google Scholar] [CrossRef]
- Hyun, D.C.; Levinson, N.S.; Jeong, U.; Xia, Y. Emerging applications of phase-change materials (PCMs): Teaching an old dog new tricks. Angew. Chem. Int. Ed. Engl. 2014, 53, 3780–3795. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Huang, X.; Chen, J.; Wu, K.; Wang, J.; Zhang, X. A review of conductive carbon materials for 3D printing: Materials, technologies, properties, and applications. Materials 2021, 14, 3911. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tong, Z.; Ye, Q.; Hu, H.; Nie, X.; Yan, C.; Shang, W.; Song, C.; Wu, J.; Wang, J.; et al. Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage. Nat. Commun. 2017, 8, 1478. [Google Scholar] [CrossRef] [Green Version]
- Kashyap, V.; Sakunkaewkasem, S.; Jafari, P.; Nazari, M.; Eslami, B.; Nazifi, S.; Irajizad, P.; Marquez, M.D.; Lee, T.R.; Ghasemi, H. Full Spectrum Solar Thermal Energy Harvesting and Storage by a Molecular and Phase-Change Hybrid Material. Joule 2019, 3, 3100–3111. [Google Scholar] [CrossRef]
- Renato, K.; Minuzzi, R.F.B. The 3D printing’s panorama in fashion design. Moda Doc. Mus. Mem. Des. 2015, 11, 1–12. [Google Scholar]
- Cakar, S.; Ehrmann, A. 3D Printing with Flexible Materials—Mechanical Properties and Material Fatigue. Macromol. Symp. 2021, 395, 2000203. [Google Scholar] [CrossRef]
- Jin, Y.; Jeon, E.J.; Jeong, S.; Min, S.; Choi, Y.S.; Kim, S.H.; Lee, J.S.; Shin, J.; Yu, J.H.; Ahn, D.-H.; et al. Reconstruction of Muscle Fascicle-Like Tissues by Anisotropic 3D Patterning. Adv. Funct. Mater. 2021, 31, 2006227. [Google Scholar] [CrossRef]
- Mogan, Y.; Sa’aban, N.; Ibrahim, M.; Periyasamy, R. Thermoplastic elastomer infill pattern impact on mechanical properties 3D printed customized orthotic insole. ARPN J. Eng. Appl. Sci. 2016, 11, 6519–6524. [Google Scholar]
- Korger, M.; Glogowsky, A.; Sanduloff, S.; Steinem, C.; Huysman, S.; Horn, B.; Ernst, M.; Rabe, M. Testing thermoplastic elastomers selected as flexible three-dimensional printing materials for functional garment and technical textile applications. J. Eng. Fibers Fabr. 2020, 15, 1–10. [Google Scholar] [CrossRef]
- Rodríguez-Parada, L.; de la Rosa, S.; Mayuet, P.F. Influence of 3D-Printed TPU Properties for the Design of Elastic Products. Polymers 2021, 13, 2519. [Google Scholar] [CrossRef]
- Montagna, G. Textiles, Identity and Innovation: Design the Future. In Proceedings of the 1st International Textile Design Conference (D_TEX 2017), Lisbon, Portugal, 2–4 November 2017; 2018. [Google Scholar]
- Davis, F. 3D Printed Textiles from Textile Code: Structural Form and Material Operations. In Proceedings of the 16th Iberoamerican Congress of Digital Graphics, Fortaleza, Brazil, 13–16 November 2012. [Google Scholar]
- Beecroft, M. 3D printing of weft knitted textile based structures by selective laser sintering of nylon powder. IOP Conf. Ser. Mater. Sci. Eng. 2016, 137, 012017. [Google Scholar] [CrossRef]
- Gürcüm, B.H.; Borklu, H.R.; Sezer, K.; Eren, O. Implementing 3D Printed Structures as the Newest Textile Form. J. Fash. Technol. Text. Eng. 2018, S4, 019. [Google Scholar] [CrossRef] [Green Version]
- Bloomfield, M.; Borstrock, S. Modeclix. The additively manufactured adaptable textile. Mater. Today Commun. 2018, 16, 212–216. [Google Scholar] [CrossRef]
- Zhu, M.; He, T.; Lee, C. Technologies toward next generation human machine interfaces: From machine learning enhanced tactile sensing to neuromorphic sensory systems. Appl. Phys. Rev. 2020, 7, 031305. [Google Scholar] [CrossRef]
- Mamun, M.A.A.; Yuce, M.R. Recent Progress in Nanomaterial Enabled Chemical Sensors for Wearable Environmental Monitoring Applications. Adv. Funct. Mater. 2020, 30, 2005703. [Google Scholar] [CrossRef]
- Li, J.; Wu, C.; Chu, P.K.; Gelinsky, M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Mater. Sci. Eng. R Rep. 2020, 140, 100543. [Google Scholar]
- Dong, K.; Wang, Y.-C.; Deng, J.; Dai, Y.; Zhang, S.L.; Zou, H.; Gu, B.; Sun, B.; Wang, Z.L. A Highly Stretchable and Washable All-Yarn-Based Self-Charging Knitting Power Textile Composed of Fiber Triboelectric Nanogenerators and Supercapacitors. ACS Nano 2017, 11, 9490–9499. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, J.; Li, X.; Zhou, Z.; Meng, K.; Wei, W.; Yang, J.; Wang, Z.L. Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring. ACS Nano 2017, 11, 8830–8837. [Google Scholar] [CrossRef]
- Chen, G.; Li, Y.; Bick, M.; Chen, J. Smart Textiles for Electricity Generation. Chem. Rev. 2020, 120, 3668–3720. [Google Scholar] [CrossRef]
- Wang, B.; Facchetti, A. Mechanically Flexible Conductors for Stretchable and Wearable E-Skin and E-Textile Devices. Adv. Mater. 2019, 31, e1901408. [Google Scholar] [CrossRef]
- Lian, Y.; Yu, H.; Wang, M.; Yang, X.; Li, Z.; Yang, F.; Wang, Y.; Tai, H.; Liao, Y.; Wu, J.; et al. A multifunctional wearable E-textile via integrated nanowire-coated fabrics. J. Mater. Chem. C 2020, 8, 8399–8409. [Google Scholar] [CrossRef]
- Beltrão, M.; Duarte, F.M.; Viana, J.C.; Paulo, V. A review on in-mold electronics technology. Polym. Eng. Sci. 2022, 62, 967–990. [Google Scholar] [CrossRef]
- IDTechEx. Printed Electronics: The Defining Trends in 2019; IDTechEx Reports: Cambridge, UK, 2019. [Google Scholar]
- IDTechEx. E-Textiles & Smart Clothing 2021–2031: Technologies, Markets and Players; IDTechEx Reports: Cambridge, UK, 2021. [Google Scholar]
- Athletics, R. Radiate Athletics: The Future of Sports Apparel; Kickstarter: Brooklyn, NY, USA, 2013. [Google Scholar]
- Hexoskin. Health Research & Professional Solutions; Hexoskin: Montreal, QC, Canada, 2021. [Google Scholar]
- OMsignal. OMsignal Biometric Smartwear; OMsignal: Montreal, QC, Canada, 2021. [Google Scholar]
- Eom, R.-I.; Lee, H.; Lee, Y. Evaluation of Thermal Properties of 3D Spacer Technical Materials in Cold Environments using 3D Printing Technology. Polymers 2019, 11, 1438. [Google Scholar] [CrossRef] [Green Version]
- Hong, K.H.; Lee, H. Development of hip protectors for snowboarding utilizing 3D modeling and 3D printing. Fash. Text. 2020, 7, 39. [Google Scholar] [CrossRef]
- Gao, T.; Yang, Z.; Chen, C.; Li, Y.; Fu, K.; Dai, J.; Hitz, E.M.; Xie, H.; Liu, B.; Song, J.; et al. Three-Dimensional Printed Thermal Regulation Textiles. ACS Nano 2017, 11, 11513–11520. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ma, Y.; Jia, S.; Zhang, C.; Li, P.; Zhang, Y.; Li, Q. 3D-Printed Flexible Phase-Change Nonwoven Fabrics toward Multifunctional Clothing. ACS Appl. Mater. Interfaces 2022, 14, 7283–7291. [Google Scholar] [CrossRef]
- Pattinson, S.W.; Huber, M.E.; Kim, S.; Lee, J.; Grunsfeld, S.; Roberts, R.; Dreifus, G.; Meier, C.; Liu, L.; Hogan, N.; et al. Additive Manufacturing of Biomechanically Tailored Meshes for Compliant Wearable and Implantable Devices. Adv. Funct. Mater. 2019, 29, 1901815. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Hofmann, D.; Andrade, J.E.; Daraio, C. Structured fabrics with tunable mechanical properties. Nature 2021, 596, 238–243. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, J.R. Developing Fall-impact Protection Pad with 3D Mesh Curved Surface Structure using 3D Printing Technology. Polymers 2019, 11, 1800. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Witting, I.; Geisendorfer, N.; Wang, M.; Chang, M.; Jakus, A.; Kenel, C.; Yan, X.; Shah, R.; Snyder, G.J.; et al. 3D extruded composite thermoelectric threads for flexible energy harvesting. Nat. Commun. 2019, 10, 5590. [Google Scholar] [CrossRef] [Green Version]
- Min, J.; Sempionatto, J.R.; Teymourian, H.; Wang, J.; Gao, W. Wearable electrochemical biosensors in North America. Biosens. Bioelectron. 2021, 172, 112750. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Ming, X.; Li, W.; Jia, K.; Jiang, H.; Ke, Y.; Li, M.; Wang, D. Wearable human-machine interaction device integrated by all-textile-based tactile sensors array via facile cross-stitch. Sens. Actuators A Phys. 2022, 333, 113240. [Google Scholar] [CrossRef]
- Cho, S.; Chang, T.; Yu, T.; Lee, C.H. Smart Electronic Textiles for Wearable Sensing and Display. Biosensors 2022, 12, 222. [Google Scholar] [CrossRef]
- Mao, N.; Peng, H.; Quan, Z.; Zhang, H.; Wu, D.; Qin, X.; Wang, R.; Yu, J. Wettability Control in Tree Structure-Based 1D Fiber Assemblies for Moisture Wicking Functionality. ACS Appl. Mater. Interfaces 2019, 11, 44682–44690. [Google Scholar] [CrossRef] [PubMed]
- Roach, D.J.; Yuan, C.; Kuang, X.; Li, V.C.-F.; Blake, P.; Romero, M.L.; Hammel, I.; Yu, K.; Qi, H.J. Long Liquid Crystal Elastomer Fibers with Large Reversible Actuation Strains for Smart Textiles and Artificial Muscles. ACS Appl. Mater. Interfaces 2019, 11, 19514–19521. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Cheng, M.; Shahbazian-Yassar, R.; Pan, Y. Direct Ink Writing of Wearable Thermoresponsive Supercapacitors with rGO/CNT Composite Electrodes. Adv. Mater. Technol. 2019, 4, 1900691. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, M.; Jian, M.; Wang, C.; Yu, A.; Yin, Z.; Liang, X.; Wang, H.; Xia, K.; Liang, X.; et al. Printable Smart Pattern for Multifunctional Energy-Management E-Textile. Matter 2019, 1, 168–179. [Google Scholar] [CrossRef]
- Chen, Y.; Deng, Z.; Ouyang, R.; Zheng, R.; Jiang, Z.; Bai, H.; Xue, H. 3D printed stretchable smart fibers and textiles for self-powered e-skin. Nano Energy 2021, 84, 105866. [Google Scholar] [CrossRef]
- Danilevicius, P.; Georgiadi, L.; Pateman, C.J.; Claeyssens, F.; Chatzinikolaidou, M.; Farsari, M. The effect of porosity on cell ingrowth into accurately defined, laser-made, polylactide-based 3D scaffolds. Appl. Surf. Sci. 2015, 336, 2–10. [Google Scholar] [CrossRef]
- Xu, J.; Li, D.; Ma, R.-F.; Barden, B.; Ding, Y. Application of Rapid Prototyping Pelvic Model for Patients with DDH to Facilitate Arthroplasty Planning: A Pilot Study. J. Arthroplast. 2015, 30, 1963–1970. [Google Scholar] [CrossRef] [PubMed]
- Hinton, T.J.; Jallerat, Q.; Palchesko, R.N.; Park, J.H.; Grodzicki, M.S.; Shue, H.J.; Ramadan, M.H.; Hudson, A.R.; Feinberg, A.W. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 2015, 1, e1500758. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Uduku, C.; Li, K.; Herrero, P.; Oliver, N.; Georgiou, P. Enhancing self-management in type 1 diabetes with wearables and deep learning. NPJ Digit. Med. 2022, 5, 78. [Google Scholar] [CrossRef]
- Schuurmans, A.A.T.; de Looff, P.; Nijhof, K.S.; Rosada, C.; Scholte, R.H.J.; Popma, A.; Otten, R. Validity of the Empatica E4 Wristband to Measure Heart Rate Variability (HRV) Parameters: A Comparison to Electrocardiography (ECG). J. Med. Syst. 2020, 44, 190. [Google Scholar] [CrossRef]
- van Lier, H.G.; Pieterse, M.E.; Garde, A.; Postel, M.G.; de Haan, H.A.; Vollenbroek-Hutten, M.M.R.; Schraagen, J.M.; Noordzij, M.L. A standardized validity assessment protocol for physiological signals from wearable technology: Methodological underpinnings and an application to the E4 biosensor. Behav. Res. Methods. 2020, 52, 607–629. [Google Scholar] [CrossRef] [PubMed]
- Tat, T.; Chen, G.; Zhao, X.; Zhou, Y.; Xu, J.; Chen, J. Smart Textiles for Healthcare and Sustainability. ACS Nano 2022, 16, 13301–13313. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.K.; Wang, Y.L.; Chang, H.C.; Chen, C.C. Design and Development of a Wearable Exoskeleton System for Stroke Rehabilitation. Healthcare 2020, 8, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Jeong, S. Case study: Hybrid model for the customized wrist orthosis using 3D printing. J. Mech. Sci. Technol. 2015, 29, 5151–5156. [Google Scholar] [CrossRef]
- Tang, L.; Wang, L.; Bao, W.; Zhu, S.; Li, D.; Zhao, N.; Liu, C. Functional gradient structural design of customized diabetic insoles. J. Mech. Behav. Biomed. Mater. 2019, 94, 279–287. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Zeng, T.; Liu, Z.; Ma, G.; Xiong, Z.; Zuo, L.; Zhou, Z. 3D Printing Technology for Smart Clothing: A Topic Review. Materials 2022, 15, 7391. https://doi.org/10.3390/ma15207391
Wu S, Zeng T, Liu Z, Ma G, Xiong Z, Zuo L, Zhou Z. 3D Printing Technology for Smart Clothing: A Topic Review. Materials. 2022; 15(20):7391. https://doi.org/10.3390/ma15207391
Chicago/Turabian StyleWu, Shuangqing, Taotao Zeng, Zhenhua Liu, Guozhi Ma, Zhengyu Xiong, Lin Zuo, and Zeyan Zhou. 2022. "3D Printing Technology for Smart Clothing: A Topic Review" Materials 15, no. 20: 7391. https://doi.org/10.3390/ma15207391
APA StyleWu, S., Zeng, T., Liu, Z., Ma, G., Xiong, Z., Zuo, L., & Zhou, Z. (2022). 3D Printing Technology for Smart Clothing: A Topic Review. Materials, 15(20), 7391. https://doi.org/10.3390/ma15207391