Negative Photoconductivity in 2D α-MoO3/Ir Self-Powered Photodetector: Impact of Post-Annealing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Surface Morphology
3.2. Raman Shift of α-MoO3
3.3. Electrical Properties
3.4. Zero Bias ON–OFF Dynamic Behavior
3.5. Effect of Carrier Concentrations on the Positive and Negative Photoconductivity
3.6. Origin of Negative Photoconductivity
3.7. Transient Behavior Analysis
3.8. Response and Recovery Time Analysis
3.9. Assessment of Self-Powered Photodetector Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, S.C.; Peng, Y.; Rutledge, J.; Guo, C. Photothermal and Joule-heating-induced negative-photoconductivity-based ultraresponsive and near-zero-biased copper selenide photodetectors. ACS Appl. Electron. Mater. 2019, 1, 1169–1178. [Google Scholar] [CrossRef]
- Yu, X.; Yu, P.; Wu, D.; Singh, B.; Zeng, Q.; Lin, H.; Zhou, W.; Lin, J.; Suenaga, K.; Liu, Z. Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun. 2018, 9, 1545. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, H.; Bishop, K.J.; Kowalczyk, B.; Nitzan, A.; Weiss, E.A.; Tretiakov, K.V.; Apodaca, M.M.; Klajn, R.; Stoddart, J.F.; Grzybowski, B.A. Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles. Nature 2009, 460, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Koppens, F.; Mueller, T.; Avouris, P.; Ferrari, A.; Vitiello, M.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793. [Google Scholar] [CrossRef]
- Periyanagounder, D.; Gnanasekar, P.; Varadhan, P.; He, J.-H.; Kulandaivel, J. High performance, self-powered photodetectors based on a graphene/silicon Schottky junction diode. J. Mater. Chem. C 2018, 6, 9545–9551. [Google Scholar] [CrossRef]
- Zhan, Z.; Zheng, L.; Pan, Y.; Sun, G.; Li, L. Self-powered, visible-light photodetector based on thermally reduced graphene oxide–ZnO (rGO–ZnO) hybrid nanostructure. J. Mater. Chem. 2012, 22, 2589–2595. [Google Scholar] [CrossRef]
- Song, L.; Xu, E.; Yu, Y.; Jie, J.; Xia, Y.; Chen, S.; Jiang, Y.; Xu, G.; Li, D.; Jie, J. High-Barrier-Height Ti3C2Tx/Si Microstructure Schottky Junction-Based Self-Powered Photodetectors for Photoplethysmographic Monitoring. Adv. Mater. Technol. 2022, 7, 2200555. [Google Scholar] [CrossRef]
- Xiang, D.; Han, C.; Hu, Z.; Lei, B.; Liu, Y.; Wang, L.; Hu, W.P.; Chen, W. Surface Transfer Doping-Induced, High-Performance Graphene/Silicon Schottky Junction-Based, Self-Powered Photodetector. Small 2015, 11, 4829–4836. [Google Scholar] [CrossRef]
- Tian, W.; Wang, Y.; Chen, L.; Li, L. Self-powered nanoscale photodetectors. Small 2017, 13, 1701848. [Google Scholar] [CrossRef]
- Collado, L.; Reynal, A.; Fresno, F.; Barawi, M.; Escudero, C.; Perez-Dieste, V.; Coronado, J.M.; Serrano, D.P.; Durrant, J.R.; de la Peña O’Shea, V.A. Unravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO2 photoreduction. Nat. Commun. 2018, 9, 4986. [Google Scholar] [CrossRef]
- Tan, S.; Argondizzo, A.; Ren, J.; Liu, L.; Zhao, J.; Petek, H. Plasmonic coupling at a metal/semiconductor interface. Nat. Photonics 2017, 11, 806–812. [Google Scholar] [CrossRef]
- Knight, M.W.; Sobhani, H.; Nordlander, P.; Halas, N.J. Photodetection with active optical antennas. Science 2011, 332, 702–704. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Bjerneld, E.J.; Käll, M.; Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 1999, 83, 4357. [Google Scholar] [CrossRef]
- Atwater, H.A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Brongersma, M.L.; Halas, N.J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Mubeen, S.; Ji, X.; Stucky, G.D.; Moskovits, M. Plasmonic photoanodes for solar water splitting with visible light. Nano Lett. 2012, 12, 5014–5019. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Zhou, L.; Goodman, A.M.; Large, N.; Ayala-Orozco, C.; Zhang, Y.; Nordlander, P.; Halas, N.J. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 2014, 136, 64–67. [Google Scholar] [CrossRef]
- Smith, J.G.; Faucheaux, J.A.; Jain, P.K. Plasmon resonances for solar energy harvesting: A mechanistic outlook. Nano Today 2015, 10, 67–80. [Google Scholar] [CrossRef]
- Liu, H.; Yang, R.B.; Yang, W.; Jin, Y.; Lee, C.J. Atomic layer deposition and post-growth thermal annealing of ultrathin MoO3 layers on silicon substrates: Formation of surface nanostructures. Appl. Surf. Sci. 2018, 439, 583–588. [Google Scholar] [CrossRef]
- Diskus, M.; Nilsen, O.; Fjellvåg, H. Growth of thin films of molybdenum oxide by atomic layer deposition. J. Mater. Chem. 2011, 21, 705–710. [Google Scholar] [CrossRef]
- Basyooni, M.A.; Gaballah, A.; Tihtih, M.; Derkaoui, I.; Zaki, S.E.; Eker, Y.R.; Ateş, Ş. Thermionic Emission of Atomic Layer Deposited MoO3/Si UV Photodetectors. Materials 2023, 16, 2766. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Akbari, M.K.; Hai, Z.; Wei, Z.; Hyde, L.; Verpoort, F.; Xue, C.; Zhuiykov, S. Ultra-thin MoO3 film goes wafer-scaled nano-architectonics by atomic layer deposition. Mater. Des. 2018, 149, 135–144. [Google Scholar] [CrossRef]
- Dieterle, M.; Weinberg, G.; Mestl, G. Raman spectroscopy of molybdenum oxides Part I. Structural characterization of oxygen defects in MoO3−x by DR UV/VIS, Raman spectroscopy and X-ray diffraction. Phys. Chem. Chem. Phys. 2002, 4, 812–821. [Google Scholar] [CrossRef]
- Seguin, L.; Figlarz, M.; Cavagnat, R.; Lassègues, J.-C. Infrared and Raman spectra of MoO3 molybdenum trioxides and MoO3·xH2O molybdenum trioxide hydrates. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1995, 51, 1323–1344. [Google Scholar] [CrossRef]
- Liu, D.; Lei, W.; Hao, J.; Liu, D.; Liu, B.; Wang, X.; Chen, X.; Cui, Q.; Zou, G.; Liu, J. High-pressure Raman scattering and X-ray diffraction of phase transitions in MoO3. J. Appl. Phys. 2009, 105, 023513. [Google Scholar] [CrossRef]
- Kondrachova, L.; Hahn, B.P.; Vijayaraghavan, G.; Williams, R.D.; Stevenson, K.J. Cathodic electrodeposition of mixed molybdenum tungsten oxides from peroxo-polymolybdotungstate solutions. Langmuir 2006, 22, 10490–10498. [Google Scholar] [CrossRef]
- Bisht, P.; Kumar, A.; Jensen, I.T.; Ahmad, M.; Belle, B.D.; Mehta, B. Enhanced gas sensing response for 2D α-MoO3 layers: Thickness-dependent changes in defect concentration, surface oxygen adsorption, and metal-metal oxide contact. Sens. Actuators B Chem. 2021, 341, 129953. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Reed, C.; Oyama, S.; Seman, M.; Kondo, J.; Domen, K.; Ohminami, Y.; Asakura, K. Variability in the structure of supported MoO3 catalysts: Studies using Raman and X-ray absorption spectroscopy with ab initio calculations. J. Phys. Chem. B 2001, 105, 8519–8530. [Google Scholar] [CrossRef]
- Wei, X.M.; Zeng, H.C. Large-scale organizations of MoO3 nanoplatelets with single-crystalline MoO3(4,4′-bipyridyl)0.5. J. Phys. Chem. B 2003, 107, 2619–2622. [Google Scholar] [CrossRef]
- Kim, J.H.; Dash, J.K.; Kwon, J.; Hyun, C.; Kim, H.; Ji, E.; Lee, G.-H. van der Waals epitaxial growth of single crystal α-MoO3 layers on layered materials growth templates. 2D Mater. 2018, 6, 015016. [Google Scholar] [CrossRef]
- Xie, W.; Su, M.; Zheng, Z.; Wang, Y.; Gong, L.; Xie, F.; Zhang, W.; Luo, Z.; Luo, J.; Liu, P. Nanoscale insights into the hydrogenation process of layered α-MoO3. ACS Nano 2016, 10, 1662–1670. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Du, X.; Wang, J.; Su, M.; Wan, X.; Meng, H.; Xie, W.; Xu, J.; Liu, P. Growth of large-scale, large-size, few-layered α-MoO3 on SiO2 and its photoresponse mechanism. ACS Appl. Mater. Interfaces 2017, 9, 5543–5549. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Zheng, T.; Wu, B.; Jiao, H.; Wang, X.; Chen, Y.; Zhang, X.; Peng, M.; Wang, H.; Lin, T. A versatile photodetector assisted by photovoltaic and bolometric effects. Light Sci. Appl. 2020, 9, 160. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; You, D.; Zhang, Y.; Zhang, T.; Yao, C.; Zhang, Q.; Li, M.; Lu, Y.; He, Y. Highly sensitive and tunable self-powered UV photodetectors driven jointly by pn junction and ferroelectric polarization. ACS Appl. Mater. Interfaces 2020, 12, 53957–53965. [Google Scholar] [CrossRef]
- Du, X.; Tian, W.; Pan, J.; Hui, B.; Sun, J.; Zhang, K.; Xia, Y. Piezo-phototronic effect promoted carrier separation in coaxial pn junctions for self-powered photodetector. Nano Energy 2022, 92, 106694. [Google Scholar] [CrossRef]
- Jin, W.; Ye, Y.; Gan, L.; Yu, B.; Wu, P.; Dai, Y.; Meng, H.; Guo, X.; Dai, L. Self-powered high performance photodetectors based on CdSe nanobelt/graphene Schottky junctions. J. Mater. Chem. 2012, 22, 2863–2867. [Google Scholar] [CrossRef]
- Huang, L.; Hu, Z.; Zhang, H.; Xiong, Y.; Fan, S.; Kong, C.; Li, W.; Ye, L.; Li, H. A simple, repeatable and highly stable self-powered solar-blind photoelectrochemical-type photodetector using amorphous Ga2O3 films grown on 3D carbon fiber paper. J. Mater. Chem. C 2021, 9, 10354–10360. [Google Scholar] [CrossRef]
- Ren, X.; Wang, B.; Huang, Z.; Qiao, H.; Duan, C.; Zhou, Y.; Zhong, J.; Wang, Z.; Qi, X. Flexible self-powered photoelectrochemical-type photodetector based on 2D WS2-graphene heterojunction. FlatChem 2021, 25, 100215. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, D.; Kang, Y.; Liu, X.; Fang, S.; Memon, M.H.; Yu, H.; Zhang, H.; Luo, D.; Sun, X. Demonstration of photoelectrochemical-type photodetectors using seawater as electrolyte for portable and wireless optical communication. Adv. Opt. Mater. 2022, 10, 2102839. [Google Scholar] [CrossRef]
- Khan, M.F.; Elahi, E.; Hassan, N.U.; Rehman, M.A.; Khalil, H.W.; Khan, M.A.; Rehman, S.; Hao, A.; Noh, H.; Khan, K. Bipolar Photoresponse of a Graphene Field-Effect Transistor Induced by Photochemical Reactions. ACS Appl. Electron. Mater. 2023, 5, 5111–5119. [Google Scholar] [CrossRef]
- Yin, Y.; Ling, J.; Wang, L.; Zhou, W.; Peng, Y.; Zhou, Y.; Tang, D. Competition of Photo-Excitation and Photo-Desorption Induced Positive and Negative Photoconductivity Switch in Te Nanowires. Nanomaterials 2022, 12, 3747. [Google Scholar] [CrossRef] [PubMed]
- Burdanova, M.G.; Tsapenko, A.P.; Satco, D.A.; Kashtiban, R.; Mosley, C.D.; Monti, M.; Staniforth, M.; Sloan, J.; Gladush, Y.G.; Nasibulin, A.G. Giant negative terahertz photoconductivity in controllably doped carbon nanotube networks. ACS Photonics 2019, 6, 1058–1066. [Google Scholar] [CrossRef]
- Fan, Z.; Dutta, D.; Chien, C.-J.; Chen, H.-Y.; Brown, E.C.; Chang, P.-C.; Lu, J.G. Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays. Appl. Phys. Lett. 2006, 89, 213110. [Google Scholar] [CrossRef]
- Zarezadeh, E.; Ghorbani, A. Bipolar photoresponse ultraviolet photodetectors based on ZnO nanowires. Mater. Res. Express 2020, 7, 056203. [Google Scholar] [CrossRef]
- Lv, Y.; Chen, F.; Zhang, Z.; Chen, J.; Tang, X.; Shi, Z.; Cui, Q.; Xu, C. Ag nanowires assisted CH3NH3PbBr3–ZnO heterostructure with fast negative photoconductive response. Appl. Phys. Lett. 2022, 121, 061902. [Google Scholar] [CrossRef]
- Fei-Fei, W.; Chong, W.; Ke, C.; Bing-Suo, Z. Trap induced slow photoresponse of single CdS nanoribbons. Chin. Phys. B 2008, 17, 3103. [Google Scholar] [CrossRef]
- Wang, L.; Ma, X.; Chen, R.; Yu, Y.-Q.; Luo, L.-B. Ultraviolet nano-photodetector based on ZnS: Cl nanoribbon/Au Schottky junctions. J. Mater. Sci. Mater. Electron. 2015, 26, 4290–4297. [Google Scholar] [CrossRef]
- Park, J.-S.; Jeong, J.K.; Chung, H.-J.; Mo, Y.-G.; Kim, H.D. Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water. Appl. Phys. Lett. 2008, 92, 072104. [Google Scholar] [CrossRef]
- Moser, J.; Punchihewa, S.; Infelta, P.P.; Graetzel, M. Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates. Langmuir 1991, 7, 3012–3018. [Google Scholar] [CrossRef]
- Li, R.; Cheng, W.-H.; Richter, M.H.; DuChene, J.S.; Tian, W.; Li, C.; Atwater, H.A. Unassisted highly selective gas-phase CO2 reduction with a plasmonic Au/p-GaN photocatalyst using H2O as an electron donor. ACS Energy Lett. 2021, 6, 1849–1856. [Google Scholar] [CrossRef]
- Zhang, X.; Jie, J.; Wang, Z.; Wu, C.; Wang, L.; Peng, Q.; Yu, Y.; Jiang, P.; Xie, C. Surface induced negative photoconductivity in p-type ZnSe: Bi nanowires and their nano-optoelectronic applications. J. Mater. Chem. 2011, 21, 6736–6741. [Google Scholar] [CrossRef]
- Zhang, X.; Meng, D.; Tang, Z.; Hu, D.; Ma, D. Surface-dominated negative photoresponse of phosphorus-doped ZnSe nanowires and their detecting performance. J. Mater. Sci. Mater. Electron. 2016, 27, 11463–11469. [Google Scholar] [CrossRef]
- Basyooni, M.A.; Tihtih, M.; Boukhoubza, I.; Ibrahim, J.E.F.; En-nadir, R.; Abdelbar, A.M.; Rahmani, K.; Zaki, S.E.; Ateş, Ş.; Eker, Y.R. Iridium/Silicon Ultrathin Film for Ultraviolet Photodetection: Harnessing Hot Plasmonic Effects. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2023, 2300257. [Google Scholar] [CrossRef]
- Buyukharman, M.; Basyooni, M.A.; Görmez, A.E.; Sezgin, A.; Yasin, E.; Yilmaz, M. Phase modulation of MoO2-MoO3 nanostructured thin films through W-Doping; utilizing UV photodetection and gas sensing applications. Selçuk Üniversitesi Fen Fakültesi Fen Derg. 2022, 48, 34–45. [Google Scholar]
- Rath, J.; Venkatesh, A.; Moorthy, V. Ultra-Thin Plasmonic Optoelectronic Devices, Recent Advances in Thin Film Photovoltaics; Springer: Berlin/Heidelberg, Germany, 2022; pp. 219–271. [Google Scholar]
- Tang, H.; Chen, C.-J.; Huang, Z.; Bright, J.; Meng, G.; Liu, R.-S.; Wu, N. Plasmonic hot electrons for sensing, photodetection, and solar energy applications: A perspective. J. Chem. Phys. 2020, 152, 220901. [Google Scholar] [CrossRef]
- Chang, X.; Wang, Y.-F.; Zhang, X.; Wang, R.; Liu, Z.; Fu, J.; Zhao, D.; Li, F.; Wang, J.; Wang, W.; et al. Iridium size effects in localized surface plasmon-enhanced diamond UV photodetectors. Appl. Surf. Sci. 2019, 487, 674–677. [Google Scholar] [CrossRef]
- Liu, J.; Liu, F.; Bai, H.; Zhuang, W.; Xu, Y. Effect of iridium doping on electronic structure and optical properties of m-BiVO4 photocatalytic materials: A first principles study. Mol. Phys. 2022, 120, e2002958. [Google Scholar] [CrossRef]
- Weaver, J.H.; Olson, C.G.; Lynch, D.W. Optical investigation of the electronic structure of bulk Rh and Ir. Phys. Rev. B 1977, 15, 4115–4118. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Chang, X.; Li, S.; Zhao, D.; Shao, G.; Zhu, T.; Fu, J.; Zhang, P.; Chen, X.; Li, F.; et al. Ohmic contact between iridium film and hydrogen-terminated single crystal diamond. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Hung, S.; Xiao, F.; Hsu, Y.; Suen, N.; Yang, H.; Chen, H.M.; Liu, B. Iridium Oxide-Assisted Plasmon-Induced Hot Carriers: Improvement on Kinetics and Thermodynamics of Hot Carriers. Adv. Energy Mater. 2016, 6. [Google Scholar] [CrossRef]
- Goldstein, J.I.; Newbury, D.E.; Michael, J.R.; Ritchie, N.W.; Scott, J.H.J.; Joy, D.C. Scanning Electron Microscopy and X-ray Microanalysis; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Chen, Z.; D’Alfonso, A.J.; Weyland, M.; Taplin, D.J.; Findlay, S.D.; Allen, L.J. Absolute-Scale Quantitative Energy Dispersive X-ray Analysis in Aberration-Corrected Scanning Transmission Electron Microscopy. Microsc. Microanal. 2015, 21, 1079–1080. [Google Scholar] [CrossRef]
Condition | Sample | Rs (Ω/sq) | Rho (/Ω-cm) | VH (V) | RH (m3/C) | Type | Ns (/cm2) | N (/cm2) | Mobility (cm2/Vs) |
---|---|---|---|---|---|---|---|---|---|
Un-annealed | Mo/2 nm Ir/SiO2/Si | 1.71 × 105 | 1.24 × 10−1 | 2.34 × 10−4 | 7.84 × 10−6 | P | 5.76 × 1011 | 7.96 × 1017 | 6.31 × 101 |
Mo/4 nm Ir/SiO2/Si | 1.16 × 105 | 1.09 × 10−1 | 1.51 × 10−2 | 1.96 × 10−4 | p | 2.99 × 1010 | 3.18 × 1016 | 1.80 × 103 | |
Post-annealed | Mo/2 nm Ir/SiO2/Si | 5.34 × 103 | 3.87 × 10−3 | 6.68 × 10−5 | 6.71 × 10−7 | P | 6.74 × 1012 | 9.31 × 1018 | 1.73 × 102 |
Mo/4 nm Ir/SiO2/Si | 2.86 × 103 | 2.68 × 10−3 | 4.82 × 10−3 | 2.09 × 10−4 | P | 2.80 × 1010 | 2.99 × 1016 | 7.80 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basyooni-M. Kabatas, M.A.; Zaki, S.E.; Rahmani, K.; En-nadir, R.; Eker, Y.R. Negative Photoconductivity in 2D α-MoO3/Ir Self-Powered Photodetector: Impact of Post-Annealing. Materials 2023, 16, 6756. https://doi.org/10.3390/ma16206756
Basyooni-M. Kabatas MA, Zaki SE, Rahmani K, En-nadir R, Eker YR. Negative Photoconductivity in 2D α-MoO3/Ir Self-Powered Photodetector: Impact of Post-Annealing. Materials. 2023; 16(20):6756. https://doi.org/10.3390/ma16206756
Chicago/Turabian StyleBasyooni-M. Kabatas, Mohamed A., Shrouk E. Zaki, Khalid Rahmani, Redouane En-nadir, and Yasin Ramazan Eker. 2023. "Negative Photoconductivity in 2D α-MoO3/Ir Self-Powered Photodetector: Impact of Post-Annealing" Materials 16, no. 20: 6756. https://doi.org/10.3390/ma16206756
APA StyleBasyooni-M. Kabatas, M. A., Zaki, S. E., Rahmani, K., En-nadir, R., & Eker, Y. R. (2023). Negative Photoconductivity in 2D α-MoO3/Ir Self-Powered Photodetector: Impact of Post-Annealing. Materials, 16(20), 6756. https://doi.org/10.3390/ma16206756