Synthesis and Characterization of High Entropy Alloy 23Fe-21Cr-18Ni-20Ti-18Mn for Electrochemical Sensor Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of 23Fe-21Cr-18Ni-20Ti-18Mn HEA
2.2. Fabrication of the Carbon Paste Electrodes
3. Results
3.1. X-ray Diffraction (XRD)
3.1.1. Crystallite Size and Lattice Strain Calculation by W–H Method
3.1.2. Lattice Parameter Calculation by N–R Extrapolation Method
3.2. Investigation of the Microstructure of 23Fe-21Cr-18Ni-20Ti-18Mn HEA Powders
3.3. Energy Dispersive Spectroscopy (EDS) and Elemental Mapping
3.4. Electrochemical Detection of AA Using HEA-MCPE
3.4.1. Optimizing the Concentration of the Modifier (HEA) to Detect AA
3.4.2. Effect of Scan Rate
3.4.3. Effect of pH
3.4.4. Effect of Variation in DA Concentration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rajendrachari, S. An Overview of High-Entropy Alloys Prepared by Mechanical Alloying Followed by the Characterization of Their Microstructure and Various Properties. Alloys 2022, 1, 116–132. [Google Scholar] [CrossRef]
- Wu, Y.; Liaw, P.K.; Zhang, Y. Preparation of Bulk TiZrNbMoV and NbTiAlTaV High-Entropy Alloys by Powder Sintering. Metals 2021, 11, 1748. [Google Scholar] [CrossRef]
- Shashanka, R.; Chaira, D. Phase transformation and microstructure study of nano-structured austenitic and ferritic stainless steel powders prepared by planetary milling. Powder Technol. 2014, 259, 125–136. [Google Scholar]
- Shashanka, R.; Chaira, D. Development of nano-structured duplex and ferritic stainless steel by pulverisette planetary milling followed by pressureless sintering. Mater. Charact. 2015, 99, 220–229. [Google Scholar]
- Gupta, S.; Shashanka, R.; Chaira, D. Synthesis of nano-structured duplex and ferritic stainless steel powders by planetary milling: An experimental and simulation study. IOP Conf. Ser. Mater. Sci. Eng. 2015, 75, 012033. [Google Scholar] [CrossRef] [Green Version]
- Tokarewicz, M.; Grądzka-Dahlke, M. Review of Recent Research on AlCoCrFeNi High-Entropy Alloy. Metals 2021, 11, 1302. [Google Scholar] [CrossRef]
- Varalakshmi, S.; Kamaraj, M.; Murty, B.S. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J. Alloys Compd. 2008, 460, 253–257. [Google Scholar] [CrossRef]
- Arab, A.; Guo, Y.; Zhou, Q.; Chen, P. Fabrication of Nanocrystalline AlCoCrFeNi High Entropy Alloy through Shock Consolidation and Mechanical Alloying. Entropy 2019, 21, 880. [Google Scholar] [CrossRef] [Green Version]
- Geambazu, L.E.; Cotruţ, C.M.; Miculescu, F.; Csaki, I. Mechanically Alloyed CoCrFeNiMo0.85 High-Entropy Alloy for Corrosion Resistance Coatings. Materials 2021, 14, 3802. [Google Scholar] [CrossRef]
- Long, Y.; Su, K.; Zhang, J.; Liang, X.; Peng, H.; Li, X. Enhanced Strength of a Mechanical Alloyed NbMoTaWVTi Refractory High Entropy Alloy. Materials 2018, 11, 669. [Google Scholar] [CrossRef] [Green Version]
- Moravcik, I.; Kubicek, A.; Moravcikova-Gouvea, L.; Adam, O.; Kana, V.; Pouchly, V.; Zadera, A.; Dlouhy, I. The Origins of High-Entropy Alloy Contamination Induced by Mechanical Alloying and Sintering. Metals 2020, 10, 1186. [Google Scholar] [CrossRef]
- Sun, Y.; Ke, B.; Li, Y.; Yang, K.; Yang, M.; Ji, W.; Fu, Z. Phases, Microstructures and Mechanical Properties of CoCrNiCuZn High-Entropy Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering. Entropy 2019, 21, 122. [Google Scholar] [CrossRef] [PubMed]
- Varalakshmi, S.; Kamaraj, M.; Murty, B.S. Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying. Mater. Sci. Eng. A 2010, 527, 1027–1030. [Google Scholar] [CrossRef]
- Praveen, S.; Murty, B.S.; Kottada, R.S. Effect of Molybdenum and Niobium on the Phase Formation and Hardness of Nanocrystalline CoCrFeNi High Entropy Alloys. J. Nanosci. Nanotechnol. 2014, 14, 8106–8109. [Google Scholar] [CrossRef] [PubMed]
- Moravcikova-Gouvea, L.; Moravcik, I.; Pouchly, V.; Kovacova, Z.; Kitzmantel, M.; Neubauer, E.; Dlouhy, I. Tailoring a Refractory High Entropy Alloy by Powder Metallurgy Process Optimization. Materials 2021, 14, 5796. [Google Scholar] [CrossRef] [PubMed]
- Moravcikova-Gouvea, L.; Moravcik, I.; Omasta, M.; Veselý, J.; Cizek, J.; Minárik, P.; Cupera, J.; Záděra, A.; Jan, V.; Dlouhy, I. High-strength Al0.2Co1.5CrFeNi1.5Ti high-entropy alloy produced by powder metallurgy and casting: A comparison of microstructures, mechanical and tribological properties. Mat. Charact. 2020, 159, 110046. [Google Scholar] [CrossRef]
- Wang, C.; Ji, W.; Fu, Z. Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy. Adv. Powder Technol. 2014, 25, 1334–1338. [Google Scholar] [CrossRef]
- Shashanka, R.; Jayaprakash, G.K.; Prakashaiah, B.G.; Kumar, M.; Swamy, B.E.K. Electrocatalytic determination of ascorbic acid using a green synthesised magnetite nanoflake modified carbon paste electrode by cyclic voltammetric method. Mater. Res. Innov. 2022, 26, 229–239. [Google Scholar] [CrossRef]
- Hu, G.; Guo, Y.; Xue, Q.; Shao, S. A highly selective amperometric sensor for ascorbic acid based on mesopore-rich active carbon modifed pyrolytic graphite electrode. Electrochim. Acta 2010, 55, 2799–2804. [Google Scholar] [CrossRef]
- Shashanka, R.; Chaira, D.; Swamy, B.E.K. Electrocatalytic Response of Duplex and Yittria Dispersed Duplex Stainless Steel Modified Carbon Paste Electrode in Detecting Folic Acid Using Cyclic Voltammetry. Int. J. Electrochem. Sci. 2015, 10, 5586–5598. [Google Scholar]
- Rajendrachari, S.; Swamy, B.E.K.; Reddy, S.; Chaira, D. Synthesis of Silver Nanoparticles and their Applications. Anal. Bioanal. Electrochem. 2013, 5, 455–466. [Google Scholar]
- Shashanka, R.; Swamy, B.E.K. Biosynthesis of silver nanoparticles using leaves of Acacia melanoxylon and its application as dopamine and hydrogen peroxide sensors. Phys. Chem. Res. 2020, 8, 1–18. [Google Scholar]
- Jayaprakash, G.K.; Swamy, B.E.K.; Rajendrachari, S.; Sharma, S.C.; Flores-Moreno, R. Dual descriptor analysis of cetylpyridinium modified carbon paste electrodes for ascorbic acid sensing applications. J. Mol. Liq. 2021, 334, 116348. [Google Scholar] [CrossRef]
- Manjunatha, J.G.; Deraman, M.; Basri, N.H.; Mohd Nor, N.S.; Talib, I.A.; Ataollahi, N. Sodium dodecyl sulfate modified carbon nanotubes paste electrode as a novel sensor for the simultaneous determination of dopamine, ascorbic acid, and uric acid. Comptes Rendus Chim. 2014, 17, 465–476. [Google Scholar] [CrossRef]
- Manjunatha, J.G.; Deraman, M. Graphene Paste Electrode Modified with Sodium Dodecyl Sulfate Surfactant for the Determination of Dopamine, Ascorbic Acid and Uric Acid. Anal. Bioanal. Electrochem. 2017, 9, 198–213. [Google Scholar]
- Manjunatha, J.G.; Deraman, M.; Basri, N.H.; Talib, I.A. Fabrication of poly (Solid Red A) modified carbon nano tube paste electrode and its application for simultaneous determination of epinephrine, uric acid and ascorbic acid. Arab. J. Chem. 2018, 11, 149–158. [Google Scholar] [CrossRef]
- Shankar, S.S.; Swamy, B.E.K.; Chandra, U.; Manjunatha, J.G.; Sherigara, B.S. Simultaneous Determination of Dopamine, Uric Acid and Ascorbic Acid with CTAB Modified Carbon Paste Electrode. Int. J. Electrochem. Sci. 2009, 4, 592–601. [Google Scholar]
- Ashwini, R.; Punith Kumar, M.K.; Rekha, M.Y.; Santosh, M.S.; Srivastava, C. Optimization of NiFeCrCoCu high entropy alloy nanoparticle-graphene (HEA-G) composite for the enhanced electrochemical sensitivity towards urea oxidation. J. Alloys Compd. 2022, 903, 163846. [Google Scholar] [CrossRef]
- Ashwini, R.; Punith Kumar, M.K.; Rekha, M.Y.; Santosh, M.S.; Srivastava, C. High entropy alloy nanoparticle–graphene (HEA:G) composite for non-enzymatic glucose oxidation: Optimization for enhanced catalytic performance. Carbon Trends 2022, 9, 100216. [Google Scholar] [CrossRef]
- Zhao, D.; Yu, G.; Tian, K.; Xu, C. A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporou sPtTi alloy. Biosens. Bioelectron. 2016, 82, 119–126. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, Z.; Zhuang, Z.; Meng, Z.; Li, C.; Shen, Y. PdPt bimetallic alloy nanowires-based electrochemical sensor for sensitive detection of ascorbic acid. RSC Adv. 2016, 6, 42008–42013. [Google Scholar] [CrossRef]
- Shashanka, R.; Chaira, D.; Swamy, B.E.K. Electrochemical investigation of duplex stainless steel at carbon paste electrode and its application to the detection of dopamine, ascorbic and uric acid. Int. J. Sci. Eng. Res. 2015, 6, 1863–1871. [Google Scholar]
- Shashanka, R.; Chaira, D.; Swamy, B.E.K. Fabrication of yttria dispersed duplex stainless steel electrode to determine dopamine, ascorbic and uric acid electrochemically by using cyclic voltammetry. Int. J. Sci. Eng. Res. 2016, 7, 1275–1285. [Google Scholar]
- Shashanka, R.; Chaira, D. Optimization of milling parameters for the synthesis of nano-structured duplex and ferritic stainless steel powders by high energy planetary milling. Powder Technol. 2015, 278, 35–45. [Google Scholar] [CrossRef]
- Nayak, A.K.; Shashanka, R.; Chaira, D. Effect of Nanosize Yittria and Tungsten Addition to Duplex Stainless Steel During High Energy Planetary Milling. IOP Conf. Ser. Mater. Sci. Eng. 2016, 115, 012008. [Google Scholar] [CrossRef]
- Shashanka, R. Synthesis of nano-structured stainless steel powder by mechanical alloying-an overview. Int. J. Sci. Eng. Res. 2017, 8, 588–594. [Google Scholar]
- Shashanka, R. Non-lubricated dry sliding wear behavior of spark plasma sintered nano-structured stainless steel. J. Mater. Environ. Sci. 2019, 10, 767–777. [Google Scholar]
- Ashoka, N.B.; Swamy, B.E.K.; Jayadevappa, H. Nanorod TiO2 sensor for dopamine: A voltammetric study. New J. Chem. 2017, 41, 11817–11827. [Google Scholar] [CrossRef]
- Rajendrachari, S.; Kudur Jayaprakash, G.; Pandith, A.; Karaoglanli, A.C.; Uzun, O. Electrocatalytic Investigation by Improving the Charge Kinetics between Carbon Electrodes and Dopamine Using Bio-Synthesized CuO Nanoparticles. Catalysts 2022, 12, 994. [Google Scholar] [CrossRef]
- Charithra, M.M.; Manjunatha, J.G.; Prinith, N.S.; Pushpanjali, P.A.; Girish, T.; Hareesha, N. Electroanalytical Determination of Tinidazole by using Surface Modified Carbon Nano Composite based Sensor. Mater. Res. Innov. 2022, 26, 285–294. [Google Scholar] [CrossRef]
- Charithra, M.M.; Manjunatha, J.G. Poly (L-Proline) modified carbon paste electrode as the voltammetric sensor for the detection of Estriol and its simultaneous determination with Folic and Ascorbic acid. Mater. Sci. Energy Technol. 2019, 2, 365–371. [Google Scholar] [CrossRef]
- Hareesha, N.; Manjunatha, J.G.; Raril, C.; Tigari, G. Sensitive and Selective Electrochemical Resolution of Tyrosine with Ascorbic Acid through the Development of Electropolymerized Alizarin Sodium Sulfonate Modified Carbon Nanotube Paste Electrodes. ChemistrySelect 2019, 4, 4559–4567. [Google Scholar] [CrossRef]
- Prinith, N.S.; Manjunatha, J.G.; Raril, C. Electrocatalytic Analysis of Dopamine, Uric Acid and Ascorbic Acid at Poly(Adenine) Modified Carbon Nanotube Paste Electrode: A Cyclic Voltammetric Study. Anal. Bioanal. Electrochem. 2019, 11, 742–756. [Google Scholar]
- Raril, C.; Manjunatha, J.G.; Ravishankar, D.K.; Fattepur, S.; Siddaraju, G.; Nanjundaswamy, L. Validated Electrochemical Method for Simultaneous Resolution of Tyrosine, Uric Acid, and Ascorbic Acid at Polymer Modified Nano-Composite Paste Electrode. Surf. Eng. Appl. Electrochem. 2020, 56, 415–426. [Google Scholar] [CrossRef]
Composition of HEA Used | Type of Ball Mill Used | Milling Parameters | Milling Result | References |
---|---|---|---|---|
AlCoCrFeNi | Planetary ball mill | Mill speed of 600 rpm for 60 h, ball-to-powder ratio (BPR) 10:1 under Argon atmosphere | Irregular shape with fractured surfaces, the average particle size of 10 µm | [8] |
CoCrFeNiMo0.85 | Pulverisette 6 Classic Line planetary ball mill | Milled for 30 h, N-Heptane process controlling agent (PCA), 350 rpm mill speed, BPR 10:1 under argon atmosphere | Irregular shape with fractured surfaces, the average particle size of 15 µm, no impurity | [9] |
NbMoTaWVTi | High-energy planetary ball mill | Milled for 40 h, BPR 13:1 under Argon atmosphere | The average particle size is less than 10 µm, irregular shape of powders | [10] |
CoCrFeNi | Pulverisette 6 ball mill | 300 rpm mill speed, 50 h mill time, argon atmosphere, 10:1 BPR | Impurity (carbon and oxygen content) increased with the milling time | [11] |
CoCrNiCuZn | Planetary ball mill | Milled at 300 rpm for 60 h under argon atmosphere, BPR 20:1, N-heptane as PCA | Crystallite size of 13 nm and lattice strain of 0.70%, irregular elliptical shape with a particle size of 3 µm | [12] |
CuNiCoZnAlTi | Fritsch Pulverisette P-5 planetary ball mill | BPR 10:1, 300 rpm mill speed, toluene as PCA, 20 h of milling | Crystallite size of 9 nm and the lattice strain of 1.47%, the entropy of fusion is 11.5 J/mol K) | [13] |
CoCrFeNiMo0.14Nb0.14 | Fritsch P5 high energy ball mill | BPR 10:1, toluene as PCA, 30 h of milling | Mo diffuses very slowly in the HEA due to its high melting point | [14] |
Al0.3NbTa0.8Ti1.5V0.2Zr | Fritsch Pulverisette 6 planetary ball mill | 50 h milling, 10:1 BPR, 250 rpm speed under argon atmosphere | BCC crystal structure, irregular but elongated, the average particle size of 15 to 20 µm | [15] |
Al0.2Co1.5CrFeNi1.5Ti | Fritsch Pulverisette 6 planetary ball mill | BPR 10:1, mill speed 300 rpm, 5 h of milling under nitrogen atmosphere | Uniform, fine-grained Microstructure, FCC crystal structure | [16] |
CoCrFeNiMnAl | Planetary ball mill | 60 h milled at 250 rpm in an argon atmosphere, BPR 15:1, N-heptane as PCA | 15 nm crystallite size and 0.69% lattice strain, partially spherical with less than 40 nm particle size | [17] |
23Fe-21Cr-18Ni-20Ti-18Mn | Retsch Planetary Ball Mill PM 100 | 15 h milled at 300 rpm under toluene atmosphere, BPR 6:1 | Crystallite size of 7 nm and lattice strain 0.017%, irregular shape | [This paper] |
Composition of Alloy | Equipment Used | Analyte Used | Important Findings | References |
---|---|---|---|---|
NiFeCrCoCu | Cyclic voltammetry | Urea | Composition of 70:30 of HEA and the graphene showed better current sensitivity of 37.4 µAmM−1cm−2 towards the oxidation of urea than 50:50 and 90:10 composition | [28] |
NiCrCuCoFe | Cyclic voltammetry | Glucose | The 50:50, and 70:30 composition of HEA and graphites mixture depicted better current sensitivity towards the oxidation of Glucose | [29] |
10Pt-10Ti-80Al | Cyclic voltammetry | Ascorbic acid | The alloy was successfully employed to determine the ascorbic acid and also simultaneous detection of dopamine, ascorbic acid and uric acid was reported | [30] |
PdPt | Cyclic voltammetry | Ascorbic acid | The alloy showed excellent sensitivity of 467.9 mAmM−1cm−2 towards the electroxidation of AA | [31] |
Fe-18Cr-13Ni | Cyclic voltammetry | Folic acid | Electrode reactions were adsorption controlled. Current sensitivity of 17.32 µA was recorded | [20] |
Duplex stainless steel | Cyclic voltammetry | Ascorbic acid | The stainless steel showed good current sensitivity of 143.52 µA | [32] |
Duplex stainless steel | Cyclic voltammetry | Uric acid | The stainless steel showed good current sensitivity of 19.36 µA | [32] |
Duplex stainless steel | Cyclic voltammetry | Dopamine | The stainless steel showed good current sensitivity of 25.61 µA | [32] |
Yttria dispersed Fe-18Cr-13Ni | Cyclic voltammetry | Ascorbic acid | The stainless steel showed good current sensitivity of 370 mV | [33] |
Yttria dispersed Fe-18Cr-13Ni | Cyclic voltammetry | Uric acid | The stainless steel showed good current sensitivity of 31.01 µA | [33] |
Yttria dispersed Fe-18Cr-13Ni | Cyclic voltammetry | Dopamine | The stainless steel showed good current sensitivity of 28.48 µA | [33] |
23Fe-21Cr-18Ni-20Ti-18Mn | Cyclic voltammetry | Ascorbic acid | The current sensitivity of 104.07 µA was obtained for the electrochemical oxidation of AA. The electrochemical active surface area of MCPE was found to be 0.0027 cm2 | [Present paper] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajendrachari, S.; Adimule, V.; Gulen, M.; Khosravi, F.; Somashekharappa, K.K. Synthesis and Characterization of High Entropy Alloy 23Fe-21Cr-18Ni-20Ti-18Mn for Electrochemical Sensor Applications. Materials 2022, 15, 7591. https://doi.org/10.3390/ma15217591
Rajendrachari S, Adimule V, Gulen M, Khosravi F, Somashekharappa KK. Synthesis and Characterization of High Entropy Alloy 23Fe-21Cr-18Ni-20Ti-18Mn for Electrochemical Sensor Applications. Materials. 2022; 15(21):7591. https://doi.org/10.3390/ma15217591
Chicago/Turabian StyleRajendrachari, Shashanka, Vinayak Adimule, Mahir Gulen, Farshid Khosravi, and Kiran Kenchappa Somashekharappa. 2022. "Synthesis and Characterization of High Entropy Alloy 23Fe-21Cr-18Ni-20Ti-18Mn for Electrochemical Sensor Applications" Materials 15, no. 21: 7591. https://doi.org/10.3390/ma15217591
APA StyleRajendrachari, S., Adimule, V., Gulen, M., Khosravi, F., & Somashekharappa, K. K. (2022). Synthesis and Characterization of High Entropy Alloy 23Fe-21Cr-18Ni-20Ti-18Mn for Electrochemical Sensor Applications. Materials, 15(21), 7591. https://doi.org/10.3390/ma15217591