A Chemical Damage Creep Model of Rock Considering the Influence of Triaxial Stress
Abstract
:1. Introduction
2. Establishment of Nonlinear True Triaxial Creep Model Considering Chemical Damage
2.1. Damage Analysis
2.1.1. Chemical Damage Variable
2.1.2. Stress Damage Variable
2.1.3. Comprehensive Damage Variables under Chemical Corrosion and Stress
2.2. Establishment of True Triaxial Creep Model
2.3. Yield Surface Determination
3. Creep Model Parameter Identification and Model Verification
3.1. Parameter Identification
3.2. Constitutive Model Verification
4. Influence of Model Parameters on Intermediate Principal Stress
5. Conclusions
- 1.
- The constitutive model established in this paper can accurately reflect the creep characteristics of rock under acid corrosion and true triaxial stress state, and the model’s fitting degree is more than 90%, which verifies its rationality and the correctness of parameter determination.
- 2.
- The creep model cannot only accurately describe the creep curve characteristics of the rock in the transient elastic strain stage and the constant velocity creep stage, but also can describe the nonlinear characteristics of the creep curve in the attenuation creep stage and the accelerated creep stage.
- 3.
- The influence of different intermediate principal stresses on rock parameters is analyzed. The value of shear modulus G1 increases with the increase in intermediate principal stress, and the viscosity coefficients η2, η3 increase with the increase in intermediate principal stress. The material parameters show a decreasing trend with the increase in the intermediate principal stress.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malan, D.F.; Vogler, U.W.; Drescher, K. Time-dependent behaviour of hard rock in deep level gold mines. J. S. Afr. Inst. Min. Metall. 1997, 97, 135–147. [Google Scholar]
- Yu, H.D.; Chen, W.Z.; Gong, Z.; Tan, X.J.; Ma, Y.S.; Li, X.L.; Sillen, X. Creep behaviour of boom clay. Int. J. Rock Mech. Min. Sci. 2015, 76, 256–264. [Google Scholar] [CrossRef]
- Feng, X.-T.; Pei, S.-F.; Jiang, Q.; Zhou, Y.-Y.; Li, S.-J.; Yao, Z.-B. Deep fracturing of the hard rock surrounding a large underground cavern subjected to high geostress: In situ observation and mechanism analysis. Rock Mech. Rock Eng. 2017, 50, 2155–2175. [Google Scholar] [CrossRef]
- Wang, W.; Li, L.Q.; Xu, W.Y.; Meng, Q.X.; Lü, J. Creep failure mode and criterion of Xiangjiaba sandstone. J. Cent. South Univ. 2012, 12, 3572–3581. [Google Scholar] [CrossRef]
- Wang, R.B.; Xu, W.Y.; Zhang, J.C.; Wang, W. Study on accelerated creep properties and creep damage constitutive relation for volcanic breccias. Constitutive Modeling of Geomaterials; Springer: Berlin/Heidelberg, Germany, 2013; pp. 633–639. [Google Scholar]
- Wang, J.B.; Wang, T.; Song, Z.P.; Zhang, Y.W.; Zhang, Q. Improved Maxwell model describing the whole creep process of salt pock and its programming. Int. J. Appl. Mech. 2021, 13, 150113. [Google Scholar]
- Wu, F.; Liu, J.; Zou, Q.L.; Li, C.B.; Chen, J.; Gao, R.B. A triaxial creep model for salt rocks based on variable-order fractional derivative. Mech. Time Depend. Mater. 2021, 25, 101–108. [Google Scholar]
- Wu, F.; Chen, J.; Zou, Q.L. A nonlinear creep damage model for salt rock. Int. J. Damage Mech. 2019, 28, 758–771. [Google Scholar] [CrossRef]
- Tang, H.; Wang, D.P.; Huang, R.Q.; Pei, X.J.; Chen, W.L. A new rock creep model based on variable-order fractional derivatives and continuum damage mechanics. Bull. Eng. Geol. Environ. 2018, 77, 375–383. [Google Scholar] [CrossRef]
- Wu, F.; Liu, F.J.; Wang, J. An improved Maxwell creep model for rock based on variable-order fractional derivatives. Environ. Earth Sci. 2015, 73, 6965–6971. [Google Scholar] [CrossRef]
- Hou, R.B.; Zhang, K.; Tao, J.; Xue, X.R.; Chen, Y.L. A nonlinear creep damage coupled model for rock considering the effect of initial damage. Rock Mech. Rock Eng. 2019, 52, 1275–1285. [Google Scholar] [CrossRef]
- Jiang, Q.H.; Qi, Y.J.; Wang, Z.J.; Zhou, C.B. An extended Nishihara model for the description of three stages of sandstone creep. Geophys. J. Int. 2013, 193, 841–854. [Google Scholar] [CrossRef]
- Zhou, H.W.; Wang, C.P.; LMishnaevsky Duan, Z.Q.; Ding, J.Y. A fractional derivative approach to full creep regions in salt rock. Mech. Time Depend. Mater. 2013, 17, 413–425. [Google Scholar] [CrossRef]
- Wang, X.G.; Yin, Y.P.; Wang, J.D.; Lian, B.Q.; Qiu, H.J.; Gu, T.F. A nonstationary parameter model for the sandstone creep tests. Landslides 2018, 15, 1377–1389. [Google Scholar] [CrossRef]
- Liu, W.B.; Zhang, S.G.; Chen, L. Research on rock accelerated creep model based on statistical damage principle. Chin. J. Geotech. Eng. 2020, 42, 1696–1704. [Google Scholar]
- Zhang, L.L.; Wang, X.J. Research on viscoelastic-plastic damage creep model of rock. Chin. J. Geotech. Eng. 2020, 42, 1085–1092. [Google Scholar]
- Zhao, J.; Feng, X.T.; Zhang, X.; Yang, C.; Zhou, Y. Time-dependent behaviour and modeling of Jinping marble under true triaxial compression. Int. J. Rock Mech. Min. Sci. 2018, 110, 218–230. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, X.-T.; Zhang, X.-W.; Zhang, Y.; Zhou, Y.-Y.; Yang, C.-X. Brittle-ductile transition and failure mechanism of Jinping marble under true triaxial compression. Eng Geol. 2018, 232, 160–170. [Google Scholar] [CrossRef]
- Qiao, L.; Wang, Z.; Huang, A. Alteration of mesoscopic properties and mechanical behavior of sandstone due to hydro-physical and Hydro-Chemical effects. Rock Mech. Rock Eng. 2016, 50, 255–267. [Google Scholar] [CrossRef]
- Feng, X.T.; Ding, W.X. Experimental study of limestone micro-fracturing under acoupled stress, fluid flow and changing chemical environment. Int. J. Rock Mech. Min. Sci. 2007, 3, 437–448. [Google Scholar] [CrossRef]
- Wang, W.; Liu, T.G.; Shao, J.F. Effects of acid solution on the mechanical behavior of sandstone. J. Mater. Civ. Eng. 2016, 28, 04015089. [Google Scholar] [CrossRef]
- Hu, D.; Zhou, H.; Hu, Q.; Shao, J.; Feng, X.; Xiao, H. A hydromechanical-chemical coupling model for geomaterial with both mechanical and chemical damages considered. Acta Mech. Solida Sin. 2012, 25, 361–376. [Google Scholar] [CrossRef]
- Li, S.; Huo, R.; Wang, B.; Ren, Z.; Ding, Y.; Qian, M.; Qiu, T. Experimental study on physicomechanical properties of sandstone under acidic environment. Adv. Civ. Eng. 2018, 2018, 5784831. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.S.; Yang, G.S.; Ren, J.X. A New Approach to Damage Variables and Constitutive Equations of Rock. J. Rock Mech. Eng. 2003, 22, 30–34. [Google Scholar]
- Kachanov, L.M. The Theory of Creep, National Lending Library for Science and Technology [Chaps. IX, X]; Yorkshire: Boston Spa, UK, 1967. [Google Scholar]
- Perzyna, P. Fundamental problems in viscoplasticity. Adv. Appl. Mech. 1966, 9, 244–368. [Google Scholar]
- Aydan, Ö.; Nawrocki, P. Rate-dependent deformability and strength characteristics of rocks. International Symp. On the Geotechnics of Hard Soils-Soft Rocks. Napoli 1998, 1, 403–411. [Google Scholar]
- Zhao, Y.; Wang, Y.; Wang, W.; Wan, W.; Tang, J. Modeling of non-linear rheological behavior of hard rock using triaxial rheological experiment. Int. J. Rock Mech. Min. Sci. 2017, 93, 66–75. [Google Scholar] [CrossRef]
- Jiao, D. Experimental Study on Electroosmotic Consolidation of Soft Clay; Zhejiang University: Hangzhou, China, 2010. [Google Scholar]
- Mogi, K. Effect of the triaxial stress system on fracture and flow of rocks. Phys. Earth Planet. Inter. 1972, 5, 318–324. [Google Scholar] [CrossRef]
- Al-Ajmi, A.M.; Zimmerman, R.W. Relation between the Mogi and the Coulomb failure criteria. Int. J. Rock Mech. Min. Sci. 2005, 42, 431–439. [Google Scholar] [CrossRef]
- Li, Q.I. Curve fitting calculation method for creep parameters of soft rock. Chin. J. Rock Mech. Eng. 1998, 17, 559–564. [Google Scholar]
σ1–σ3 | K1/GPa | G1/GPa | G2/GPa | η2/(GPa·h) | λ | G3/GPa | η3/(GPa·h) | η4/(GPa·h) | tF | N |
---|---|---|---|---|---|---|---|---|---|---|
11.5 | 1.81 | 3.21 | 1.27 | 0.29 | 0.081 | - | - | - | - | - |
17.2 | 1.82 | 3.22 | 2.60 | 0.15 | 0.027 | - | - | - | - | - |
22.8 | 1.84 | 3.12 | 1.78 | 0.15 | 0.037 | - | - | - | ||
22.6 | 1.83 | 3.24 | 1.78 | 0.007 | −0.066 | 24.5 | 1.32 | - | - | - |
30.4 | 1.87 | 3.11 | 0.05 | 10.82 | 0.032 | 34.6 | 1.66 | 23.0 | 198.4 | 0.8 |
σ3 (MPa) | σ2 (MPa) | σp (MPa) |
---|---|---|
0 | 0 | 190 |
0 | 60 | 253 |
5 | 5 | 225 |
5 | 30 | 265 |
5 | 50 | 281 |
5 | 100 | 306 |
10 | 50 | 325 |
15 | 15 | 285 |
15 | 30 | 289 |
20 | 50 | 356 |
30 | 30 | 348 |
30 | 40 | 373 |
30 | 50 | 384 |
30 | 80 | 409 |
30 | 105 | 413 |
30 | 120 | 425 |
30 | 150 | 441 |
40 | 50 | 415 |
40 | 100 | 461 |
40 | 200 | 511 |
σ1 (MPa) | σ2 (MPa) | σ3 (MPa) | K1 (GPa) | G1 (GPa) | G2 (GPa) | η2 (GPa.h) | λ | G3 (GPa) | η3 (GPa.h) | η4 (GPa.h) | tF | N |
---|---|---|---|---|---|---|---|---|---|---|---|---|
225 | 5 | 5 | 94 | 15 | 131 | 345 | −0.54 | 45 | 123 | 632 | 79.4 | 22 |
225 | 30 | 5 | 87 | 19 | 242 | 436 | −0.62 | 123 | 234 | |||
225 | 50 | 5 | 93 | 23 | 423 | 574 | −0.67 | 435 | 867 | |||
225 | 80 | 5 | 85 | 43 | 675 | 878 | −0.86 | 845 | 3018 | |||
245 | 80 | 5 | 98 | 34 | 1209 | 1245 | −0.86 | 1245 | 5632 | |||
265 | 80 | 5 | 79 | 45 | 1634 | 1865 | −0.82 | 1431 | 2324 | |||
285 | 80 | 5 | 76 | 65 | 2313 | 2344 | −0.78 | 2562 | 2345 | |||
305 | 80 | 5 | 88 | 62 | 1543 | 1645 | −0.98 | 865 | 978 | |||
325 | 80 | 5 | 96 | 67 | 890 | 1099 | −0.79 | 897 | 790 | 890 | 2.11 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Chen, Q.; Pan, Y.; Xiao, P.; Du, X.; Wang, S.; Zhang, N.; Wu, X. A Chemical Damage Creep Model of Rock Considering the Influence of Triaxial Stress. Materials 2022, 15, 7590. https://doi.org/10.3390/ma15217590
Chen Y, Chen Q, Pan Y, Xiao P, Du X, Wang S, Zhang N, Wu X. A Chemical Damage Creep Model of Rock Considering the Influence of Triaxial Stress. Materials. 2022; 15(21):7590. https://doi.org/10.3390/ma15217590
Chicago/Turabian StyleChen, Youliang, Qijian Chen, Yungui Pan, Peng Xiao, Xi Du, Suran Wang, Ning Zhang, and Xiaojian Wu. 2022. "A Chemical Damage Creep Model of Rock Considering the Influence of Triaxial Stress" Materials 15, no. 21: 7590. https://doi.org/10.3390/ma15217590
APA StyleChen, Y., Chen, Q., Pan, Y., Xiao, P., Du, X., Wang, S., Zhang, N., & Wu, X. (2022). A Chemical Damage Creep Model of Rock Considering the Influence of Triaxial Stress. Materials, 15(21), 7590. https://doi.org/10.3390/ma15217590