Entomopathogenic Fungi-Mediated AgNPs: Synthesis and Insecticidal Effect against Plutella xylostella (Lepidoptera: Plutellidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Entomopathogenic Fungal Isolates
2.2. Extracellular Synthesis of Silver Nanoparticles
2.3. Silver Nanoparticles Characterization
2.4. Sublethal Concentrations of Biogenic Silver Nanoparticles against P. xylostella
2.5. Survival, Viability, and Longevity Analysis of P. xylostella Larvae Exposed to LC50 of Silver Nanoparticles
2.6. Statistical Analysis
3. Results and Discussion
3.1. Synthesis of Silver Nanoparticles
3.2. Silver Nanoparticle Characterization
3.3. The Lethal Concentration of Biogenic Silver Nanoparticles against P. xylostella
3.4. Survival, Viability, and Longevity Analysis of P. xylostella Larvae Exposed to LC50 of Silver Nanoparticles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Bortoli, S.; Polanczyk, R.; Vacari, A.; De Bortoli, C.; Duarte, R. Plutella xylostella (Linnaeus, 1758)(Lepidoptera: Plutellidae): Tactics for integrated pest management in Brassicaceae. Weed Pest Control.-Conv. New Chall. Rij. InTechOpen 2013, 31–51. [Google Scholar] [CrossRef] [Green Version]
- Reddy, G.V. Integrated Management of Insect Pests on Canola and Other Brassica Oilseed Crops; CABI: Wallingford, UK, 2017. [Google Scholar]
- Gautam, M.; Singh, H.; Kumar, S.; Kumar, V.; Singh, G.; Singh, S. Diamondback moth, Plutella xylostella (Linnaeus)(Insecta: Lepidoptera: Plutellidae) a major insect of cabbage in India: A review. J. Entomol. Zool. Stud. 2018, 6, 1394–1399. [Google Scholar]
- Li, Z.; Furlong, M.; Yonow, T.; Kriticos, D.; Bao, H.-L.; Yin, F.; Lin, Q.; Feng, X.; Zalucki, M. Management and population dynamics of diamondback moth (Plutella xylostella): Planting regimes, crop hygiene, biological control and timing of interventions. Bull. Entomol. Res. 2019, 109, 257–265. [Google Scholar] [CrossRef]
- Chaud, M.; Souto, E.B.; Zielinska, A.; Severino, P.; Batain, F.; Oliveira-Junior, J.; Alves, T. Nanopesticides in Agriculture: Benefits and Challenge in Agricultural Productivity, Toxicological Risks to Human Health and Environment. Toxics 2021, 9, 131. [Google Scholar] [CrossRef]
- Santos, T.S.; Silva, T.M.; Cardoso, J.C.; Albuquerque-Júnior, R.L.D.; Zielinska, A.; Souto, E.B.; Severino, P.; Mendonca, M.D.C. Biosynthesis of Silver Nanoparticles Mediated by Entomopathogenic Fungi: Antimicrobial Resistance, Nanopesticides, and Toxicity. Antibiotics 2021, 10, 852. [Google Scholar] [CrossRef]
- de Oliveira, D.M.; Menezes, D.B.; Andrade, L.R.; Lima, F.D.C.; Hollanda, L.; Zielinska, A.; Sanchez-Lopez, E.; Souto, E.B.; Severino, P. Silver nanoparticles obtained from Brazilian pepper extracts with synergistic anti-microbial effect: Production, characterization, hydrogel formulation, cell viability, and in vitro efficacy. Pharm. Dev. Technol. 2021, 26, 539–548. [Google Scholar] [CrossRef]
- Sanchez-Lopez, E.; Gomes, D.; Esteruelas, G.; Bonilla, L.; Lopez-Machado, A.L.; Galindo, R.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials 2020, 10, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Torra, V.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; Barroso, E.; Vazquez-Carrera, M.; Garcia, M.L.; Sanchez-Lopez, E.; Souto, E.B. State of the Art on Toxicological Mechanisms of Metal and Metal Oxide Nanoparticles and Strategies to Reduce Toxicological Risks. Toxics 2021, 9, 195. [Google Scholar] [CrossRef] [PubMed]
- Ahadian, S.; Yamada, S.; Ramón-Azcón, J.; Estili, M.; Liang, X.; Nakajima, K.; Shiku, H.; Khademhosseini, A.; Matsue, T. Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies. Acta Biomater. 2016, 31, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Roni, M.; Murugan, K.; Panneerselvam, C.; Subramaniam, J.; Nicoletti, M.; Madhiyazhagan, P.; Dinesh, D.; Suresh, U.; Khater, H.F.; Wei, H. Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol. Environ. Saf. 2015, 121, 31–38. [Google Scholar] [CrossRef]
- Santos, T.S.; Passos, E.M.d.; Seabra, M.G.d.J.; Souto, E.B.; Severino, P.; Mendonça, M.D. Entomopathogenic Fungi Biomass Production and Extracellular Biosynthesis of Silver Nanoparticles for Bioinsecticide Action. Appl. Sci. 2021, 11, 2465. [Google Scholar] [CrossRef]
- Phanjom, P.; Ahmed, G. Effect of different physicochemical conditions on the synthesis of silver nanoparticles using fungal cell filtrate of Aspergillus oryzae (MTCC No. 1846) and their antibacterial effect. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 045016. [Google Scholar] [CrossRef] [Green Version]
- Othman, A.M.; Elsayed, M.A.; Al-Balakocy, N.G.; Hassan, M.M.; Elshafei, A.M. Biosynthesis and characterization of silver nanoparticles induced by fungal proteins and its application in different biological activities. J. Genet. Eng. Biotechnol. 2019, 17, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bhatnagar, S.; Kobori, T.; Ganesh, D.; Ogawa, K.; Aoyagi, H. Biosynthesis of silver nanoparticles mediated by extracellular pigment from Talaromyces purpurogenus and their biomedical applications. Nanomaterials 2019, 9, 1042. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, S.; Viana, J.C. Production of silver nanoparticles by green synthesis using artichoke (Cynara scolymus L.) aqueous extract and measurement of their electrical conductivity. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9, 045002. [Google Scholar] [CrossRef]
- Singhal, G.; Bhavesh, R.; Kasariya, K.; Sharma, A.R.; Singh, R.P. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J. Nanoparticle Res. 2011, 13, 2981–2988. [Google Scholar] [CrossRef]
- Hamouda, R.A.; Hussein, M.H.; Abo-Elmagd, R.A.; Bawazir, S.S. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci. Rep. 2019, 9, 13071. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, R.; Etemad, S.G.; Keshavarzi, E.; Haghshenasfard, M. Investigation of alumina nanofluid stability by UV–vis spectrum. Microfluid. Nanofluidics 2015, 18, 1023–1030. [Google Scholar] [CrossRef]
- Hadjidemetriou, M.; Kostarelos, K. Evolution of the nanoparticle corona. Nat. Nanotechnol. 2017, 12, 288–290. [Google Scholar] [CrossRef]
- Banu, A.N.; Balasubramanian, C. Myco-synthesis of silver nanoparticles using Beauveria bassiana against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 2014, 113, 2869–2877. [Google Scholar] [CrossRef]
- Banu, A.N.; Balasubramanian, C. Optimization and synthesis of silver nanoparticles using Isaria fumosorosea against human vector mosquitoes. Parasitol. Res. 2014, 113, 3843–3851. [Google Scholar] [CrossRef] [PubMed]
- Różalska, S.; Soliwoda, K.; Długoński, J. Synthesis of silver nanoparticles from Metarhizium robertsii waste biomass extract after nonylphenol degradation, and their antimicrobial and catalytic potential. RSC Adv. 2016, 6, 21475–21485. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, L.; Riaz Rajoka, M.S.; Yan, L.; Jiang, C.; Shao, D.; Zhu, J.; Shi, J.; Huang, Q.; Yang, H.; et al. Fungal silver nanoparticles: Synthesis, application and challenges. Crit. Rev. Biotechnol. 2018, 38, 817–835. [Google Scholar] [CrossRef]
- Mistry, H.; Thakor, R.; Patil, C.; Trivedi, J.; Bariya, H. Biogenically proficient synthesis and characterization of silver nanoparticles employing marine procured fungi Aspergillus brunneoviolaceus along with their antibacterial and antioxidative potency. Biotechnol. Lett. 2021, 43, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Chundawat, T.S.; Malek, N. Antibacterial, antifungal, photocatalytic activities and seed germination effect of mycosynthesized silver nanoparticles using Fusarium oxysporum. Biointerface Res. Appl. Chem. 2020, 11, 12082–12091. [Google Scholar]
- Qayyum, S.; Oves, M.; Khan, A.U. Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles. PLoS ONE 2017, 12, e0181363. [Google Scholar] [CrossRef] [Green Version]
- Justus, B.; Arana, A.F.M.; Gonçalves, M.M.; Wohnrath, K.; Boscardin, P.M.D.; Kanunfre, C.C.; Budel, J.M.; Farago, P.V.; de Paula, J.d.F.P. Characterization and cytotoxic evaluation of silver and gold nanoparticles produced with aqueous extract of Lavandula dentata L. in relation to K-562 cell line. Braz. Arch. Biol. Technol. 2019, 62. [Google Scholar] [CrossRef]
- Lotfy, W.A.; Alkersh, B.M.; Sabry, S.A.; Ghozlan, H.A. Biosynthesis of silver nanoparticles by Aspergillus terreus: Characterization, optimization, and biological activities. Front. Bioeng. Biotechnol. 2021, 265. [Google Scholar] [CrossRef]
- Rose, G.K.; Soni, R.; Rishi, P.; Soni, S.K. Optimization of the biological synthesis of silver nanoparticles using Penicillium oxalicum GRS-1 and their antimicrobial effects against common food-borne pathogens. Green Process. Synth. 2019, 8, 144–156. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Mohammad, S.; Khan, M.A.; Raja, N.I.; Arif, M.; Kamil, A.; Mashwani, Z.U. Silver nanoparticles elicited in vitro callus cultures for accumulation of biomass and secondary metabolites in Caralluma tuberculata. Artif. Cells Nanomed. Biotechnol. 2019, 47, 715–724. [Google Scholar] [CrossRef] [Green Version]
- Bhargava, A.; Dev, A.; Mohanbhai, S.J.; Pareek, V.; Jain, N.; Choudhury, S.R.; Panwar, J.; Karmakar, S. Pre-coating of protein modulate patterns of corona formation, physiological stability and cytotoxicity of silver nanoparticles. Sci. Total Environ. 2021, 772, 144797. [Google Scholar] [CrossRef] [PubMed]
- Rónavári, A.; Igaz, N.; Adamecz, D.I.; Szerencsés, B.; Molnar, C.; Kónya, Z.; Pfeiffer, I.; Kiricsi, M. Green silver and gold nanoparticles: Biological synthesis approaches and potentials for biomedical applications. Molecules 2021, 26, 844. [Google Scholar] [CrossRef]
- Tamilselvan, R.; Kennedy, J.; Suganthi, A. Monitoring the resistance and baseline susceptibility of Plutella xylostella (L.)(Lepidoptera: Plutellidae) against spinetoram in Tamil Nadu, India. Crop Prot. 2021, 142, 105491. [Google Scholar] [CrossRef]
- Costa, Â.C.F.; Cavalcanti, S.C.H.; Santana, A.S.; Lima, A.P.S.; Brito, T.B.; Oliveira, R.R.B.; Macêdo, N.A.; Cristaldo, P.F.; Araújo, A.P.A.; Bacci, L. Insecticidal activity of indole derivatives against Plutella xylostella and selectivity to four non-target organisms. Ecotoxicology 2019, 28, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Endersby, N.; Viduka, K.; Baxter, S.; Saw, J.; Heckel, D.G.; McKechnie, S. Widespread pyrethroid resistance in Australian diamondback moth, Plutella xylostella (L.), is related to multiple mutations in the para sodium channel gene. Bull. Entomol. Res. 2011, 101, 393–405. [Google Scholar] [CrossRef]
- Wang, X.L.; Su, W.; Zhang, J.H.; Yang, Y.H.; Dong, K.; Wu, Y.D. Two novel sodium channel mutations associated with resistance to indoxacarb and metaflumizone in the diamondback moth, Plutella xylostella. Insect Sci. 2016, 23, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Kumari, R.; Singh, D. Silver nanoparticle in agroecosystem: Applicability on plant and risk-benefit assessment. In Plant Responses to Xenobiotics; Springer: Singapore, 2016; pp. 293–305. [Google Scholar]
- Benelli, G.; Caselli, A.; Canale, A. Nanoparticles for mosquito control: Challenges and constraints. J. King Saud Univ.-Sci. 2017, 29, 424–435. [Google Scholar]
- Benelli, G. Mode of action of nanoparticles against insects. Environ. Sci. Pollut. Res. 2018, 25, 12329–12341. [Google Scholar] [CrossRef] [PubMed]
- Amarasinghe, L.; Wickramarachchi, P.; Aberathna, A.; Sithara, W.; De Silva, C. Comparative study on larvicidal activity of green synthesized silver nanoparticles and Annona glabra (Annonaceae) aqueous extract to control Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Heliyon 2020, 6, e04322. [Google Scholar] [CrossRef] [PubMed]
- Jamtsho, T.; Banu, N.; Kinley, C. Critical Review on Past, Present and Future Scope of Diamondback Moth Management. Plant Arch. 2021, 21, 1199–1210. [Google Scholar] [CrossRef]
- Shahzad, K.; Manzoor, F. Nanoformulations and their mode of action in insects: A review of biological interactions. Drug Chem. Toxicol. 2021, 44, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Esan, V.; Mahboob, S.; Al-Ghanim, K.A.; Elanchezhiyan, C.; Al-Misned, F.; Ahmed, Z.; Govindarajan, M. Novel biogenic synthesis of silver nanoparticles using Alstonia venenata leaf extract: An enhanced mosquito larvicidal agent with negligible impact on important eco-biological fish and insects. J. Clust. Sci. 2021, 32, 489–497. [Google Scholar] [CrossRef]
- Medeiros, J.F.D.; Acayaba, R.D.A.; Montagner, C.C. The chemistry in the human health risk assessment due to pesticides exposure. Química Nova 2021, 44, 584–598. [Google Scholar]
- Jasrotia, P.; Nagpal, M.; Mishra, C.N.; Sharma, A.K.; Kumar, S.; Kamble, U.; Bhardwaj, A.K.; Kashyap, P.L.; Kumar, S.; Singh, G.P. Nanomaterials for Postharvest Management of Insect Pests: Current State and Future Perspectives. Front. Nanotechnol. 2022, 3, 811056. [Google Scholar] [CrossRef]
- Ferdous, Z.; Nemmar, A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int. J. Mol. Sci. 2020, 21, 2375. [Google Scholar] [CrossRef] [Green Version]
- Lemes, A.A.F.; Sipriano-Nascimento, P.T.; Vieira, N.F.; Cardoso, C.P.; Vacari, A.M.; Bortoli, S.A.D. Acute and Chronic Toxicity of Indoxacarb in Two Populations of Plutella xylostella (Lepidoptera: Plutellidae). J. Econ. Entomol. 2021, 114, 298–306. [Google Scholar] [CrossRef]
- Rodrigues, W.C. Fatores que influenciam no desenvolvimento dos insetos. Info Insetos 2004, 1, 1–4. [Google Scholar]
- Raj, A.; Shah, P.; Agrawal, N. Dose-dependent effect of silver nanoparticles (AgNPs) on fertility and survival of Drosophila: An in-vivo study. PLoS ONE 2017, 12, e0178051. [Google Scholar] [CrossRef]
Isolate | Specie | Origin | Collection Site/Host |
---|---|---|---|
1260 | Beauveria bassiana | Laboratory of Pathology of Insects (USP), Piracicaba, (SP-Brazil) | Insect Leptopharsa larvae |
SE109 | Laboratory of Biotechnological Pest Control (Sergipetec), São Cristovão (SE-Brazil) | Soil | |
SE202 | Metarhizium anisopliae | Laboratory of Biotechnological Pest Control (Sergipetec), São Cristovão (SE-Brazil) | Soil |
SE301 | Isaria fumosorosea | Laboratory of Biotechnological Pest Control (Sergipetec), São Cristovão (SE-Brazil) | Soil |
Isolate | AgNO3 | Diameter (nm) * | PI *• |
---|---|---|---|
1260 | 1 mM | 202.60 ± 20.25 | 0.54 ± 0.08 |
3 mM | 224.83 ± 61.87 | 0.52 ± 0.04 | |
5 mM | 257.07 ± 17.86 | 0.55 ± 0.06 | |
SE109 | 1 mM | 172.77 ± 59.73 | 0.54 ± 0.07 |
3 mM | 121.37 ± 20.68 | 0.50 ± 0.05 | |
5 mM | 119.48 ± 6.11 | 0.47 ± 0.04 | |
SE202 | 1 mM | 103.97 ± 6.30 | 0.27 ± 0.05 |
3 mM | 122.44 ± 4.34 | 0.41 ± 0.03 | |
5 mM | 135.32 ± 23.39 | 0.54 ± 0.07 | |
SE301 | 1 mM | 129.03 ± 30.51 | 0.55 ± 0.09 |
3 mM | 86.26 ± 8.19 | 0.37 ± 0.05 | |
5 mM | 119.39 ± 26.69 | 0.54 ± 0.06 |
Treatment | N | LC30 | LC50 | LC90 | Slope | χ2 | P |
---|---|---|---|---|---|---|---|
AgNPs | 741 | 0.144 (0.104–0.182) | 0.691 (0.627–0.762) | 2.011 (1.684–2.550) | 2.762 (±0.231) | 7.634 | 0.054 |
Deltamethrin | 750 | 0.009 (0.005–0,013) | 0.301 (0.238–0.391) | 3.427 (2.211–6.033) | 1.214 (±0.088) | 4.222 | 0.238 |
AgNPs Concentration (mg/mL) | Life Cycle Phase | |||
---|---|---|---|---|
Larvae | Pupae | |||
Duration (Days) | Viability (%) | Duration (Days) | Viability (%) | |
0.0 | 10.8 ± 1.44 | 91.14 ± 1.76 | 8.6 ± 1.34 | 79.56 ± 7.06 |
0.7 | 10.8 ± 1.04 | 21.74 ± 11.04 | 7.2 ± 1.09 | 77.95 ± 14.90 |
T | 0.000 | 13.879 | 1.807 | 0.219 |
p | 1 | 0.000 | 0.108 | 0.832 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, T.S.; de Souza Varize, C.; Sanchez-Lopez, E.; Jain, S.A.; Souto, E.B.; Severino, P.; Mendonça, M.d.C. Entomopathogenic Fungi-Mediated AgNPs: Synthesis and Insecticidal Effect against Plutella xylostella (Lepidoptera: Plutellidae). Materials 2022, 15, 7596. https://doi.org/10.3390/ma15217596
Santos TS, de Souza Varize C, Sanchez-Lopez E, Jain SA, Souto EB, Severino P, Mendonça MdC. Entomopathogenic Fungi-Mediated AgNPs: Synthesis and Insecticidal Effect against Plutella xylostella (Lepidoptera: Plutellidae). Materials. 2022; 15(21):7596. https://doi.org/10.3390/ma15217596
Chicago/Turabian StyleSantos, Tárcio S., Camila de Souza Varize, Elena Sanchez-Lopez, Sona A. Jain, Eliana B. Souto, Patrícia Severino, and Marcelo da Costa Mendonça. 2022. "Entomopathogenic Fungi-Mediated AgNPs: Synthesis and Insecticidal Effect against Plutella xylostella (Lepidoptera: Plutellidae)" Materials 15, no. 21: 7596. https://doi.org/10.3390/ma15217596
APA StyleSantos, T. S., de Souza Varize, C., Sanchez-Lopez, E., Jain, S. A., Souto, E. B., Severino, P., & Mendonça, M. d. C. (2022). Entomopathogenic Fungi-Mediated AgNPs: Synthesis and Insecticidal Effect against Plutella xylostella (Lepidoptera: Plutellidae). Materials, 15(21), 7596. https://doi.org/10.3390/ma15217596