Prediction of Magnetocaloric Effect Induced by Continuous Modulation of Exchange Interaction: A Monte Carlo Study
Abstract
:1. Introduction
2. Model and Monte Carlo Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Untersuchungen, M.; Warburg, E. Ber Einige Wirkungen Der Coercitivkraft. Ann. Phys. 1881, 13, 141. [Google Scholar]
- Debye, P. Einige Bemerkungen Zur Magnetisierung Bei Tiefer Temperature. Ann. Phys. 1926, 81, 1154. [Google Scholar] [CrossRef]
- Giauque, W.F. A Thermodynamic Treatment of Certain Magnetic Effects. A Proposed Method of Producing Temperatures Considerably Below 1º Absolute. J. Am. Chem. Soc. 1927, 49, 1864. [Google Scholar] [CrossRef]
- Tishin, A.M.; Spichkin, Y.I. The Magnetocaloric Effect and Its Applications. In Series in Condensed Matter Physics; Coey, J.M.D., Tilley, D.R., Vij, D.R., Eds.; Institute of Physics Publishing: London, UK, 2003. [Google Scholar]
- Buschow, K.H.J. Handbook of Magnetic Materials; North-Holland Publishers: North Holland, The Netherlands, 2014. [Google Scholar]
- Pecharsky, V.K.; Gschneidner, K.A., Jr. Advanced Magnetocaloric Materials: What Does the Future Hold? Int. J. Refrigeration 2006, 29, 1239. [Google Scholar] [CrossRef]
- Brown, G.V. Magnetic Heat Pumping Near Room Temperature. J. Appl. Phys. 1976, 47, 3673. [Google Scholar] [CrossRef] [Green Version]
- Pecharsky, V.K.; Gschneidner, J.A., Jr. Giant Magnetocaloric Effect in Gd5(Si2Ge2). Phys. Rev. Lett. 1997, 78, 4494. [Google Scholar] [CrossRef]
- Guo, Z.B.; Du, Y.W.; Zhu, J.S.; Huang, H.; Ding, W.P.; Feng, D. Large Magnetic Entropy Change in Perovskite-Type Manganese. Phys. Rev. Lett. 1997, 78, 1142. [Google Scholar] [CrossRef]
- Hu, F.X.; Shen, B.G.; Sun, J.R. Magnetic Entropy Change in Ni51.5Mn22.7Ga25.8 Alloy. Appl. Phys. Lett. 2000, 76, 3460. [Google Scholar] [CrossRef]
- Brück, E. Developments in Magnetocaloric Refrigeration. J. Phys. D: Appl. Phys. 2005, 38, R381. [Google Scholar] [CrossRef]
- Phan, M.H.; Yu, S.C. Review of the Magnetocaloric Effect in Manganite Materials. J. Magn. Magn. Mater. 2007, 308, 325. [Google Scholar] [CrossRef]
- Pecharsky, V.K.; Gschneidner, K.A.; Tsokol, A.O. Recent Developments in Magnetocaloric Materials. Rep. Prog. Phys. 2005, 68, 1479. [Google Scholar]
- Fries, M.; Skokov, K.P.; Karpenkov, D.Y.; Franco, V.; Ener, S.; Gutfleisch, O. The Influence of Magnetocrystalline Anisotropy on the Magnetocaloric Effect: A Case Study on Co2B. Appl. Phys. Lett. 2016, 109, 232406. [Google Scholar] [CrossRef]
- Balli, M.; Jandl, S.; Fournier, P.; Gospodinov, M.M. Anisotropy-Enhanced Giant Reversible Rotating Magnetocaloric Effect in HoMn2O5 Single Crystals. Appl. Phys. Lett. 2014, 104, 232402. [Google Scholar] [CrossRef]
- Balli, M.; Fournier, P.; Jandl, S.; Mansouri, S.; Mukhin, A.; Ivanov, Y.V.; Balbashov, A.M. Comment on “Giant Anisotropy of Magnetocaloric Effect in TbMnO3 Single Crystals”. Phys. Rev. B 2017, 96, 146401. [Google Scholar] [CrossRef]
- Reis, M.S.; Rubinger, R.M.; Sobolev, N.A.; Valente, M.A.; Yamada, K.; Sato, K.; Todate, Y.; Bouravleuv, A.; von Ranke, P.J.; Gama, S. Influence of the Strong Magnetocrystalline Anisotropy on the Magnetocaloric Properties of MnP Single Crystal. Phys. Rev. B 2008, 77, 104439. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Wang, Y.; Li, Z.; Chi, X.; Lu, Q.; Hu, T.; Liu, Y.; Du, A.; Shi, F. Low-Field Magnetocaloric Effect in Single Crystals Controlled by Magnetocrystalline Anisotropy. Appl. Phys. Lett. 2018, 113, 133902. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, T.; Chi, X.; Wang, Y.; Lu, Q.; Yu, L.; Li, R.; Liu, Y.; Du, A.; Li, Z.; et al. Magnetocaloric Effect in Cubically Anisotropic Magnets. Appl. Phys. Lett. 2019, 114, 023903. [Google Scholar] [CrossRef]
- Hu, T.; Chi, X.; Lu, Q.; Yu, L.; Li, R.; Liu, Y.; Du, A.; Li, Z.; Shi, F.; Hu, Y. Prediction of Optimized Magnetocaloric Effect in Anisotropic Zinc Ferric Nanoparticles: A Monte Carlo Simulation. J. Alloys Compd. 2019, 801, 465. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Y. Role of Magnetocrystalline Anisotropy on Anisotropic Magnetocaloric Effect in Single Crystals. Appl. Phys. Lett. 2021, 119, 213903. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, R.; Han, Y.; Guo, S.; Wang, W.; Zheng, F.; Wang, H.; Huang, J.; Li, J.; Li, L. Effect of Partial Substitution of Ce for La on the Structural, Magnetic and Abnormal Thermal Expansion Properties of La1-xCexFe11.2Al1.8 alloys. J. Alloys Compd. 2020, 840, 155766. [Google Scholar] [CrossRef]
- Dubey, K.K.; Devi, P.; Singh, A.K.; Singh, S. Improved Crystallographic Compatibility and Magnetocaloric Reversibility in Pt Substituted Ni2Mn1.4In0.6 Magnetic Shape Memory Heusler Alloys. J. Magn. Magn. Mater. 2020, 507, 166818. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.H.; Trigg, A.; Chhetri, T.P.; Young, D.P.; Dubenko, I.; Ali, N.; Stadler, S. The Influence of Au Substitution and Hydrostatic Pressure on the Phase Transitions and Magnetocaloric Properties of MnCoGe Alloys. J. Appl. Phys. 2020, 127, 213901. [Google Scholar] [CrossRef]
- Terwey, A.; Gruner, M.E.; Keune, W.; Landers, J.; Salamon, S.; Eggert, B.; Ollefs, K.; Brabänder, V.; Radulov, I.; Skokov, K.; et al. Influence of Hydrogenation on the Vibrational Density of States of Magnetocaloric LaFe11.4Si1.6H1.6. Phys. Rev. B 2020, 101, 064415. [Google Scholar] [CrossRef] [Green Version]
- Buchelnikov, V.D.; Sokolovskiy, V.V.; Taskaev, S.V.; Khovaylo, V.V.; Aliev, A.A.; Khanov, L.N.; Batdalov, A.B.; Entel, P.; Miki, H.; Takagi, T. Monte Carlo Simulations of the Magnetocaloric Effect in Magnetic Ni-Mn-X (X = Ga, In) Heusler Alloys. J. Phys. D: Appl. Phys. 2011, 44, 064012. [Google Scholar] [CrossRef]
- Sokolovskiy, V.; Grünebohm, A.; Buchelnikov, V.; Entel, P. Ab Initio and Monte Carlo Approaches For the Magnetocaloric Effect in Co- and In-Doped Ni-Mn-Ga Heusler Alloys. Entropy 2014, 16, 4992. [Google Scholar] [CrossRef] [Green Version]
- Bedanta, S.; Kleemann, W. Supermagnetism. J. Phys. D: Appl. Phys. 2009, 42, 013001. [Google Scholar] [CrossRef]
- Mohanta, N.; Dagotto, E.; Okamoto, S. Topological Hall Effect and Emergent Skyrmion Crystal at Manganite-Iridate Oxide Interfaces. Phys. Rev. B 2019, 100, 064429. [Google Scholar] [CrossRef] [Green Version]
- d’Albuquerque e Castro, J.; Altbir, D.; Retamal, J.C.; Vargas, P. Scaling Approach to the Magnetic Phase Diagram of Nanosized Systems. Phys. Rev. Lett. 2002, 88, 237202. [Google Scholar] [CrossRef]
- Coey, J.M.D. Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Chikazumi, S. Physics of Ferromagnetism; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Pecharsky, V.K.; Gschneidner, K.A. Magnetocaloric Materials. Annu. Rev. Mater. Sci. 2000, 30, 387. [Google Scholar]
- Hao, F.; Hu, Y. Magnetocaloric Effect Manipulated Through Interchain Exchange Coupling in Nanochain Arrays. Appl. Phys. Lett. 2020, 117, 063902. [Google Scholar] [CrossRef]
- Oesterreicher, H.; Parker, F.T. Magnetic Cooling Near Curie Temperatures Above 300 K. J. Appl. Phys. 1984, 55, 4334. [Google Scholar] [CrossRef]
- Franco, V.; Blázquez, J.S.; Conde, A. Field Dependence of the Magnetocaloric Effect in Materials with a Second Order Phase Transition: A Master Curve For the Magnetic Entropy Change. Appl. Phys. Lett. 2006, 89, 222512. [Google Scholar] [CrossRef]
- Franco, V.; Conde, A.; Sidhaye, D.; Prasad, B.L.V.; Poddar, P.; Srinath, S.; Phan, M.H.; Srikanth, H. Field Dependence of the Magnetocaloric Effect in Core-Shell Nanoparticles. J. Appl. Phys. 2010, 107, 09A902. [Google Scholar] [CrossRef]
J′ = 0 | J′ = 1.2 meV | |||
---|---|---|---|---|
Low μ0H | High μ0H | Low μ0H | High μ0H | |
n | 1.5574 ± 0.0270 | 0.9505 ± 0.0191 | 0.6779 ± 0.0192 | 0.6779 ± 0.0192 |
m | 2.1546 ± 0.0509 | 1.4232 ± 0.0643 | 1.4625 ± 0.0676 | 0.9994 ± 0.0443 |
δ | 0.8661 ± 0.0382 | 2.3148 ± 0.3590 | 2.1622 ± 0.3160 | − |
β | 1.9334 ± 0.1670 | 0.8972 ± 0.0499 | 0.5895 ± 0.0498 | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, J.; Zhang, C.; Li, Z.; Du, J.; Hu, Y. Prediction of Magnetocaloric Effect Induced by Continuous Modulation of Exchange Interaction: A Monte Carlo Study. Materials 2022, 15, 7777. https://doi.org/10.3390/ma15217777
Zhang J, Wang J, Zhang C, Li Z, Du J, Hu Y. Prediction of Magnetocaloric Effect Induced by Continuous Modulation of Exchange Interaction: A Monte Carlo Study. Materials. 2022; 15(21):7777. https://doi.org/10.3390/ma15217777
Chicago/Turabian StyleZhang, Jiayu, Jian Wang, Chenyu Zhang, Zongbin Li, Juan Du, and Yong Hu. 2022. "Prediction of Magnetocaloric Effect Induced by Continuous Modulation of Exchange Interaction: A Monte Carlo Study" Materials 15, no. 21: 7777. https://doi.org/10.3390/ma15217777
APA StyleZhang, J., Wang, J., Zhang, C., Li, Z., Du, J., & Hu, Y. (2022). Prediction of Magnetocaloric Effect Induced by Continuous Modulation of Exchange Interaction: A Monte Carlo Study. Materials, 15(21), 7777. https://doi.org/10.3390/ma15217777