Bio-Inspired Micro- and Nanorobotics Driven by Magnetic Field
Abstract
:1. Introduction
2. Approaches to the Fabrication and Control of Magnetic Microrobots
2.1. Main Methods of the Prototyping and Fabrication
2.2. Magnetic Actuation Methods
2.3. Hydrodynamic Performance of the Micro-Objects
3. Fabrication of Magnetic Micro- and Nanoswimmers
3.1. Flexible Polymer Swimmers
3.2. Chains of Magnetic Micro- and Nanoparticles
3.3. Rigid Helical Swimmers
4. Synthesis of Magnetic Biohybrid Robots
5. Bioinspired Elastic Magnetic Limbs
6. Functional Magnetic Cilia and Tactile Sensors
- Moving cilia, which produce movement as they permanently pulsate in a certain direction;
- Non-moving cilia, which usually play the role of sensitive organelles.
7. Conclusions and Prospects for the Future
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Soto, F.; Wang, J.; Ahmed, R.; Demirci, U. Medical micro/nanorobots in precision medicine. Adv. Sci. 2020, 21, 2002203. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Chen, Y.; Mukasa, D.; Pak, O.S.; Gao, W. Medical micro/nanorobots in complex media. Chem. Soc. Rev. 2020, 49, 8088. [Google Scholar] [CrossRef] [PubMed]
- Ummat, A.; Dubey, A.; Mavroidis, C. Biomimetics: Biologically Inspired Technologies; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Stroble, J.K.; Stone, R.B.; Watkins, S.E. An overview of biomimetic sensor technology. Sens. Rev. 2009, 29, 112. [Google Scholar] [CrossRef]
- Lu, L.; Hu, X.; Zhu, Z. Biomimetic sensors and biosensors for qualitative and quantitative analyses of five basic tastes. Trend. Anal. Chem. 2017, 87, 58. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, C.; Wang, X.; Wang, W.; Xi, N.; Liu, L. Development of micro-and nanorobotics: A review. Sci. China Technol. Sci. 2019, 62, 1–20. [Google Scholar] [CrossRef]
- Giri, G.; Maddahi, Y.; Zareinia, K. A Brief Review on Challenges in Design and Development of Nanorobots for Medical Applications. Appl. Sci. 2021, 11, 10385. [Google Scholar] [CrossRef]
- Soler, L.; Sánchez, S. Catalytic nanomotors for environmental monitoring and water remediation. Nanoscale 2014, 6, 7175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, B.J.; Kaliakatsos, I.K.; Abbott, J.J. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 2010, 12, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Kostarelos, K.; Nelson, B.J.; Zhang, L. Trends in Micro-/Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications. Adv. Mater. 2021, 33, 2002047. [Google Scholar] [CrossRef]
- Hamdi, M.; Ferreira, A. Desing, Modeling and Characterization of Bio-Nanorobotic Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; p. 158. [Google Scholar]
- Palagi, S.; Fischer, P. Bioinspired microrobots. Nat. Rev. Mater. 2018, 3, 113. [Google Scholar] [CrossRef]
- Prinz, V.Y. Three-Dimensional Systems and Nanostructures: Technology, Physics and Applications. Adv. Semicond. Nanostruct. 2017, 463. [Google Scholar] [CrossRef]
- Fritzler, K.B.; Ya, P.V. 3D printing methods for micro-and nanostructures. Phys.-Usp. 2019, 62, 54. [Google Scholar] [CrossRef]
- Seleznev, V.; Prinz, V.Y. Hybrid 3D–2D printing for bone scaffolds fabrication. Nanotechnology 2017, 28, 064004. [Google Scholar] [CrossRef] [PubMed]
- Korneev, I.; Seleznev, V.; Prinz, V.Y. Fabrication and Study of Micro-and Nanostructured Superhydrophobic and Anti-Icing Surfaces. Nanotechnol. Russ. 2017, 12, 485. [Google Scholar] [CrossRef]
- Jang, B.; Wang, W.; Wiget, S.; Petruska, A.J.; Chen, X.; Hu, C.; Hong, A.; Folio, D.; Ferreira, A.; Pané, S. Catalytic locomotion of core–shell nanowire motors. ACS Nano 2016, 10, 9983. [Google Scholar] [CrossRef] [Green Version]
- Hilber, W. Stimulus-active polymer actuators for next-generation microfluidic devices. Appl. Phys. A 2016, 122, 8. [Google Scholar] [CrossRef] [Green Version]
- de Ávila, B.E.-F.; Gao, W.; Karshalev, E.; Zhang, L.; Wang, J. Cell-like micromotors. Acc. Chem. Res. 2018, 51, 1901. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, K.; Zhang, L. Micro/Nanomachines: From Functionalization to Sensing and Removal. Adv. Mater. Technol. 2019, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; de Ávila, B.E.-F.; Gao, W.; Zhang, L.; Wang, J. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci. Robot. 2017, 2, 4. [Google Scholar] [CrossRef]
- Xu, K.; Liu, B. Recent progress in actuation technologies of micro/nanorobots. Beilstein J. Nanotechnol. 2021, 12, 756. [Google Scholar] [CrossRef]
- Schmidt, C.K.; Medina-Sánchez, M.; Edmondson, R.J.; Schmidt, O.G. Engineering microrobots for targeted cancer therapies from a medical perspective. Nat. Commun. 2020, 11, 5618. [Google Scholar] [CrossRef] [PubMed]
- Bira, N.; Dhagat, P.; Davidson, J.R. A Review of Magnetic Elastomers and Their Role in Soft Robotics. Front. Robot. AI 2020, 7, 588391. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Tang, W.; Mu, G.; Wang, H.; Chang, X.; Dong, H.; Qi, L.; Zhang, G.; Li, T. Micro-/Nanorobots Propelled by Oscillating Magnetic Fields. Micromachines 2018, 9, 540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, K.; Xu, S.; Wei, F. Recent progress in magnetic applications for micro-and nanorobots. Beilstein J. Nanotechnol. 2021, 12, 744. [Google Scholar] [CrossRef]
- He, Y.; Wang, L.; Zhong, L.; Liu, Y.; Rong, W. Transporting microobjects using a magnetic microrobot at water surfaces. In Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November 2018; pp. 108–112. [Google Scholar]
- Schürle, S.; Kratochvil, B.E.; Pane, S.; Arif Zeeshan, M.; Nelson, B.J. Generating Magnetic Fields for Controlling Nanorobots in Medical Applications. In Nanorobotics; Springer: New York, NY, USA, 2013; p. 275. [Google Scholar]
- Mazumder, S.B.G.; Majee, S.B. Applications of nanorobots in medical techniques. IJPSR 2020, 11, 3150. [Google Scholar]
- Wang, Z.; Xu, Z.; Zhu, B.; Zhang, Y.; Lin, J.; Wu, Y.; Wu, D. Design, fabrication and application of magnetically actuated micro/nanorobots: A review. Nanotechnology 2021, 33, 152001. [Google Scholar]
- Chowdhury, S.; Jing, W.; Cappelleri, D.J. Towards Independent Control of Multiple Magnetic Mobile Microrobots. Micromachines 2015, 7, 3. [Google Scholar] [CrossRef]
- Adam, G.; Chowdhury, S.; Guix, M.; Johnson, B.V.; Bi, C.; Cappelleri, D. Towards Functional Mobile Microrobotic Systems. Robotics 2019, 8, 3. [Google Scholar]
- Dzhezherya, Y.I.; Kalita, V.; Cherepov, S.; Skirta, Y.B.; Berezhnaya, L.; Levchenko, G. Anomalous behavior of bending deformation induced by a magnetic field in a system of ferromagnetic stripes located on an elastomer. Smart Mater. Struct. 2019, 28, 125013. [Google Scholar] [CrossRef]
- Rikken, R.S.; Nolte, R.J.; Maan, J.C.; van Hest, J.C.; Wilson, D.A.; Christianen, P.C. Manipulation of micro- and nanostructure motion with magnetic fields. Soft. Matter. 2014, 10, 1295. [Google Scholar]
- Yu, J.; Jin, D.; Chan, K.F.; Wang, Q.; Yuan, K.; Zhang, L. Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat. Commun. 2019, 10, 5631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H.; Hashi, S.; Ishiyama, K. Methodology of dynamic actuation for flexible magnetic actuator and biomimetic robotics application. IEEE Trans. Magn. 2010, 46, 1366. [Google Scholar] [CrossRef]
- Kim, S.H.; Shin, K.; Hashi, S.; Ishiyama, K. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator. Bioinspir. Biomim. 2012, 7, 036007. [Google Scholar] [CrossRef] [Green Version]
- Belharet, K.; Folio, D.; Ferreira, A. Three-dimensional controlled motion of a microrobot using magnetic gradients. Adv. Robot. 2011, 25, 1069. [Google Scholar] [CrossRef]
- Mellal, L.; Folio, D.; Belharet, K.; Ferreira, A. Modeling of optimal targeted therapies using drug-loaded magnetic nanoparticles for liver cancer. IEEE Trans. Nanobiosci. 2016, 15, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, D.; Wang, J.; Steager, E.; Kumar, V. Control of Multiple Magnetic Micro Robots. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, MA, USA, 2–5 August 2015. [Google Scholar]
- Kantaros, Y.; Johnson, B.V.; Chowdhury, S.; Cappelleri, D.J.; Zavlanos, M.M. Control of Magnetic Microrobot Teams for Temporal Micromanipulation Tasks. IEEE Trans.Robot. 2018, 34, 1472. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Liu, Y.; Westervelt, R.M.; Ham, D. IC/Microfluidic Hybrid System for Magnetic Manipulation of Biological Cells. IEEE J. Solid-State Circuits 2006, 41, 14710. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Jeong, S.; Lee, C.; Park, B.J.; Ko, S.Y.; Park, J.-O.; Park, S. Three-dimensional swimming tadpole mini-robot using three-axis Helmholtz coils. Int. J. F Control. Autom. Syst. 2014, 12, 662. [Google Scholar] [CrossRef]
- Chen, R.; Folio, D.; Ferreira, A. Mathematical approach for the design configuration of magnetic system with multiple electromagnets. Rob. Auton. Syst. 2021, 135, 103674. [Google Scholar] [CrossRef]
- Koleoso, M.; Feng, X.; Xue, Y.; Li, Q.; Munshi, T.; Chen, X. Micro/Nano-scale magnetic robots for biomedical applications. Mater. Today Bio 2020, 8, 100085. [Google Scholar] [CrossRef]
- Kasimoglu, Y.; Tabakcilar, D.; Guclu, Z.A.; Yamamoto-Nemoto, S.; Tuna, E.B.; Ozen, B.; Tuzuner, T.; Ince, G. Nanomaterials and nanorobotics in dentistry: A review. J. Dent. Indones. 2020, 27, 77. [Google Scholar] [CrossRef]
- Wang, L.; Meng, Z.; Chen, Y.; Zheng, Y. Engineering Magnetic Micro/Nanorobots for Versatile Biomedical Applications. Adv. Intell Syst. 2021, 3, 2000267. [Google Scholar] [CrossRef]
- Chen, R.; Folio, D.; Ferreira, A. Analysis and Comparison of Electromagnetic Microrobotic Platforms for Biomedical Applications. Appl. Sci. 2022, 12, 456. [Google Scholar] [CrossRef]
- Folio, D. Magnetic Microrobotics for Biomedical Applications. Doctoral Dissertation, Université d’Orléans, Orléans, France, 2021. Available online: https://hal.archives-ouvertes.fr/tel-03483203/file/hdr-dfolio-partI.pdf (accessed on 30 October 2022).
- Leon-Rodriguez, H.; Park, S.; Park, J.-O. Assistive Robotics. In Proceedings of the 18th International Conference on CLAWAR, Hangzhou, China, 6–9 September 2015. [Google Scholar]
- Gao, W.; Wang, X. Conceptual design and multifield coupling behavior of magnetically propelled fish-like swimmers. Smart Mater. Struct. 2020, 29, 114007. [Google Scholar] [CrossRef]
- Ilami, M.; Bagheri, H.; Ahmed, R.; Skowronek, E.O.; Marvi, H. Materials, actuators, and sensors for soft bioinspired robots. Adv. Mater. 2021, 33, 2003139. [Google Scholar] [CrossRef] [PubMed]
- Thevenot, J.; Oliveira, H.; Sandre, O.; Lecommandoux, S. Magnetic responsive polymer composite materials. Chem. Soc. Rev. 2013, 42, 7099. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Hu, W.; Ze, Q.; Sitti, M.; Zhao, R. Multifunctional magnetic soft composites: A review. Multifunct. Mater. 2020, 3, 4. [Google Scholar] [CrossRef]
- Purkait, M.K.; Sinha, M.K.; Mondal, P.; Singh, R. Stimuli Responsive Polymeric Membranes—Smart Polymeric Membranes; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Song, H.; Spencer, J.; Jander, A.; Nielsen, J.; Stasiak, J.; Kasperchik, V.; Dhagat, P. Inkjet printing of magnetic materials with aligned anisotropy. J. Appl. Phys. 2014, 115, 17. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, J.; Salehizadeh, M.; Onaizah, O.; Diller, E.D. Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions. Sci. Robot. 2019, 4, 12. [Google Scholar]
- Galera, A.C.; San Miguel, V.; Baselga, J. Magneto-Mechanical Surfaces Design. Chem. Rec. 2018, 18, 1010. [Google Scholar] [CrossRef]
- Cho, K.-J.; Koh, J.-S.; Kim, S.; Chu, W.-S.; Hong, Y.; Ahn, S.-H. Review of manufacturing processes for soft biomimetic robots. Int. J. Precis. Eng. Manuf. 2009, 10, 171. [Google Scholar] [CrossRef]
- Wu, S.; Hamel, C.M.; Ze, Q.; Yang, F.; Qi, H.J.; Zhao, R. Evolutionary Algorithm-Guided Voxel-Encoding Printing of Functional Hard-Magnetic Soft Active Materials. Adv. Intell. Syst. 2020, 2, 8. [Google Scholar] [CrossRef]
- Golod, S.V.; Gayduk, A.E.; Kurus, N.N.; Kubarev, V.V.; Prinz, V.Y. 3D micro/nanoshaping of metal strip arrays by direct imprinting for chiral metasurfaces. Nanotechnology 2020, 31, 435302. [Google Scholar] [CrossRef] [PubMed]
- Cheang, U.K.; Kim, M.J. Self-assembly of robotic micro- and nanoswimmers using magnetic nanoparticles. J. Nanopart. Res. 2015, 17, 3. [Google Scholar] [CrossRef]
- Zhang, L.; Abbott, J.J.; Dong, L.; Peyer, K.E.; Kratochvil, B.E. Characterizing the Swimming Properties of Artificial Bacterial Flagella. Nano Lett. 2009, 9, 3663. [Google Scholar] [CrossRef]
- Prinz, V.Y.; Seleznev, V.; Samoylov, V.; Gutakovsky, A. Nanoscale engineering using controllable formation of ultra-thin cracks in heterostructures. Microelectron. Eng. 1996, 30, 439. [Google Scholar]
- Prinz, V.Y.; Seleznev, V.A.; Gutakovsky, A.K.; Chehovskiy, A.V.; Preobrazhenskii, V.V.; Putyato, M.A.; Gavrilova, T.A. Free-standing and overgrown InGaAs = GaAs nanotubes. Phys. E Low Dimens. Syst. Nanostruct. 2000, 6, 828. [Google Scholar] [CrossRef]
- Walker, D.; Käsdorf, B.H.; Jeong, H.H.; Lieleg, O.O.; Fischer, P. Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci. Adv. 2015, 1, e1500501. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Troll, J.; Jeong, H.-H.; Wei, Q.; Stang, M.; Ziemssen, F.; Wang, Z.; Dong, M.; Schnichels, S.; Qiu, T. A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci. Adv. 2018, 4, eaat4388. [Google Scholar]
- Alcântara CC, J.; Kim, S.; Lee, S.; Jang, B.; Thakolkaran, P.; Kim, J.Y.; Choi, H.; Nelson, B.J.; Pané, S. 3D Fabrication of Fully Iron Magnetic Microrobots. Small 2019, 15, 16. [Google Scholar] [CrossRef] [Green Version]
- De Teresa, J.M.; Fernández-Pacheco, A.; Córdoba, R.; Serrano-Ramón, L.; Sangiao, S.; Ibarra, M.R. Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID). J.Phys. D 2016, 49, 24. [Google Scholar] [CrossRef]
- Zamay, T.N.; Zamay, G.S.; Belyanina, I.V.; Zamay, S.S.; Denisenko, V.V.; Kolovskaya, O.S.; Ivanchenko, T.I.; Grigorieva, V.L.; Garanzha, I.V.; Veprintsev, D.V. Noninvasive microsurgery using aptamer-functionalized magnetic microdisks for tumor cell eradication. Nucleic Acid Ther. 2017, 27, 105. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.; Zamay, S.; Zamay, T.; Prokopenko, V.; Kolovskaya, O.; Zamay, G.; Princ, V.Y.; Seleznev, V.; Komonov, A.; Spivak, E. The Antitumor Effect of Magnetic Nanodisks and DNA Aptamer Conjugates. Dok. Biochem. Biophys. 2016, 466, 66. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Gao, W.; Wang, X. A novel magneto-mechanical metamaterial cell structure with large, reversible and rapid two-way shape alteration. Smart Mater. Struc. 2021, 30, 035018. [Google Scholar] [CrossRef]
- Park, J.; Jin, C.; Lee, S.; Kim, J.Y.; Choi, H. Magnetically actuated degradable microrobots for actively controlled drug release and hyperthermia therapy. Adv. Healthc. Mater. 2019, 8, 1900213. [Google Scholar] [CrossRef] [PubMed]
- Khalil, I.S.M.; Dijkslag, H.C.; Abelmann, L.; Misra, S. MagnetoSperm: A microrobot that navigates using weak magnetic fields. Appl. Phys. Lett. 2014, 104, 22. [Google Scholar]
- Jiang, W.; Ye, G.; Chen, B.; Liu, H. A dual-driven biomimetic microrobot based on optical and magnetic propulsion. J. Micromech. Microeng. 2021, 31, 035003. [Google Scholar] [CrossRef]
- Jang, B.; Gutman, E.; Stucki, N.; Seitz, B.F.; Wendel-Garcia, P.D.; Newton, T.; Pokki, J.; Ergeneman, O.; Pane, S.; Or, Y.; et al. Undulatory Locomotion of Magnetic Multilink Nanoswimmers. Nano Lett. 2015, 15, 4829. [Google Scholar]
- Liao, P.; Xing, L.; Zhang, S.; Sun, D. Magnetically driven undulatory microswimmers integrating multiple rigid segments. Small 2019, 15, 1901197. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, D.; Cong, J.; Piao, H.G.; Huang, X.; Xu, Y.; Lu, G.; Pan, L.; Liu, M. Magnetically Powered Annelid-Worm-Like Microswimmers. Small 2018, 14, 1704546. [Google Scholar]
- Li, J.; Sattayasamitsathit, S.; Dong, R.; Gao, W.; Tam, R.; Feng, X.; Ai, S.; Wang, J. Template electrosynthesis of tailored-made helical nanoswimmers. Nanoscale 2014, 6, 9415–9420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceylan, H.; Yasa, I.C.; Yasa, O.; Tabak, A.F.; Giltinan, J.; Sitti, M. 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano 2019, 13, 3353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Abott, J.J.; Dong, A.L.; Kratochvil, B.E.; Bell, D.; Nelson, B.J. Artificial bacterial flagella: Fabrication and magnetic control. Appl. Phys. Lett. 2009, 94, 064107. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Lee, S.; Lee, J.; Nelson, B.J.; Zhang, L.; Choi, H. Fabrication and Manipulation of Ciliary Microrobots with Non-reciprocal Magnetic Actuation. Sci. Rep. 2016, 6, 30713. [Google Scholar] [CrossRef] [Green Version]
- Cheang, U.K.; Meshkati, F.; Kim, H.; Lee, K.; Fu, H.C.; Kim, M.J. Versatile microrobotics using simple modular subunits. Sci. Rep. 2016, 6, 30472. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Fan, X.; Sun, M.; Xie, H. The cube-shaped hematite microrobot for biomedical application. Mechatronics 2021, 74, 102498. [Google Scholar]
- Yu, S.; Ma, N.; Yu, H.; Sun, H.; Chang, X.; Wu, Z.; Deng, J.; Zhao, S.; Wang, W.; Zhang, G.; et al. Self-Propelled Janus Microdimer Swimmers under a Rotating Magnetic Field. Nanomaterials 2019, 9, 12. [Google Scholar]
- Soto, F.; Chrostowski, R. Frontiers of Medical Micro/Nanorobotics: In vivo Applications and Commercialization Perspectives Toward Clinical Uses. Front. Bioeng. Biotechnol. 2018, 6, 170. [Google Scholar] [CrossRef]
- Erkoc, P.; Yasa, I.C.; Ceylan, H.; Yasa, O.; Alapan, Y.; Sitti, M. Mobile Microrobots for Active Therapeutic Delivery. Adv. Ther. 2019, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Suhail, M.; Khan, A.; Abdur Rahim, M.; Naeem, A.; Fahad, M.; Badshah, S.F.; Jabar, A.; Janakiraman, A.K. Micro and nanorobot-based drug delivery: An overview. J. Drug Target. 2021, 30, 349–358. [Google Scholar] [CrossRef]
- Peyer, K.E.; Zhang, L.; Nelson, B.J. Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 2013, 5, 1259. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Nelson, B.J. Magnetic Helical Micro- and Nanorobots: Toward Their Biomedical Applications. Engineering 2015, 1, 021. [Google Scholar] [CrossRef]
- Prinz, A.; Prinz, V.Y.; Seleznev, V. Semiconductor micro-and nanoneedles for microinjections and ink-jet printing. Microelectron. Eng. 2003, 67, 782. [Google Scholar] [CrossRef]
- Chen, X.-Z.; Hoop, M.; Mushtaq, F.; Siringil, E.; Hu, C.; Nelson, B.J.; Pané, S. Recent developments in magnetically driven micro- and nanorobots. Appl. Mater. Today 2017, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Belharet, K.; Folio, D.; Ferreira, A. Simulation and planning of a magnetically actuated microrobot navigating in the arteries. IEEE Trans. Biomed. Eng. 2012, 60, 994. [Google Scholar]
- Zhou, H.; Mayorga-Martinez, C.C.; Pané, S.; Zhang, L.; Pumera, M. Magnetically driven micro and nanorobots. Chem. Rev. 2021, 121, 4999. [Google Scholar] [CrossRef]
- Kim, Y.; Zhao, X. Magnetic Soft Materials and Robots. Chem. Rev. 2022, 122, 5317–5364. [Google Scholar] [CrossRef]
- Honda, T.; Arai, K.I.; Ishiyama, K. Micro Swimming Mechanisms Propelled by External Magnetic Fields. IEEE Trans. Magn. 1996, 32, 5085. [Google Scholar]
- Qiu, T.; Lee, T.C.; Mark, A.G.; Morozov, K.I.; Munster, R.; Mierka, O.; Turek, S.; Leshansky, A.M.; Fischer, P. Swimming by reciprocal motion at low Reynolds number. Nat. Commun. 2014, 5, 5119. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Li, Z.; Ding, Y.; Zhong, Y.; Du, R. An experimental study on the fish body flapping patterns by using a biomimetic robot fish. IEEE Robot. Autom. Lett. 2019, 5, 64. [Google Scholar]
- Williams, B.J.; Anand, S.V.; Rajagopalan, J.; Saif, M.T. A self-propelled biohybrid swimmer at low Reynolds number. Nat. Commun. 2014, 5, 3081. [Google Scholar] [CrossRef] [Green Version]
- Mirkovic, T.; Foo, M.L.; Arsenault, A.C.; Fournier-Bidoz, S.; Zacharia, N.S.; Ozin, G.A. Hinged nanorods made using a chemical approach to flexible nanostructures. Nat. Nanotechnol. 2007, 2, 565. [Google Scholar] [CrossRef] [PubMed]
- Gadêlha, H. On the optimal shape of magnetic swimmers. Regul. Chaotic Dyn. 2013, 18, 75. [Google Scholar] [CrossRef] [Green Version]
- Mandal, P.; Ghosh, A. Observation of enhanced diffusivity in magnetically powered reciprocal swimmers. Phys. Rev. Lett. 2013, 111, 248101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, J.; Cheang, U.K.; Martindale, J.D.; Jabbarzadeh, M.; Fu, H.C.; Jun Kim, M. Bacteria-inspired nanorobots with flagellar polymorphic transformations and bundling. Sci. Rep. 2017, 7, 14098. [Google Scholar] [CrossRef]
- Zhang, J.; Diller, E. Millimeter-Scale Magnetic Swimmers Using Elastomeric Undulations. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–3 October 2015. [Google Scholar]
- Manamanchaiyaporn, L.; Xu, T.; Wu, X. Magnetic Soft Robot With the Triangular Head–Tail Morphology Inspired By Lateral Undulation. IEEE/ASME Trans. Mechatron. 2020, 25, 2688. [Google Scholar] [CrossRef]
- Qi, S.; Guo, H.; Fu, J.; Xie, Y.; Zhu, M.; Yu, M. 3D printed shape-programmable magneto-active soft matter for biomimetic applications. Compos. Sci. Technol. 2020, 188, 107973. [Google Scholar] [CrossRef]
- Zhang, J.; Diller, E. Untethered miniature soft robots: Modeling and design of a millimeter-scale swimming magnetic sheet. Soft Robot. 2018, 5, 761. [Google Scholar] [CrossRef]
- Lum, G.Z.; Ye, Z.; Dong, X.; Marvi, H.; Erin, O.; Hu, W.; Sitti, M. Shape-programmable magnetic soft matter. Proc. Natl. Acad. Sci. USA 2016, 113, E6007. [Google Scholar] [CrossRef] [Green Version]
- Niu, H.; Feng, R.; Xie, Y.; Jiang, B.; Sheng, Y.; Yu, Y.; Baoyin, H.; Zeng, X. MagWorm: A Biomimetic Magnet Embedded Worm-Like Soft Robot. Soft Robot. 2021, 8, 507. [Google Scholar] [CrossRef]
- Shinoda, H.; Azukizawa, S.; Maeda, K.; Tsumori, F. Bio-Mimic Motion of 3D-Printed Gel Structures Dispersed with Magnetic Particles. J. Electrochem. Soc. 2019, 166, B3235. [Google Scholar] [CrossRef]
- Zhan, X.; Fang, H.; Xu, J.; Wang, K.-W. Planar locomotion of earthworm-like metameric robots. Int. J. Robot. Res. 2019, 38, 1751. [Google Scholar] [CrossRef]
- Joyee, E.B.; Pan, Y. A fully three-dimensional printed inchworm-inspired soft robot with magnetic actuation. Soft Robot. 2019, 6, 333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schüler, D. Magnetoreception and Magnetosomes in Bacteria; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; p. 327. [Google Scholar]
- Shaw, J.; Boyd, A.; House, M.; Woodward, R.; Mathes, F.; Cowin, G.; Saunders, M.; Baer, B. Magnetic particle-mediated magnetoreception. J. R. Soc. Interface 2015, 12, 0499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klem, M.T.; Young, M.; Douglas, T. Biomimetic magnetic nanoparticles. Mater. Today 2005, 8, 28. [Google Scholar] [CrossRef]
- Ahmed, D.; Sukhov, A.; Hauri, D.; Rodrigue, D.; Maranta, G.; Harting, J.; Nelson, B.J. Bioinspired acousto-magnetic microswarm robots with upstream motility. Nat. Mach. Intell. 2021, 3, 116. [Google Scholar] [PubMed]
- Cabanach, P.; Pena-Francesch, A.; Sheehan, D.; Bozuyuk, U.; Yasa, O.; Borros, S.; Sitti, M. Zwitterionic 3D-Printed Non-Immunogenic Stealth Microrobots. Adv. Mater. 2020, 32, e2003013. [Google Scholar] [CrossRef]
- Seleznev, V.; Yamaguchi, H.; Hirayama, Y.; Prinz, V. Single-turn GaAs/InAs nanotubes fabricated using the supercritical CO2 drying technique. Jpn. J.Appl. Phys. 2003, 42, L791. [Google Scholar] [CrossRef]
- Zhang, L.; Ruh, E.; Grutzmacher, D. Anomalous Coiling of SiGe/Si and SiGe/Si/Cr Helical Nanobelts. Nano Lett. 2006, 6, 1311. [Google Scholar] [CrossRef]
- Ghosh, A.; Fische, P. Controlled Propulsion of Artificial Magnetic Nanostructured Propellers. Nano Lett. 2009, 9, 2243. [Google Scholar] [CrossRef]
- Streubel, R.; Fischer, P.; Kronast, F.; Kravchuk, V.P.; Sheka, D.D.; Gaididei, Y.; Schmidt, O.G.; Makarov, D. Magnetism in curved geometries. J. Phys. D Appl. Phys. 2016, 49, 36. [Google Scholar] [CrossRef]
- Vorob’ev, A.; Chesnitskiy, A.; Toropov, A.; Prinz, V. Three-axis Hall transducer based on semiconductor microtubes. Appl. Phys. Lett. 2013, 103, 173513. [Google Scholar] [CrossRef] [Green Version]
- Chesnitskiy, A.; Mikhantiev, E. The detection limit of curved InGaAs/AlGaAs/GaAs hall bars. Russ. Microelectron. 2016, 45, 105. [Google Scholar] [CrossRef]
- Mönch, I.; Makarov, D.; Koseva, R.; Baraban, L.; Karnaushenko, D.; Kaiser, C.; Arndt, K.-F.; Schmidt, O.G. Rolled-up magnetic sensor: Nanomembrane architecture for in-flow detection of magnetic objects. ACS Nano 2011, 5, 7436. [Google Scholar] [CrossRef]
- Smith, E.J.; Makarov, D.; Sanchez, S.; Fomin, V.M.; Schmidt, O.G. Magnetic microhelix coil structures. Phys. Rev. Lett. 2011, 107, 097204. [Google Scholar] [CrossRef] [PubMed]
- Tottori, S.; Nelson, B.J. Artificial helical microswimmers with mastigoneme-inspired appendages. Biomicrofluidics 2013, 7, 61101. [Google Scholar] [CrossRef] [Green Version]
- Tiantian, X.; Gilgueng, H.; Andreff, N.; Regnier, S. The rotational propulsion characteristics of scaled-up helical microswimmers with different heads and magnetic positioning. In Proceedings of the 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Wollongong, NSW, Australia, 9–12 July 2013; Volume 1, p. 1114. [Google Scholar]
- Hwang, G.; Haliyo, S.; Régnier, S. Remotely powered propulsion of helical nanobelts. Robot. Sci. Syst. 2010. [CrossRef]
- Tottori, S.; Zhang, L.; Qiu, F.; Krawczyk, K.K.; Franco-Obregon, A.; Nelson, B.J. Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport. Adv. Mater. 2012, 24, 811. [Google Scholar] [CrossRef]
- Lester, B.T.; Baxevanis, T.; Chemisky, Y.; Lagoudas, D.C. Review and perspectives: Shape memory alloy composite systems. Acta Mech. 2015, 226, 3907. [Google Scholar] [CrossRef] [Green Version]
- Santosh, S.; Thomas, J.; Pavithran, M.; Nithyanandh, G.; Ashwath, J. An experimental analysis on the influence of CO2 laser machining parameters on a copper-based shape memory alloy. Opt. Laser Technol. 2022, 153, 108210. [Google Scholar] [CrossRef]
- Santosh, S.; Nithyanandh, G.; Ashwath, J.; Lalith Kishore, K. Comparison of internal friction measurements on Ni-Ti reinforced smart composites prepared by additive manufacturing. J. Alloys Compd. 2022, 924, 166027. [Google Scholar]
- Jinsong, L.; Xin, L.; Yanju, L.; Shanyi, D. Shape-memory polymers and their composites: Stimulus methods and applications. Prog. Mater. Sci. 2011, 56, 1077. [Google Scholar]
- Zhao, F.; Rong, W.; Wang, L.; Sun, L. Magnetic Actuated Shape-memory Helical Microswimmers with Programmable Recovery Behaviors. J. Bionic Eng. 2021, 18, 799. [Google Scholar]
- Migliavacca, F.; Petrini, L.; Massarotti, P.; Schievano, S.; Auricchio, F.; Dubini, G. Stainless and shape memory alloy coronary stents: A computational study on the interaction with the vascular wall. Biomech. Model Mechanobiol. 2004, 2, 205. [Google Scholar] [CrossRef]
- Nan, A.; Turcu, R.; Tudoran, C.; Sofronie, M.; Chiriac, A. Analysis of Functionalized Ferromagnetic Memory Alloys from the Perspective of Developing a Medical Vascular Implant. Polymers 2022, 14, 1397. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, S.; Xi, W.; Solovev, A.A.; Soler, L.; Magdanz, V.; Schmidt, O.G. Tubular Micro-Nanorobots: Smart Design for Bio-Related Applications Workshop at the IEEE International Conference on Robotics and Automation; Springer: Berlin/Heidelberg, Germany, 2014; pp. 16–27. [Google Scholar]
- Sanchez, M.; Schwarz, M.; Meyer, L.; Hebenstreit, A.K.; Schmidt, O.G. Cellular Cargo Delivery: Toward Assisted Fertilization by Sperm-Carrying Micromotors. Nano Lett. 2016, 16, 555. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.; Magdanz, V.; Guix, M.; Fomin, V.; Schmidt, O. Swimming Microrobots: Soft, Reconfigurable, and Smart. Adv. Funct. Mater. 2018, 28, 25. [Google Scholar]
- Xiaohui, Y.; Qi, Z.; Vi, M.; Yan, D.; Yu, J.; Xu, J.; Xu, T.; Tang, T.; Bian, L. Multifunctional biohybrid magnetite microrobots for imagingguided therapy. Sci. Robot. 2017, 2, 1. [Google Scholar]
- Goyal, G.; Bhakta, S.; Mishra, P. Surface Molecularly Imprinted Biomimetic Magnetic Nanoparticles for Enantioseparation. ACS Appl. Nano Mater. 2019, 2, 6747. [Google Scholar]
- Blaney, L. Magnetite (Fe3O4)—Properties Synthesis and Applications. Lehigh Rev. 2007, 15, 5. [Google Scholar]
- Pala, R.; Mohieldin, A.M.; Sherpa, R.T.; Kathem, S.H.; Shamloo, K.; Luan, Z.; Zhou, J.; Zheng, J.G.; Ahsan, A.; Nauli, S.M. Ciliotherapy: Remote Control of Primary Cilia Movement and Function by Magnetic Nanoparticles. ACS Nano 2019, 13, 3555. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Angsantikul, P.; Liu, W.; de Ávila, B.E.-F.; Chang, X.; Sandraz, E.; Liang, Y.; Zhu, S.; Zhang, Y.; Chen, C. Biomimetic Platelet-Camouflaged Nanorobots for Binding and Isolation of Biological Threats. Adv. Mater. 2018, 30, 1704800. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Sebastian, A.; Gwak, S.J.; Kim, S.H. Multimodal Locomotion and Active Targeted Thermal Control of Magnetic Agents for Biomedical Applications. Adv. Sci. 2022, 9, 2103863. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, M.; Yang, Y.; Huang, Q.; Fukuda, T.; Wang, Z.; Shen, Y. A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nat. Commun. 2018, 9, 3944. [Google Scholar] [CrossRef] [Green Version]
- Venkiteswaran, V.K.; Tan, D.K.; Misra, S. Tandem actuation of legged locomotion and grasping manipulation in soft robots using magnetic fields. Adv. Mater. 2020, 41, 101023. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, J.; Fu, X.; Zhang, D.; Zhao, Y. Tailoring Flexible Arrays for Artificial Cilia Actuators. Adv. Intell. Syst. 2021, 3, 2000225. [Google Scholar] [CrossRef]
- Sahadevan, V.; Panigrahi, B.; Chen, C.Y. Microfluidic Applications of Artificial Cilia: Recent Progress, Demonstration, and Future Perspectives. Micromachines 2022, 13, 735. [Google Scholar] [CrossRef]
- Jia, X.; Wang, W.; Han, Q.; Wang, Z.; Jia, Y.; Hu, Z. Micromixer Based Preparation of Functionalized Liposomes and Targeting Drug Delivery. ACS Med. Chem. Lett. 2016, 7, 429. [Google Scholar] [CrossRef] [Green Version]
- Ben, S.; Tai, J.; Ma, H.; Peng, Y.; Zhang, Y.; Tian, D.; Liu, K.; Jiang, L. Cilia-Inspired Flexible Arrays for Intelligent Transport of Viscoelastic Microspheres. Adv. Funct. Mater. 2018, 28, 16. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, L.; Ye, G.; Chen, B.; Yin, L.; Shi, Y.; Liu, H. Biomimetic magnetic-responsive cilia-like soft device: Surface energy control and external field actuation. J. Mater. Sci. Mater. Electron. 2019, 30, 3767. [Google Scholar] [CrossRef]
- Timonen, J.V.; Johans, C.; Kontturi, K.; Walther, A.; Ikkala, O.; Ras, R.H. A facile template-free approach to magnetodriven, multifunctional artificial cilia. ACS Appl. Mater. Interfaces 2010, 2, 2226. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, Y.; Wyss, H.; Anderson, P.; den Toonder, J. Out of the cleanroom, self-assembled magnetic artificial cilia. Lab Chip 2013, 13, 3360. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Ni, Y.; Zhou, Q.; Lu, C.; Kou, J.; Xu, Z. Design of inner-motile ZnO@TiO2 mushroom arrays on magnetic cilia film with enhanced photocatalytic performance. J. Photochem. Photobiol. A 2017, 332, 150. [Google Scholar] [CrossRef]
- Luo, Z.; Evans, B.A.; Chang, C.H. Magnetically Actuated Dynamic Iridescence Inspired by the Neon Tetra. ACS Nano 2019, 13, 4657. [Google Scholar] [CrossRef]
- Chesnitskiy, A.V.; Gayduk, A.E.; Prinz, V.Y. Transverse magneto-optical Kerr effect in strongly coupled plasmon gratings. Plasmonics 2018, 13, 885. [Google Scholar] [CrossRef]
- Gayduk, A.E.; Prinz, V.Y.; Seleznev, V.A.; Rechkunov, S.N. Large-area multilayer infrared nano-wire grid polarizers. Infrared Phys. Technol. 2016, 75, 77. [Google Scholar] [CrossRef]
- Golod, S.V.; Seyfi, V.A.; Buldygin, A.F.; Gayduk, A.E.; Prinz, V.Y. Large-Area 3D-Printed Chiral Metasurface Composed of Metal Helices. Adv. Opt. Mater. 2018, 6, 1800424. [Google Scholar] [CrossRef]
- Semchenko, I.V.; Khakhomov, S.A.; Asadchy, V.; Golod, S.; Naumova, E.; Prinz, V.Y.; Goncharenko, A.; Sinitsyn, G.; Lyakhnovich, A.; Malevich, V. Investigation of electromagnetic properties of a high absorptive, weakly reflective metamaterial—Substrate system with compensated chirality. J. Appl. Phys. 2017, 121, 015108. [Google Scholar] [CrossRef] [Green Version]
- Vukusic, P.; Sambles, J.R. Photonic structures in biology. Nature 2003, 424, 852. [Google Scholar] [CrossRef]
- Didari, A.; Mengüç, M.P. A biomimicry design for nanoscale radiative cooling applications inspired by Morpho didius butterfly. Sci. Rep. 2018, 8, 16891. [Google Scholar] [CrossRef]
- Zyla, G.; Kovalev, A.; Heisterkamp, S.; Esen, C.; Gurevich, E.L.; Gorb, S.; Ostendorf, A. Biomimetic structural coloration with tunable degree of angle-independence generated by two-photon polymerization. Opt. Mater. Express 2019, 9, 2630. [Google Scholar] [CrossRef]
- Barrera-Patiño, C.; Vollet-Filho, J.; Teixeira-Rosa, R.; Quiroz, H.; Dussan, A.; Inada, N.; Bagnato, V.; Rey-González, R. Photonic effects in natural nanostructures on Morpho cypris and Greta oto butterfly wings. Sci. Rep. 2020, 10, 5786. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Santos, T.A.P. Sensors and biosensors based on magnetic nanoparticles. Trends Anal. Chem. 2014, 62, 28. [Google Scholar]
- Schroeder, P.; Schotter, J.; Shoshi, A.; Eggeling, M.; Bethge, O.; Hutten, A.; Bruckl, H. Artificial cilia of magnetically tagged polymer nanowires for biomimetic mechanosensing. Bioinspir. Biomim. 2011, 6, 046007. [Google Scholar] [CrossRef]
- Alfadhel, A.; Kosel, J. Magnetic Nanocomposite Cilia Tactile Sensor. Adv. Mater. 2015, 27, 7888. [Google Scholar]
- Alfadhel, A.; Khan, M.A.; Cardoso, S.; Leitao, D.; Kosel, J. A Magnetoresistive Tactile Sensor for Harsh Environment Applications. Sensors 2016, 16, 5. [Google Scholar]
- Liu, D.; Liu, X.; Chen, Z.; Zuo, Z.; Tang, X.; Huang, Q.; Arai, T. Magnetically Driven Soft Continuum Microrobot for Intravascular Operations in Microscale. Cyborg Bionic Syst. 2022. [CrossRef]
- Subendran, S.; Wang, C.F.; Loganathan, D.; Lu, Y.H.; Chen, C.Y. An aquatic microrobot for microscale flow manipulation. Sci. Rep. 2022, 12, 1. [Google Scholar]
- Gong, D.; Celi, N.; Zhang, D.; Cai, J. Magnetic Biohybrid Microrobot Multimers Based on Chlorella Cells for Enhanced Targeted Drug Delivery. ACS Appl. Mater. Interfaces 2022, 14, 6320. [Google Scholar]
- Wu, Z.; Zhang, Y.; Ai, N.; Chen, H.; Ge, W.; Xu, Q. Magnetic Mobile Microrobots for Upstream and Downstream Navigation in Biofluids with Variable Flow Rate. Adv. Intell. Syst. 2022, 2100266. [Google Scholar] [CrossRef]
- Liu, J.; Yu, S.; Xu, B.; Tian, Z.; Zhang, H.; Liu, K.; Shi, X.; Zhao, Z.; Liu, C.; Lin, X.; et al. Magnetically propelled soft microrobot navigating through constricted microchannels. Appl. Mater. Today 2021, 25, 101237. [Google Scholar] [CrossRef]
- Li, S.; Liu, D.; Hu, Y.; Su, Z.; Zhang, X.; Guo, R.; Li, D.; Lu, Y. Soft Magnetic Microrobot Doped with Porous Silica for Stability-Enhanced Multimodal Locomotion in a Nonideal Environment. ACS Appl. Mater. Interfaces 2022, 14, 10856. [Google Scholar] [CrossRef] [PubMed]
- Wavhale, R.D.; Dhobale, K.D.; Rahane, C.S.; Chate, G.P.; Tawade, B.V.; Patil, Y.N.; Gawade, S.S.; Banerjee, S.S. Water-powered self-propelled magnetic nanobot for rapid and highly efficient capture of circulating tumor cells. Commun. Chem. 2021, 4, 1. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Han, Y.; Gong, X. Micro/Nanorobots for Medical Diagnosis and Disease Treatment. Micromachines 2022, 13, 648. [Google Scholar] [CrossRef]
- Lee, H.; Lee, D.; Jeon, S. A Two-Dimensional Manipulation Method for a Magnetic Microrobot with a Large Region of Interest Using a Triad of Electromagnetic Coils. Micromachines 2022, 13, 416. [Google Scholar] [CrossRef] [PubMed]
- Rechkunov, S.; Prinz, A.; Seleznev, V.; Golod, S.; Soots, R.; Ivanov, A.; Ratushnyak, A.; Prinz, V.Y. Neurointerfaces: Review and development. Russ. J. Genet. Appl. Res. 2015, 5, 552. [Google Scholar] [CrossRef]
- Prinz, V.Y.; Mutilin, S.V.; Yakovkina, L.V.; Gutakovskii, A.K.; Komonov, A.I. A new approach to the fabrication of VO2 nanoswitches with ultra-low energy consumption. Nanoscale 2020, 12, 3443. [Google Scholar] [CrossRef]
- Mirzaali, M.J.; Moosabeiki, V.; Rajaa, S.M.; Zhou, J.; Zadpoor, A.A. Additive Manufacturing of Biomaterials—Design Principles and Their Implementation. Materials 2022, 15, 5457. [Google Scholar] [CrossRef]
- Kim, J.W.; Lee, J.B.; Koh, Y.H.; Kim, H.E. Digital light processing of freeze-cast ceramic layers for macroporous calcium phosphate scaffolds with tailored microporous frameworks. Materials 2019, 12, 2893. [Google Scholar] [CrossRef]
Type | Body Length, μm | Maximum Speed, μm/s | Non-Dimensional Speed, Body Lengths per Second | Reference |
---|---|---|---|---|
Biological Micromotors | ||||
Bovine sperm | 30 ÷ 80 | 10 ÷ 70 | ~1 | - |
Flagellate bacteria | 3 ÷ 15 | 20 ÷ 200 | ~20 | - |
Infusoria slipper | 100 ÷ 300 | 2000 | 7 ÷ 20 | - |
Magnetic Microrobots and Micromotors | ||||
Single-link flexible swimmer | 322 | 158 | 0.5 | Khalil et al. (2014) [74] |
Fish-like microrobot | 90 | 220 | 2.4 | Jiang et al.(2021) [75] |
Multilink flexible swimmer | 15.5 | 14 | 0.9 | Jang et al. (2015) [76] |
Multilink-eel-like swimmer | 120 | 25 | 0.2 | Liao et al. (2019) [77] |
Annelid-worm-like microswimmer | 20 | 100 | 5 | Liu et al. (2018) [78] |
Helical nanoswimmer | 3 | 15 | 5 | Li et al. (2014) [79] |
Biodegradable microswimmer | 20 | 3.5 | 0.2 | Ceylan et al. (2019) [80] |
Degradable hyperthermia microrobot | 120 | 114 | 1 | Palagi et al. (2019) [73] |
Rigid helical swimmer | 38 | 1.8 | 0.05 | Zhang et al. (2009) [81] |
Ciliated microrobot | 220 | 340 | 1.6 | Kim et al. (2016) [82] |
Magnetic microparticle chains | 57 | 18 | 0.3 | Cheang et al. (2016) [83] |
Magnetic nanoparticle chains | 2.8 | 9.8 | 3.5 | Cheang et al. (2015) [62] |
Cube-shaped microrobot | 2 | 20.8 | 10.4 | Chen et al. (2021) [84] |
Janus microdimers | 10 | 133 | 13.3 | Yu et al. (2019) [85] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chesnitskiy, A.V.; Gayduk, A.E.; Seleznev, V.A.; Prinz, V.Y. Bio-Inspired Micro- and Nanorobotics Driven by Magnetic Field. Materials 2022, 15, 7781. https://doi.org/10.3390/ma15217781
Chesnitskiy AV, Gayduk AE, Seleznev VA, Prinz VY. Bio-Inspired Micro- and Nanorobotics Driven by Magnetic Field. Materials. 2022; 15(21):7781. https://doi.org/10.3390/ma15217781
Chicago/Turabian StyleChesnitskiy, Anton V., Alexey E. Gayduk, Vladimir A. Seleznev, and Victor Ya Prinz. 2022. "Bio-Inspired Micro- and Nanorobotics Driven by Magnetic Field" Materials 15, no. 21: 7781. https://doi.org/10.3390/ma15217781
APA StyleChesnitskiy, A. V., Gayduk, A. E., Seleznev, V. A., & Prinz, V. Y. (2022). Bio-Inspired Micro- and Nanorobotics Driven by Magnetic Field. Materials, 15(21), 7781. https://doi.org/10.3390/ma15217781