Biomechanical Modelling for Tooth Survival Studies: Mechanical Properties, Loads and Boundary Conditions—A Narrative Review
Abstract
:1. Introduction
2. Mechanical Properties of Structural Tissues
3. Enamel
4. Dentin
5. Periodontal Ligament
6. Bone (Mandible and Maxilla)
7. Functional and Parafunctional Loads
8. Biting
9. Clenching
10. Grinding
11. Boundary Conditions for Lifespan Analysis
12. Tooth Dependent Factors
13. Patient Dependent Factors
14. Environment Dependent Factors
15. Conclusions
16. Future Perspectives and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahmoradi, M.; Bertassoni, L.E.; Elfallah, H.M.; Swain, M. Fundamental Structure and Properties of Enamel, Dentin and Cementum. In Advances in Calcium Phosphate Biomaterials; Springer Series in Biomaterials Science and Engineering; Ben-Nissan, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 511–547. ISBN 978-3-642-53980-0. [Google Scholar]
- Park, S.; Wang, D.H.; Zhang, D.; Romberg, E.; Arola, D. Mechanical Properties of Human Enamel as a Function of Age and Location in the Tooth. J. Mater. Sci. Mater. Med. 2008, 19, 2317–2324. [Google Scholar] [CrossRef]
- Habelitz, S.; Marshall, S.J.; Marshall, G.W.; Balooch, M. Mechanical Properties of Human Dental Enamel on the Nanometre Scale. Arch. Oral Biol. 2001, 46, 173–183. [Google Scholar] [CrossRef]
- Craig, R.G.; Peyton, F.A. Elastic and Mechanical Properties of Human Dentin. J. Dent. Res. 1958, 37, 710–718. [Google Scholar] [CrossRef]
- Dejsuvan, S.; Sirimaharaj, V.; Wanachantararak, S. Nanohardness and Elastic Modulus Properties of Enamel and Dentin of Primary Molars In Vitro, in People with Various Caries Experiences, Using a Nano-Indentation Technique. Chiang Mai Dent. J. 2021, 42, 8. [Google Scholar]
- Nalla, R.K.; Imbeni, V.; Kinney, J.H.; Staninec, M.; Marshall, S.J.; Ritchie, R.O. In Vitro Fatigue Behavior of Human Dentin with Implications for Life Prediction. J. Biomed. Mater. Res. A 2003, 66, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Fu, Y.; Shi, H.; Yan, B.; Lu, R.; Ma, S.; Markert, B. Tensile Testing of the Mechanical Behavior of the Human Periodontal Ligament. Biomed. Eng. OnLine 2018, 17, 172. [Google Scholar] [CrossRef] [Green Version]
- Mandel, U.; Dalgaard, P.; Viidik, A. A Biomechanical Study of the Human Periodontal Ligament. J. Biomech. 1986, 19, 637–645. [Google Scholar] [CrossRef]
- Pashley, D.H. Dentin: A Dynamic Substrate—A Review. Scanning Microsc. 1989, 3, 161–174, discussion 174–176. [Google Scholar]
- Kinney, J.H.; Marshall, S.J.; Marshall, G.W. The Mechanical Properties of Human Dentin: A Critical Review and Re-Evaluation of the Dental Literature. Crit. Rev. Oral Biol. Med. 2003, 14, 13–29. [Google Scholar] [CrossRef]
- Arola, D.D.; Gao, S.; Zhang, H.; Masri, R. The Tooth: Its Structure and Properties. Dent. Clin. N. Am. 2017, 61, 651–668. [Google Scholar] [CrossRef]
- Yahyazadehfar, M.; Ivancik, J.; Majd, H.; An, B.; Zhang, D.; Arola, D. On the Mechanics of Fatigue and Fracture in Teeth. Appl. Mech. Rev. 2014, 66, 030803. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-R.; Du, W.; Zhou, X.-D.; Yu, H.-Y. Review of Research on the Mechanical Properties of the Human Tooth. Int. J. Oral Sci. 2014, 6, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Craig, R.G.; Peyton, F.A.; Johnson, D. Compressive Properties of Enamel, Dental Cements, and Gold. J. Dent. Res. 1961, 40, 936–945. [Google Scholar] [CrossRef]
- Peyton, F.A.; Mahler, D.B.; Hershenov, B. Physical Properties of Dentin. J. Dent. Res. 1952, 31, 366–370. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, D.; Nazari, A.; Eidelman, N.; Arola, D.D. A Comparison of Fatigue Crack Growth in Human Enamel and Hydroxyapatite. Biomaterials 2008, 29, 4847–4854. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, D.; Sundaram, N.; Nazari, A.; Arola, D. Age, Dehydration and Fatigue Crack Growth in Dentin. Biomaterials 2006, 27, 2507–2517. [Google Scholar] [CrossRef]
- Zhang, D.; Nazari, A.; Soappman, M.; Bajaj, D.; Arola, D. Methods for Examining the Fatigue and Fracture Behavior of Hard Tissues. Exp. Mech. 2007, 47, 325–336. [Google Scholar] [CrossRef]
- Orrego, S.; Melo, M.A.; Lee, S.-H.; Xu, H.H.K.; Arola, D.D. Fatigue of Human Dentin by Cyclic Loading and during Oral Biofilm Challenge. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 1978–1985. [Google Scholar] [CrossRef]
- Yan, J.; Taskonak, B.; Platt, J.A.; Mecholsky, J.J. Evaluation of Fracture Toughness of Human Dentin Using Elastic-Plastic Fracture Mechanics. J. Biomech. 2008, 41, 1253–1259. [Google Scholar] [CrossRef]
- Yan, J.; Taskonak, B.; Mecholsky, J.J. Fractography and Fracture Toughness of Human Dentin. J. Mech. Behav. Biomed. Mater. 2009, 2, 478–484. [Google Scholar] [CrossRef]
- Vukicevic, A.M.; Zelic, K.; Jovicic, G.; Djuric, M.; Filipovic, N. Influence of Dental Restorations and Mastication Loadings on Dentine Fatigue Behaviour: Image-Based Modelling Approach. J. Dent. 2015, 43, 556–567. [Google Scholar] [CrossRef]
- Ossareh, A.; Rosentritt, M.; Kishen, A. Biomechanical Studies on the Effect of Iatrogenic Dentin Removal on Vertical Root Fractures. J. Conserv. Dent. JCD 2018, 21, 290–296. [Google Scholar] [CrossRef]
- Magne, P.; Carvalho, A.O.; Bruzi, G.; Anderson, R.E.; Maia, H.P.; Giannini, M. Influence of No-Ferrule and No-Post Buildup Design on the Fatigue Resistance of Endodontically Treated Molars Restored with Resin Nanoceramic CAD/CAM Crowns. Oper. Dent. 2014, 39, 595–602. [Google Scholar] [CrossRef]
- Dartora, G.; Rocha Pereira, G.K.; Varella de Carvalho, R.; Zucuni, C.P.; Valandro, L.F.; Cesar, P.F.; Caldas, R.A.; Bacchi, A. Comparison of Endocrowns Made of Lithium Disilicate Glass-Ceramic or Polymer-Infiltrated Ceramic Networks and Direct Composite Resin Restorations: Fatigue Performance and Stress Distribution. J. Mech. Behav. Biomed. Mater. 2019, 100, 103401. [Google Scholar] [CrossRef]
- Lin, F.; Ordinola-Zapata, R.; Ye, N.; Xu, H.; Fok, A.S.L. Fatigue Analysis of Restored Teeth Longitudinally Cracked under Cyclic Loading. Dent. Mater. 2022, 38, 204–213. [Google Scholar] [CrossRef]
- Sagl, B.; Schmid-Schwap, M.; Piehslinger, E.; Kundi, M.; Stavness, I. Effect of Facet Inclination and Location on TMJ Loading during Bruxism: An in-Silico Study. J. Adv. Res. 2022, 35, 25–32. [Google Scholar] [CrossRef]
- Yang, H.-M.; Cha, J.-Y.; Hong, K.-S.; Park, J.-T. Three-Dimensional Finite Element Analysis of Unilateral Mastication in Malocclusion Cases Using Cone-Beam Computed Tomography and a Motion Capture System. J. Periodontal Implant Sci. 2016, 46, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Ortún-Terrazas, J.; Cegoñino, J.; Pérez Del Palomar, A. In Silico Study of Cuspid’ Periodontal Ligament Damage under Parafunctional and Traumatic Conditions of Whole-Mouth Occlusions. A Patient-Specific Evaluation. Comput. Methods Programs Biomed. 2020, 184, 105107. [Google Scholar] [CrossRef]
- Perel, M.L. Parafunctional Habits, Nightguards, and Root Form Implants. Implant Dent. 1994, 3, 261–263. [Google Scholar] [CrossRef]
- Husain, M.A. Dental Anatomy and Nomenclature for the Radiologist. Radiol. Clin. N. Am. 2018, 56, 1–11. [Google Scholar] [CrossRef]
- Fill, T.S.; Carey, J.P.; Toogood, R.W.; Major, P.W. Experimentally Determined Mechanical Properties of, and Models for, the Periodontal Ligament: Critical Review of Current Literature. J. Dent. Biomech. 2011, 2011, 312980. [Google Scholar] [CrossRef] [Green Version]
- de Jong, T.; Bakker, A.D.; Everts, V.; Smit, T.H. The Intricate Anatomy of the Periodontal Ligament and Its Development: Lessons for Periodontal Regeneration. J. Periodontal Res. 2017, 52, 965–974. [Google Scholar] [CrossRef]
- van Eijden, T.M. Biomechanics of the Mandible. Crit. Rev. Oral Biol. Med. 2000, 11, 123–136. [Google Scholar] [CrossRef]
- Arola, D.; Reprogel, R.K. Effects of Aging on the Mechanical Behavior of Human Dentin. Biomaterials 2005, 26, 4051–4061. [Google Scholar] [CrossRef]
- Kruzic, J.J.; Ritchie, R.O. Fatigue of Mineralized Tissues: Cortical Bone and Dentin. J. Mech. Behav. Biomed. Mater. 2008, 1, 3–17. [Google Scholar] [CrossRef]
- Arola, D. Fatigue Testing of Biomaterials and Their Interfaces. Dent. Mater. 2017, 33, 367–381. [Google Scholar] [CrossRef]
- Arola, D. Fracture and Aging of Dentine. In Dental Biomaterials; Curtis, R.V., Watson, T.F., Eds.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Sawston, UK, 2008; pp. 314–342. ISBN 978-1-84569-296-4. [Google Scholar]
- Arola, D.; Bajaj, D.; Ivancik, J.; Majd, H.; Zhang, D. Fatigue of biomaterials: Hard tissues. Int. J. Fatigue 2010, 32, 1400–1412. [Google Scholar] [CrossRef] [Green Version]
- Staines, M.; Robinson, W.H.; Hood, J.A.A. Spherical Indentation of Tooth Enamel. J. Mater. Sci. 1981, 16, 2551–2556. [Google Scholar] [CrossRef]
- Mahoney, E.; Holt, A.; Swain, M.; NT, K. The Hardness and Modulus of Elasticity of Primary Molar Teeth: An Ultra-Micro-Indentation Study. J. Dent. 2000, 28, 589–594. [Google Scholar] [CrossRef]
- Ang, S.F.; Scholz, T.; Klocke, A.; Schneider, G.A. Determination of the Elastic/Plastic Transition of Human Enamel by Nanoindentation. Dent. Mater. 2009, 25, 1403–1410. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, D.; Arola, D.D. On the R-Curve Behavior of Human Tooth Enamel. Biomaterials 2009, 30, 4037–4046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, H.; Lee, J.J.-W.; Lawn, B.R. On the Chipping and Splitting of Teeth. J. Mech. Behav. Biomed. Mater. 2011, 4, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Xu, H.; Song, F.; Zhang, L.; Zhou, X.; Shao, Y.; Huang, D. Spatial Distribution of the Human Enamel Fracture Toughness with Aging. J. Mech. Behav. Biomed. Mater. 2013, 26, 148–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, H. On the Mechanical Properties of Tooth Enamel under Spherical Indentation. Acta Biomater. 2014, 10, 4852–4860. [Google Scholar] [CrossRef]
- Elfallah, H.M.; Bertassoni, L.E.; Charadram, N.; Rathsam, C.; Swain, M.V. Effect of Tooth Bleaching Agents on Protein Content and Mechanical Properties of Dental Enamel. Acta Biomater. 2015, 20, 120–128. [Google Scholar] [CrossRef]
- Yahyazadehfar, M.; Zhang, D.; Arola, D. On the Importance of Aging to the Crack Growth Resistance of Human Enamel. Acta Biomater. 2016, 32, 264–274. [Google Scholar] [CrossRef] [Green Version]
- Shimomura, N.; Tanaka, R.; Shibata, Y.; Zhang, Z.; Li, Q.; Zhou, J.; Wurihan; Tobe, T.; Ikeda, S.; Yoshikawa, K.; et al. Exceptional Contact Elasticity of Human Enamel in Nanoindentation Test. Dent. Mater. 2019, 35, 87–97. [Google Scholar] [CrossRef]
- Niu, H.; Fan, F.; Wang, R.; Zhang, Q.; Shen, F.; Ren, P.; Liu, T.; Fan, Y.; Laugier, P. Elastic Properties Measurement of Human Enamel Based on Resonant Ultrasound Spectroscopy. J. Mech. Behav. Biomed. Mater. 2019, 89, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Oyen, M.L. (Ed.) Handbook of Nanoindentation with Biological Applications; Pan Stanford Pub: Singapore, 2011; ISBN 978-981-4241-89-2. [Google Scholar]
- Sakaguchi, R.L.; Powers, J. Craig’s Restorative Dental Materials; Elsevier Health Sciences: Amsterdam, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Watts, D.C.; el Mowafy, O.M.; Grant, A.A. Temperature-Dependence of Compressive Properties of Human Dentin. J. Dent. Res. 1987, 66, 29–32. [Google Scholar] [CrossRef]
- Yoon, Y.J. Estimation of the Elastic Constants of Dentin. Int. J. Precis. Eng. Manuf. 2013, 14, 317–322. [Google Scholar] [CrossRef]
- Rodrigues, R.B.; Soares, C.J.; Junior, P.C.S.; Lara, V.C.; Arana-Chavez, V.E.; Novais, V.R. Influence of Radiotherapy on the Dentin Properties and Bond Strength. Clin. Oral Investig. 2018, 22, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Muslov, S. Anisotropy of Poisson’s Ratio of Dentin and Enamel. IOP Conf. Ser. Mater. Sci. Eng. 2018, 441, 012032. [Google Scholar] [CrossRef]
- Ivancik, J.; Majd, H.; Bajaj, D.; Romberg, E.; Arola, D. Contributions of Aging to the Fatigue Crack Growth Resistance of Human Dentin. Acta Biomater. 2012, 8, 2737–2746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwamoto, N.; Ruse, N.D. Fracture Toughness of Human Dentin. J. Biomed. Mater. Res. A 2003, 66, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Nazari, A.; Bajaj, D.; Zhang, D.; Romberg, E.; Arola, D. Aging and the Reduction in Fracture Toughness of Human Dentin. J. Mech. Behav. Biomed. Mater. 2009, 2, 550–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivancik, J.; Neerchal, N.K.; Romberg, E.; Arola, D. The Reduction in Fatigue Crack Growth Resistance of Dentin with Depth. J. Dent. Res. 2011, 90, 1031–1036. [Google Scholar] [CrossRef]
- Majd, H.; Viray, J.; Porter, J.A.; Romberg, E.; Arola, D. Degradation in the Fatigue Resistance of Dentin by Bur and Abrasive Air-Jet Preparations. J. Dent. Res. 2012, 91, 894–899. [Google Scholar] [CrossRef] [Green Version]
- Mutluay, M.M.; Yahyazadehfar, M.; Ryou, H.; Majd, H.; Do, D.; Arola, D. Fatigue of the Resin-Dentin Interface: A New Approach for Evaluating the Durability of Dentin Bonds. Dent. Mater. 2013, 29, 437–449. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.H.; Majd, H.; Orrego, S.; Majd, B.; Romberg, E.; Mutluay, M.M.; Arola, D. Degradation in the Fatigue Strength of Dentin by Cutting, Etching and Adhesive Bonding. Dent. Mater. 2014, 30, 1061–1072. [Google Scholar] [CrossRef] [Green Version]
- Thresher, R.W.; Saito, G.E. The Stress Analysis of Human Teeth. J. Biomech. 1973, 6, 443–449. [Google Scholar] [CrossRef]
- Rees, J.S.; Jacobsen, P.H. Elastic Modulus of the Periodontal Ligament. Biomaterials 1997, 18, 995–999. [Google Scholar] [CrossRef]
- Jones, M.L.; Hickman, J.; Middleton, J.; Knox, J.; Volp, C. A Validated Finite Element Method Study of Orthodontic Tooth Movement in the Human Subject. J. Orthod. 2001, 28, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N.; Koga, Y.; Peng, C.-L.; Tanaka, E.; Kobayashi, K. In Vivo Measurement of the Elastic Modulus of the Human Periodontal Ligament. Med. Eng. Phys. 2001, 23, 567–572. [Google Scholar] [CrossRef]
- Huang, H.; Tang, W.; Yang, Y.; Wu, B.; Yan, B. Determination of Viscoelastic Properties of the Periodontal Ligament Using Nanoindentation Testing and Numerical Modeling. J. Mech. Med. Biol. 2016, 16, 1650089. [Google Scholar] [CrossRef]
- Moon, D.K.; Woo, S.L.-Y.; Takakura, Y.; Gabriel, M.T.; Abramowitch, S.D. The Effects of Refreezing on the Viscoelastic and Tensile Properties of Ligaments. J. Biomech. 2006, 39, 1153–1157. [Google Scholar] [CrossRef]
- Lucas, S.R.; Bass, C.R.; Salzar, R.S.; Oyen, M.L.; Planchak, C.; Ziemba, A.; Shender, B.S.; Paskoff, G. Viscoelastic Properties of the Cervical Spinal Ligaments under Fast Strain-Rate Deformations. Acta Biomater. 2008, 4, 117–125. [Google Scholar] [CrossRef]
- Bosiakov, S.; Koroleva, A.; Rogosin, S.; Silberschmidt, V. Viscoelasticity of Periodontal Ligament: An Analytical Model. Mech. Adv. Mater. Mod. Process. 2015, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Pu, P.; Zhao, S.; Izadikhah, I.; Shi, H.; Liu, M.; Lu, R.; Yan, B.; Ma, S.; Markert, B. Frequency-Related Viscoelastic Properties of the Human Incisor Periodontal Ligament under Dynamic Compressive Loading. PLoS ONE 2020, 15, e0235822. [Google Scholar] [CrossRef]
- Su, M.-Z.; Chang, H.-H.; Chiang, Y.-C.; Cheng, J.-H.; Fuh, L.-J.; Wang, C.-Y.; Lin, C.-P. Modeling Viscoelastic Behavior of Periodontal Ligament with Nonlinear Finite Element Analysis. J. Dent. Sci. 2013, 8, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Tang, W.; Yan, B.; Wu, B.; Cao, D. Mechanical Responses of the Periodontal Ligament Based on an Exponential Hyperelastic Model: A Combined Experimental and Finite Element Method. Comput. Methods Biomech. Biomed. Eng. 2016, 19, 188–198. [Google Scholar] [CrossRef]
- Ortún-Terrazas, J.; Cegoñino, J.; Santana-Penín, U.; Santana-Mora, U.; Pérez Del Palomar, A. A Porous Fibrous Hyperelastic Damage Model for Human Periodontal Ligament: Application of a Microcomputerized Tomography Finite Element Model. Int. J. Numer. Methods Biomed. Eng. 2019, 35, e3176. [Google Scholar] [CrossRef] [PubMed]
- Natali, A.N.; Carniel, E.L.; Pavan, P.G.; Sander, F.G.; Dorow, C.; Geiger, M. A Visco-Hyperelastic-Damage Constitutive Model for the Analysis of the Biomechanical Response of the Periodontal Ligament. J. Biomech. Eng. 2008, 130, 031004. [Google Scholar] [CrossRef] [PubMed]
- Oskui, I.Z.; Hashemi, A.; Jafarzadeh, H. Biomechanical Behavior of Bovine Periodontal Ligament: Experimental Tests and Constitutive Model. J. Mech. Behav. Biomed. Mater. 2016, 62, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Sbriccoli, P.; Solomonow, M.; Zhou, B.-H.; Lu, Y.; Sellards, R. Neuromuscular Response to Cyclic Loading of the Anterior Cruciate Ligament. Am. J. Sports Med. 2005, 33, 543–551. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, A.M.; Williams, J.L.; Katz, J.O.; Spencer, P. Anisotropic Elastic Properties of Cancellous Bone from a Human Edentulous Mandible. Clin. Oral Implants Res. 2000, 11, 415–421. [Google Scholar] [CrossRef]
- Schwartz-Dabney, C.L.; Dechow, P.C. Edentulation Alters Material Properties of Cortical Bone in the Human Mandible. J. Dent. Res. 2002, 81, 613–617. [Google Scholar] [CrossRef]
- Schwartz-Dabney, C.L.; Dechow, P.C. Variations in Cortical Material Properties throughout the Human Dentate Mandible. Am. J. Phys. Anthropol. 2003, 120, 252–277. [Google Scholar] [CrossRef]
- Dechow, P.C.; Wang, Q.; Peterson, J. Edentulation Alters Material Properties of Cortical Bone in the Human Craniofacial Skeleton: Functional Implications for Craniofacial Structure in Primate Evolution. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2010, 293, 618–629. [Google Scholar] [CrossRef] [Green Version]
- Yi, W.-J.; Heo, M.-S.; Lee, S.-S.; Choi, S.-C.; Huh, K.-H.; Lee, S.-P. Direct Measurement of Trabecular Bone Anisotropy Using Directional Fractal Dimension and Principal Axes of Inertia. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007, 104, 110–116. [Google Scholar] [CrossRef]
- Borchers, L.; Reichart, P. Three-Dimensional Stress Distribution around a Dental Implant at Different Stages of Interface Development. J. Dent. Res. 1983, 62, 155–159. [Google Scholar] [CrossRef]
- Lettry, S.; Seedhom, B.B.; Berry, E.; Cuppone, M. Quality Assessment of the Cortical Bone of the Human Mandible. Bone 2003, 32, 35–44. [Google Scholar] [CrossRef]
- Seong, W.-J.; Kim, U.-K.; Swift, J.Q.; Heo, Y.-C.; Hodges, J.S.; Ko, C.-C. Elastic Properties and Apparent Density of Human Edentulous Maxilla and Mandible. Int. J. Oral Maxillofac. Surg. 2009, 38, 1088–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misch, C.E.; Qu, Z.; Bidez, M.W. Mechanical Properties of Trabecular Bone in the Human Mandible: Implications for Dental Implant Treatment Planning and Surgical Placement. J. Oral Maxillofac. Surg. 1999, 57, 700–706, discussion 706–708. [Google Scholar] [CrossRef]
- Natali, A.N.; Carniel, E.L.; Pavan, P.G. Modelling of Mandible Bone Properties in the Numerical Analysis of Oral Implant Biomechanics. Comput. Methods Programs Biomed. 2010, 100, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Chutimanutskul, W.; Ali Darendeliler, M.; Shen, G.; Petocz, P.; Swain, M.V. Changes in the Physical Properties of Human Premolar Cementum after Application of 4 Weeks of Controlled Orthodontic Forces. Eur. J. Orthod. 2006, 28, 313–318. [Google Scholar] [CrossRef]
- Srivicharnkul, P.; Kharbanda, O.P.; Swain, M.V.; Petocz, P.; Darendeliler, M.A. Physical Properties of Root Cementum: Part 3. Hardness and Elastic Modulus after Application of Light and Heavy Forces. Am. J. Orthod. Dentofac. Orthop. 2005, 127, 168–176, quiz 260. [Google Scholar] [CrossRef]
- Jang, A.T.; Lin, J.D.; Choi, R.M.; Choi, E.M.; Seto, M.L.; Ryder, M.I.; Gansky, S.A.; Curtis, D.A.; Ho, S.P. Adaptive Properties of Human Cementum and Cementum Dentin Junction with Age. J. Mech. Behav. Biomed. Mater. 2014, 39, 184–196. [Google Scholar] [CrossRef] [Green Version]
- Malek, S.; Darendeliler, M.A.; Rex, T.; Kharbanda, O.P.; Srivicharnkul, P.; Swain, M.V.; Petocz, P. Physical Properties of Root Cementum: Part 2. Effect of Different Storage Methods. Am. J. Orthod. Dentofac. Orthop. 2003, 124, 561–570. [Google Scholar] [CrossRef]
- Wescott, D.J. Postmortem Change in Bone Biomechanical Properties: Loss of Plasticity. Forensic Sci. Int. 2019, 300, 164–169. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, J.; Sun, K.; Zhang, X.; Tian, S. Effects of Repetitive Multiple Freeze–Thaw Cycles on the Biomechanical Properties of Human Flexor Digitorum Superficialis and Flexor Pollicis Longus Tendons. Clin. Biomech. 2011, 26, 419–423. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, J.; Yin, Z. Experimental Study on Mechanical Properties and Pore Structure Deterioration of Concrete under Freeze–Thaw Cycles. Materials 2021, 14, 6568. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.J.; Schilder, H.; Nathanson, D. Effects of Moisture Content and Endodontic Treatment on Some Mechanical Properties of Human Dentin. J. Endod. 1992, 18, 209–215. [Google Scholar] [CrossRef]
- Lavigne, G.J.; Khoury, S.; Abe, S.; Yamaguchi, T.; Raphael, K. Bruxism Physiology and Pathology: An Overview for Clinicians. J. Oral Rehabil. 2008, 35, 476–494. [Google Scholar] [CrossRef] [PubMed]
- Shetty, S.; Pitti, V.; Satish Babu, C.L.; Surendra Kumar, G.P.; Deepthi, B.C. Bruxism: A Literature Review. J. Indian Prosthodont. Soc. 2010, 10, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Jackson Irudhayam, S.; Hariram, V. Dental Implant Biomaterials, Design and Importance of FEA—A Brief Review. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Ross, C.F. Finite Element Analysis in Vertebrate Biomechanics. Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 2005, 283, 253–258. [Google Scholar] [CrossRef]
- Sakaguchi, R.L.; Cross, M.; Douglas, W.H. A Simple Model of Crack Propagation in Dental Restorations. Dent. Mater. Off. Publ. Acad. Dent. Mater. 1992, 8, 131–136. [Google Scholar] [CrossRef]
- Jayasudha, K.; Hemanth, M.; Baswa, R.; Raghuveer, H.P.; Vedavathi, B.; Hegde, C. Traumatic Impact Loading on Human Maxillary Incisor: A Dynamic Finite Element Analysis. J. Indian Soc. Pedod. Prev. Dent. 2015, 33, 302–306. [Google Scholar] [CrossRef]
- Magne, P.; Cheung, R. Numeric Simulation of Occlusal Interferences in Molars Restored with Ultrathin Occlusal Veneers. J. Prosthet. Dent. 2017, 117, 132–137. [Google Scholar] [CrossRef]
- Nie, E.-M.; Chen, X.-Y.; Zhang, C.-Y.; Qi, L.-L.; Huang, Y.-H. Influence of Masticatory Fatigue on the Fracture Resistance of the Pulpless Teeth Restored with Quartz-Fiber Post–Core and Crown. Int. J. Oral Sci. 2012, 4, 218–220. [Google Scholar] [CrossRef] [Green Version]
- Toledano, M.; Cabello, I.; Aguilera, F.S.; Osorio, E.; Osorio, R. Effect of in Vitro Chewing and Bruxism Events on Remineralization, at the Resin–Dentin Interface. J. Biomech. 2015, 48, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-Y.; Kim, B.-S.; Kim, H.; Cho, S.-Y. Occlusal Stress Distribution and Remaining Crack Propagation of a Cracked Tooth Treated with Different Materials and Designs: 3D Finite Element Analysis. Dent. Mater. 2021, 37, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Dejak, B.; Młotkowski, A.; Romanowicz, M. Finite Element Analysis of Mechanism of Cervical Lesion Formation in Simulated Molars during Mastication and Parafunction. J. Prosthet. Dent. 2006, 94, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Soares, P.V.; Machado, A.C.; Zeola, L.F.; Souza, P.G.; Galvão, A.M.; Montes, T.C.; Pereira, A.G.; Reis, B.R.; Coleman, T.A.; Grippo, J.O. Loading and Composite Restoration Assessment of Various Non-Carious Cervical Lesions Morphologies—3D Finite Element Analysis. Aust. Dent. J. 2015, 60, 309–316. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, J.W.; Hannam, A.G. Relationship between Occlusal Contacts and Jaw-Closing Muscle Activity during Tooth Clenching: Part I. J. Prosthet. Dent. 1984, 52, 718–728. [Google Scholar] [CrossRef]
- Wood, W.W. Medial Pterygoid Muscle Activity during Chewing and Clenching. J. Prosthet. Dent. 1986, 55, 615–621. [Google Scholar] [CrossRef]
- Po, J.M.C.; Kieser, J.A.; Gallo, L.M.; Tésenyi, A.J.; Herbison, P.; Farella, M. Time-Frequency Analysis of Chewing Activity in the Natural Environment. J. Dent. Res. 2011, 90, 1206–1210. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Ono, T.; Sakagami, J.; Hori, K.; Maeda, Y.; Hamasaki, T.; Nokubi, T. Influence of Voluntary Control of Masticatory Side and Rhythm on Cerebral Hemodynamics. Clin. Oral Investig. 2009, 15, 113–118. [Google Scholar] [CrossRef]
- Bessadet, M.; Nicolas, E.; Sochat, M.; Hennequin, M.; Veyrune, J.-L. Impact of Removable Partial Denture Prosthesis on Chewing Efficiency. J. Appl. Oral Sci. Rev. FOB 2013, 21, 392–396. [Google Scholar] [CrossRef] [Green Version]
- Tonni, I.; Ricciardi, G.; Piancino, M.G.; Stretti, C.; Costantinides, F.; Paganelli, C. The Influence of Food Hardness on the Physiological Parameters of Mastication: A Systematic Review. Arch. Oral Biol. 2020, 120, 104903. [Google Scholar] [CrossRef]
- Petrowski, K.; Wintermann, G.; Joraschky, P.; Päßler, S. Chewing after Stress: Psychosocial Stress Influences Chewing Frequency, Chewing Efficacy, and Appetite. Psychoneuroendocrinology 2014, 48C, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Lepley, C.; Throckmorton, G.; Parker, S.; Buschang, P.H. Masticatory Performance and Chewing Cycle Kinematics-Are They Related? Angle Orthod. 2010, 80, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, R.; Arias, A.; Lezcano, M.F.; Saravia, D.; Kuramochi, G.; Navarro, P.; Dias, F.J. A New Tridimensional Insight into Geometric and Kinematic Characteristics of Masticatory Cycles in Participants with Normal Occlusion. BioMed Res. Int. 2018, 2018, 2527463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalani, H.; Akbarzadeh, A.; Nabavi, S.N.; Moghimi, S. Dynamic Modeling and CPG-Based Trajectory Generation for a Masticatory Rehab Robot. Intell. Serv. Robot. 2018, 11, 187–205. [Google Scholar] [CrossRef]
- Buschang, P.H.; Hayasaki, H.; Throckmorton, G.S. Quantification of Human Chewing-Cycle Kinematics. Arch. Oral Biol. 2000, 45, 461–474. [Google Scholar] [CrossRef]
- Wang, G.; Cong, M.; Ren, X.; Wen, H.; Qin, W. Chewing-Cycle Trajectory Planning for a Dental Testing Chewing Robot. Int. J. Robot. Autom. 2019, 34, 1–10. [Google Scholar] [CrossRef]
- Ogawa, T.; Ogawa, M.; Koyano, K. Different Responses of Masticatory Movements after Alteration of Occlusal Guidance Related to Individual Movement Pattern. J. Oral Rehabil. 2001, 28, 830–841. [Google Scholar] [CrossRef]
- Raadsheer, M.C.; van Eijden, T.M.; van Ginkel, F.C.; Prahl-Andersen, B. Contribution of Jaw Muscle Size and Craniofacial Morphology to Human Bite Force Magnitude. J. Dent. Res. 1999, 78, 31–42. [Google Scholar] [CrossRef]
- Xu, W.L.; Lewis, D.; Bronlund, J.E.; Morgenstern, M.P. Mechanism, Design and Motion Control of a Linkage Chewing Device for Food Evaluation. Mech. Mach. Theory 2008, 43, 376–389. [Google Scholar] [CrossRef]
- Mericske-Stern, R.; Piotti, M.; Sirtes, G. 3-D in Vivo Force Measurements on Mandibular Implants Supporting Overdentures. A Comparative Study. Clin. Oral Implant. Res. 1996, 7, 387–396. [Google Scholar] [CrossRef]
- Bishop, B.; Plesh, O.; McCall, W.D. Effects of Chewing Frequency and Bolus Hardness on Human Incisor Trajectory and Masseter Muscle Activity. Arch. Oral Biol. 1990, 35, 311–318. [Google Scholar] [CrossRef]
- Kohyama, K.; Hatakeyama, E.; Sasaki, T.; Dan, H.; Azuma, T.; Karita, K. Effects of Sample Hardness on Human Chewing Force: A Model Study Using Silicone Rubber. Arch. Oral Biol. 2004, 49, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Bakke, M. Bite Force and Occlusion. Semin. Orthod. 2006, 12, 120–126. [Google Scholar] [CrossRef]
- Shinogaya, T.; Bakke, M.; Thomsen, C.E.; Vilmann, A.; Matsumoto, M. Bite Force and Occlusal Load in Healthy Young Subjects—A Methodological Study. Eur. J. Prosthodont. Restor. Dent. 2000, 8, 11–15. [Google Scholar]
- Gibbs, C.H.; Mahan, P.E.; Lundeen, H.C.; Brehnan, K.; Walsh, E.K.; Holbrook, W.B. Occlusal Forces during Chewing and Swallowing as Measured by Sound Transmission. J. Prosthet. Dent. 1981, 46, 443–449. [Google Scholar] [CrossRef]
- Sessle, B.J. Neural Basis of Oral and Facial Function. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 978-0-12-801238-3. [Google Scholar]
- Morneburg, T.R.; Pröschel, P.A. Measurement of Masticatory Forces and Implant Loads: A Methodologic Clinical Study. Int. J. Prosthodont. 2002, 15, 20–27. [Google Scholar]
- Scully, C. Oxford Handbook of Applied Dental Sciences, 1st ed.; Oxford University Press: Oxford, UK, 2003; ISBN 978-0-19-851096-3. [Google Scholar]
- Heintze, S.D. How to Qualify and Validate Wear Simulation Devices and Methods. Dent. Mater. 2006, 22, 712–734. [Google Scholar] [CrossRef]
- Libman, W.J.; Nicholls, J.I. Load Fatigue of Teeth Restored with Cast Posts and Cores and Complete Crowns. Int. J. Prosthodont. 1995, 8, 155–161. [Google Scholar]
- Cohen, B.I.; Pagnillo, M.K.; Newman, I.; Musikant, B.L.; Deutsch, A.S. Cyclic Fatigue Testing of Five Endodontic Post Designs Supported by Four Core Materials. J. Prosthet. Dent. 1997, 78, 458–464. [Google Scholar] [CrossRef]
- Lanza, A.; Aversa, R.; Rengo, S.; Apicella, D.; Apicella, A. 3D FEA of Cemented Steel, Glass and Carbon Posts in a Maxillary Incisor. Dent. Mater. 2005, 21, 709–715. [Google Scholar] [CrossRef]
- Cobankara, F.K.; Unlu, N.; Cetin, A.R.; Ozkan, H.B. The Effect of Different Restoration Techniques on the Fracture Resistance of Endodontically-Treated Molars. Oper. Dent. 2008, 33, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-L.; Chang, Y.-H.; Chang, C.-Y.; Pai, C.-A.; Huang, S.-F. Finite Element and Weibull Analyses to Estimate Failure Risks in the Ceramic Endocrown and Classical Crown for Endodontically Treated Maxillary Premolar. Eur. J. Oral Sci. 2010, 118, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Uy, J.N.; Neo, J.C.L.; Chan, S.H. The Effect of Tooth and Foundation Restoration Heights on the Load Fatigue Performance of Cast Crowns. J. Prosthet. Dent. 2010, 104, 318–324. [Google Scholar] [CrossRef]
- Barani, A.; Keown, A.J.; Bush, M.B.; Lee, J.J.-W.; Chai, H.; Lawn, B.R. Mechanics of Longitudinal Cracks in Tooth Enamel. Acta Biomater. 2011, 7, 2285–2292. [Google Scholar] [CrossRef] [PubMed]
- Du, J.-K.; Lin, W.-K.; Wang, C.-H.; Lee, H.-E.; Li, H.-Y.; Wu, J.-H. FEM Analysis of the Mandibular First Premolar with Different Post Diameters. Odontology 2011, 99, 148–154. [Google Scholar] [CrossRef]
- Rodríguez-Cervantes, P.-J.; Sancho-Bru, J.-L.; González-Lluch, C.; Pérez-González, A.; Barjau-Escribano, A.; Forner-Navarro, L. Premolars Restored with Posts of Different Materials: Fatigue Analysis. Dent. Mater. J. 2011, 30, 881–886. [Google Scholar] [CrossRef] [Green Version]
- Benazzi, S.; Grosse, I.R.; Gruppioni, G.; Weber, G.W.; Kullmer, O. Comparison of Occlusal Loading Conditions in a Lower Second Premolar Using Three-Dimensional Finite Element Analysis. Clin. Oral Investig. 2014, 18, 369–375. [Google Scholar] [CrossRef]
- Toledano, M.; Aguilera, F.S.; Sauro, S.; Cabello, I.; Osorio, E.; Osorio, R. Load Cycling Enhances Bioactivity at the Resin–Dentin Interface. Dent. Mater. 2014, 30, e169–e188. [Google Scholar] [CrossRef]
- Zhu, Y.-N.; Yang, W.-D.; Abbott, P.V.; Martin, N.; Wei, W.-J.; Li, J.-J.; Chen, Z.; Wang, W.-M. The Biomechanical Role of Periodontal Ligament in Bonded and Replanted Vertically Fractured Teeth under Cyclic Biting Forces. Int. J. Oral Sci. 2015, 7, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.S.; An, B.B.; Yahyazadehfar, M.; Zhang, D.; Arola, D.D. Contact Fatigue of Human Enamel: Experiments, Mechanisms and Modeling. J. Mech. Behav. Biomed. Mater. 2016, 60, 438–450. [Google Scholar] [CrossRef]
- Toledano, M.; Osorio, E.; Cabello, I.; Aguilera, F.S.; López-López, M.T.; Toledano-Osorio, M.; Osorio, R. Nanoscopic Dynamic Mechanical Analysis of Resin-Infiltrated Dentine, under in Vitro Chewing and Bruxism Events. J. Mech. Behav. Biomed. Mater. 2016, 54, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Chen, Y.; Pan, Y.; Ding, H.; Chen, Q.; Meng, X. Fatigue Performance and Stress Distribution of Endodontically Treated Premolars Restored with Direct Bulk-Fill Resin Composites. J. Adhes. Dent. 2021, 23, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, D.; Ding, H.; Chen, Q.; Meng, X. Fatigue Behavior of Endodontically Treated Maxillary Premolars with MOD Defects under Different Minimally Invasive Restorations. Clin. Oral Investig. 2021, 26, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, I.; Landino, D.; Donnarumma, V.; Castroflorio, T.; Lobbezoo, F.; Michelotti, A. Frequency of Daytime Tooth Clenching Episodes in Individuals Affected by Masticatory Muscle Pain and Pain-Free Controls during Standardized Ability Tasks. Clin. Oral Investig. 2017, 21, 1139–1148. [Google Scholar] [CrossRef]
- Suzuki, M. The relationship between three-dimensional occlusal force and tooth displacement depending on clenching force in function. Kokubyo Gakkai Zasshi 2006, 73, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, T.; Kawata, T.; Kuriyagawa, T.; Sasaki, K. In Vivo 3-Dimensional Measurement of the Force Exerted on a Tooth during Clenching. J. Biomech. 2007, 40, 244–251. [Google Scholar] [CrossRef]
- Koc, D.; Dogan, A.; Bek, B. Bite Force and Influential Factors on Bite Force Measurements: A Literature Review. Eur. J. Dent. 2010, 4, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Nishigawa, K.; Bando, E.; Nakano, M. Quantitative Study of Bite Force during Sleep Associated Bruxism. J. Oral Rehabil. 2001, 28, 485–491. [Google Scholar] [CrossRef]
- Pizolato, R.; Gavião, M.B.; Berretin-Felix, G.; Sampaio-Teixeira, A.; Junior, A. Maximal Bite Force in Young Adults with Temporomandibular Disorders and Bruxism. Braz. Oral Res. 2007, 21, 278–283. [Google Scholar] [CrossRef]
- Kiliaridis, S.; Johansson, A.; Haraldson, T.; Omar, R.; Carlsson, G.E. Craniofacial Morphology, Occlusal Traits, and Bite Force in Persons with Advanced Occlusal Tooth Wear. Am. J. Orthod. Dentofac. Orthop. 1995, 107, 286–292. [Google Scholar] [CrossRef]
- Calderon, P.; dos, S.; Kogawa, E.M.; Lauris, J.R.P.; Conti, P.C.R. The influence of gender and bruxism on the human maximum bite force. J. Appl. Oral Sci. 2006, 14, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Shinkai, R.S.; Lazzari, F.L.; Canabarro, S.A.; Gomes, M.; Grossi, M.L.; Hirakata, L.M.; Mota, E.G. Maximum Occlusal Force and Medial Mandibular Flexure in Relation to Vertical Facial Pattern: A Cross-Sectional Study. Head Face Med. 2007, 3, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Bilt, A.; Tekamp, A.; Van Der Glas, H.; Abbink, J. Bite Force and Electromyograpy during Maximum Unilateral and Bilateral Clenching. Eur. J. Oral Sci. 2008, 116, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Varga, S.; Spalj, S.; Lapter Varga, M.; Anic Milosevic, S.; Mestrovic, S.; Slaj, M. Maximum Voluntary Molar Bite Force in Subjects with Normal Occlusion. Eur. J. Orthod. 2011, 33, 427–433. [Google Scholar] [CrossRef]
- Kovarik, R.E.; Breeding, L.C.; Caughman, W.F. Fatigue Life of Three Core Materials under Simulated Chewing Conditions. J. Prosthet. Dent. 1992, 68, 584–590. [Google Scholar] [CrossRef]
- Rees, J.S. The Effect of Variation in Occlusal Loading on the Development of Abfraction Lesions: A Finite Element Study. J. Oral Rehabil. 2002, 29, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Maceri, F.; Martignoni, M.; Vairo, G. Mechanical Behaviour of Endodontic Restorations with Multiple Prefabricated Posts: A Finite-Element Approach. J. Biomech. 2007, 40, 2386–2398. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Sugeta, A.; Takahashi, Y.; Imazato, S.; Ebisu, S. Static and Fatigue Fracture Resistances of Pulpless Teeth Restored with Post-Cores. Dent. Mater. 2008, 24, 1178–1186. [Google Scholar] [CrossRef]
- Cheng, R.; Zhou, X.-D.; Liu, Z.; Yang, H.; Gao, Q.-H.; Hu, T. Finite Element Analysis of the Effects of Three Preparation Techniques on Stresses within Roots Having Curved Canals. Int. Endod. J. 2009, 42, 220–226. [Google Scholar] [CrossRef]
- Magne, P.; Schlichting, L.H.; Maia, H.P.; Baratieri, L.N. In Vitro Fatigue Resistance of CAD/CAM Composite Resin and Ceramic Posterior Occlusal Veneers. J. Prosthet. Dent. 2010, 104, 149–157. [Google Scholar] [CrossRef]
- Magne, P. Virtual Prototyping of Adhesively Restored, Endodontically Treated Molars. J. Prosthet. Dent. 2010, 103, 343–351. [Google Scholar] [CrossRef]
- Inoue, T.; Nishimura, F.; Debari, K.; Kou, K.; Miyazaki, T. Fatigue and Tensile Properties of Radicular Dentin Substrate. J. Biomech. 2011, 44, 586–592. [Google Scholar] [CrossRef]
- Kasai, K.; Takayama, Y.; Yokoyama, A. Distribution of Occlusal Forces during Occlusal Adjustment of Dental Implant Prostheses: A Nonlinear Finite Element Analysis Considering the Capacity for Displacement of Opposing Teeth and Implants. Int. J. Oral Maxillofac. Implant. 2012, 27, 329–335. [Google Scholar]
- Kayumi, S.; Takayama, Y.; Yokoyama, A.; Ueda, N. Effect of Bite Force in Occlusal Adjustment of Dental Implants on the Distribution of Occlusal Pressure: Comparison among Three Bite Forces in Occlusal Adjustment. Int. J. Implant Dent. 2015, 1, 14. [Google Scholar] [CrossRef] [Green Version]
- Missau, T.; De Carlo Bello, M.; Michelon, C.; Mastella Lang, P.; Kalil Pereira, G.; Baldissara, P.; Valandro, L.F.; Souza Bier, C.A.; Pivetta Rippe, M. Influence of Endodontic Treatment and Retreatment on the Fatigue Failure Load, Numbers of Cycles for Failure, and Survival Rates of Human Canine Teeth. J. Endod. 2017, 43, 2081–2087. [Google Scholar] [CrossRef] [PubMed]
- da Fonseca, G.F.; Dal Piva, A.M.; Tribst, J.P.; Borges, A.L. Influence of Restoration Height and Masticatory Load Orientation on Ceramic Endocrowns. J. Contemp. Dent. Pract. 2018, 19, 1052–1057. [Google Scholar] [CrossRef]
- Yoon, H.G.; Oh, H.K.; Lee, D.-Y.; Shin, J.-H. 3-D Finite Element Analysis of the Effects of Post Location and Loading Location on Stress Distribution in Root Canals of the Mandibular 1st Molar. J. Appl. Oral Sci. Rev. FOB 2018, 26, e20160406. [Google Scholar] [CrossRef] [Green Version]
- Wan, B.; Shahmoradi, M.; Zhang, Z.; Shibata, Y.; Sarrafpour, B.; Swain, M.; Li, Q. Modelling of Stress Distribution and Fracture in Dental Occlusal Fissures. Sci. Rep. 2019, 9, 4682. [Google Scholar] [CrossRef] [Green Version]
- Fráter, M.; Sáry, T.; Jókai, B.; Braunitzer, G.; Säilynoja, E.; Vallittu, P.K.; Lassila, L.; Garoushi, S. Fatigue Behavior of Endodontically Treated Premolars Restored with Different Fiber-Reinforced Designs. Dent. Mater. 2021, 37, 391–402. [Google Scholar] [CrossRef]
- He, J.; Zheng, Z.; Wu, M.; Zheng, C.; Zeng, Y.; Yan, W. Influence of Restorative Material and Cement on the Stress Distribution of Endocrowns: 3D Finite Element Analysis. BMC Oral Health 2021, 21, 495. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, Y.; Chi, D.; Gong, Q.; Tong, Z. Resistance Fracture of Minimally Prepared Endocrowns Made by Three Types of Restorative Materials: A 3D Finite Element Analysis. J. Mater. Sci. Mater. Med. 2021, 32, 137. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; He, Y.; Ruan, W.; Ling, Z.; Zheng, C.; Gai, Y.; Yan, W. Biomechanical Behavior of Endocrown Restorations with Different CAD-CAM Materials: A 3D Finite Element and in Vitro Analysis. J. Prosthet. Dent. 2021, 125, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Park, B.-K.; Tokiwa, O.; Takezawa, Y.; Takahashi, Y.; Sasaguri, K.; Sato, S. Relationship of Tooth Grinding Pattern during Sleep Bruxism and Temporomandibular Joint Status. Cranio J. Craniomandib. Pract. 2008, 26, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Amemori, Y.; Yamashita, S.; Ai, M.; Shinoda, H.; Sato, M.; Takahashi, J. Influence of Nocturnal Bruxism on the Stomatognathic System. Part I: A New Device for Measuring Mandibular Movements during Sleep. J. Oral Rehabil. 2001, 28, 943–949. [Google Scholar] [CrossRef]
- Okura, K.; Shigemoto, S.; Suzuki, Y.; Noguchi, N.; Omoto, K.; Abe, S.; Matsuka, Y. Mandibular Movement during Sleep Bruxism Associated with Current Tooth Attrition. J. Prosthodont. Res. 2017, 61, 87–95. [Google Scholar] [CrossRef]
- Akamatsu, Y.; Minagi, S.; Sato, T. A New Method for Recording Mandibular Position during Nocturnal Bruxism. J. Oral Rehabil. 1996, 23, 622–626. [Google Scholar] [CrossRef]
- Okeson, J. Management of Temporomandibular Disorders and Occlusion, 8th ed.; Mosby: Maryland Heights, MI, USA, 2019; ISBN 978-0-323-61172-5. [Google Scholar]
- Noguchi, N.; Shigemoto, S.; Okura, K.; Bando, E. Study on Measurement and Analysis of Jaw Movements during Sleep Bruxism. J. Jpn. Soc. Stomatognathic Funct. 2009, 16, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Martynowicz, H.; Dymczyk, P.; Dominiak, M.; Kazubowska, K.; Skomro, R.; Poreba, R.; Gac, P.; Wojakowska, A.; Mazur, G.; Wieckiewicz, M. Evaluation of Intensity of Sleep Bruxism in Arterial Hypertension. J. Clin. Med. 2018, 7, 327. [Google Scholar] [CrossRef] [Green Version]
- Wieckiewicz, M.; Smardz, J.; Martynowicz, H.; Wojakowska, A.; Mazur, G.; Winocur, E. Distribution of Temporomandibular Disorders among Sleep Bruxers and Non-Bruxers-A Polysomnographic Study. J. Oral Rehabil. 2020, 47, 820–826. [Google Scholar] [CrossRef]
- Muzalev, K.; Lobbezoo, F.; Janal, M.N.; Raphael, K.G. Interepisode Sleep Bruxism Intervals and Myofascial Face Pain. Sleep 2017, 40, zsx078. [Google Scholar] [CrossRef] [Green Version]
- Iber, C.; Ancoli-Israel, S.; Chesson, A.L.; Quan, S. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. J. Clin. Sleep Med. 2007, 3, 107. [Google Scholar] [CrossRef] [Green Version]
- Neu, D.; Baniasadi, N.; Newell, J.; Styczen, D.; Glineur, R.; Mairesse, O. Effect of Sleep Bruxism Duration on Perceived Sleep Quality in Middle-Aged Subjects. Eur. J. Oral Sci. 2018, 126, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, C.; John, M.T.; Lautenschläger, C.; List, T. Mandibular Jaw Movement Capacity in 10–17-Yr-Old Children and Adolescents: Normative Values and the Influence of Gender, Age, and Temporomandibular Disorders. Eur. J. Oral Sci. 2006, 114, 465–470. [Google Scholar] [CrossRef]
- Nielsen, I.L.; Marcel, T.; Chun, D.; Miller, A.J. Patterns of Mandibular Movements in Subjects with Craniomandibular Disorders. J. Prosthet. Dent. 1990, 63, 202–217. [Google Scholar] [CrossRef]
- Sugimoto, K.; Yoshimi, H.; Sasaguri, K.; Sato, S. Occlusion Factors Influencing the Magnitude of Sleep Bruxism Activity. Cranio J. Craniomandib. Pract. 2011, 29, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Giannakopoulos, N.N.; Schindler, H.J.; Hellmann, D. Co-Contraction Behaviour of Masticatory and Neck Muscles during Tooth Grinding. J. Oral Rehabil. 2018, 45, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Kaidonis, J.A.; Richards, L.C.; Townsend, G.C.; Tansley, G.D. Wear of Human Enamel: A Quantitative in Vitro Assessment. J. Dent. Res. 1998, 77, 1983–1990. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, V.F.; Sforza, C. Biomechanical Model of the Human Mandible in Unilateral Clench: Distribution of Temporomandibular Joint Reaction Forces between Working and Balancing Sides. J. Prosthet. Dent. 1994, 72, 169–176. [Google Scholar] [CrossRef]
- Ferrario, V.F.; Sforza, C.; Serrao, G.; Dellavia, C.; Tartaglia, G.M. Single Tooth Bite Forces in Healthy Young Adults. J. Oral Rehabil. 2004, 31, 18–22. [Google Scholar] [CrossRef]
- Peck, C.C. Biomechanics of Occlusion--Implications for Oral Rehabilitation. J. Oral Rehabil. 2016, 43, 205–214. [Google Scholar] [CrossRef]
- Tortopidis, D.; Lyons, M.F.; Baxendale, R.H.; Gilmour, W.H. The Variability of Bite Force Measurement between Sessions, in Different Positions within the Dental Arch. J. Oral Rehabil. 1998, 25, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Lubisich, E.B.; Hilton, T.J.; Ferracane, J. Cracked Teeth: A Review of the Literature. J. Esthet. Restor. Dent. 2010, 22, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Madini, L.; Acquaviva, P.A.; Krokidis, A.; Barabanti, N.; Özcan, M.; Sipahi, C.; Cerutti, A. Effect of Restorative, Endodontic, and Fatigue Treatments on the Cuspal Deflection of Maxillary Premolars Subjected to Different Cyclic Occlusal Forces: An in Vitro Study. Int. J. Periodontics Restor. Dent. 2015, 35, 221–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krejci, I.; Reich, T.; Lutz, F.; Albertoni, M. An in vitro test procedure for evaluating dental restoration systems. 1. A computer-controlled mastication simulator. Schweiz. Mon. Zahnmed. Rev. Mens. Suisse Odonto-Stomatol. Riv. Mens. Svizz. Odontol. E Stomatol. 1990, 100, 953–960. [Google Scholar]
- Rosentritt, M.; Behr, M.; Gebhard, R.; Handel, G. Influence of Stress Simulation Parameters on the Fracture Strength of All-Ceramic Fixed-Partial Dentures. Dent. Mater. 2006, 22, 176–182. [Google Scholar] [CrossRef]
- DeLong, R.; Douglas, W.H. An Artificial Oral Environment for Testing Dental Materials. IEEE Trans. Biomed. Eng. 1991, 38, 339–345. [Google Scholar] [CrossRef]
- Ruse, N.D.; Shew, R.; Feduik, D. In Vitro Fatigue Testing of a Dental Bonding System on Enamel. J. Biomed. Mater. Res. 1995, 29, 411–415. [Google Scholar] [CrossRef]
- Klein-Nulend, J.; Bakker, A.D.; Bacabac, R.G.; Vatsa, A.; Weinbaum, S. Mechanosensation and Transduction in Osteocytes. Bone 2013, 54, 182–190. [Google Scholar] [CrossRef]
- Kuhl, E.; Garikipati, K.; Arruda, E.M.; Grosh, K. Remodeling of Biological Tissue: Mechanically Induced Reorientation of a Transversely Isotropic Chain Network. J. Mech. Phys. Solids 2005, 53, 1552–1573. [Google Scholar] [CrossRef] [Green Version]
- Peyron, M.A.; Woda, A.; Bourdiol, P.; Hennequin, M. Age-Related Changes in Mastication. J. Oral Rehabil. 2017, 44, 299–312. [Google Scholar] [CrossRef]
- Shinogaya, T.; Bakke, M.; Thomsen, C.E.; Vilmann, A.; Sodeyama, A.; Matsumoto, M. Effects of Ethnicity, Gender and Age on Clenching Force and Load Distribution. Clin. Oral Investig. 2001, 5, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Sano, M.; Shiga, H. Evaluation of Occlusal Force and Masticatory Performance in Elderly Adults with Natural Dentition Unaffected by Occlusal Support. J. Oral Sci. 2021, 63, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.J.; Vu, H.; Kim, H.-D. Gender and Age Group Modified Association of Dental Health Indicators with Total Occlusal Force among Korean Elders. BMC Oral Health 2021, 21, 571. [Google Scholar] [CrossRef]
- Lee, S.K.Y.; Salinas, T.J.; Wiens, J.P. The Effect of Patient Specific Factors on Occlusal Forces Generated: Best Evidence Consensus Statement. J. Prosthodont. 2021, 30, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Palinkas, M.; Nassar, M.S.P.; Cecílio, F.A.; Siéssere, S.; Semprini, M.; Machado-de-Sousa, J.P.; Hallak, J.E.C.; Regalo, S.C.H. Age and Gender Influence on Maximal Bite Force and Masticatory Muscles Thickness. Arch. Oral Biol. 2010, 55, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Koester, K.J.; Ager, J.W.; Ritchie, R.O. The Effect of Aging on Crack-Growth Resistance and Toughening Mechanisms in Human Dentin. Biomaterials 2008, 29, 1318–1328. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, D.; Sundaram, N.; Arola, D. An Examination of Fatigue Striations in Human Dentin: In Vitro and in Vivo. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 85, 149–159. [Google Scholar] [CrossRef]
- Braun, S.; Hnat, W.P.; Freudenthaler, J.W.; Marcotte, M.R.; Hönigle, K.; Johnson, B.E. A Study of Maximum Bite Force during Growth and Development. Angle Orthod. 1996, 66, 261–264. [Google Scholar] [CrossRef]
- Koç, D.; Doğan, A.; Bek, B. Effect of Gender, Facial Dimensions, Body Mass Index and Type of Functional Occlusion on Bite Force. J. Appl. Oral Sci. Rev. FOB 2011, 19, 274–279. [Google Scholar] [CrossRef]
- Shinkai, R.S.; Hatch, J.P.; Sakai, S.; Mobley, C.C.; Saunders, M.J.; Rugh, J.D. Oral Function and Diet Quality in a Community-Based Sample. J. Dent. Res. 2001, 80, 1625–1630. [Google Scholar] [CrossRef]
- Borie, E.; Orsi, I.A.; Fuentes, R.; Beltrán, V.; Navarro, P.; Pareja, F.; Raimundo, L.B. Maximum Bite Force in Elderly Indigenous and Non-Indigenous Denture Wearers. Acta Odontol. Latinoam. AOL 2014, 27, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Emodi-Perlman, A.; Eli, I. One Year into the COVID-19 Pandemic—Temporomandibular Disorders and Bruxism: What We Have Learned and What We Can Do to Improve Our Manner of Treatment. Dent. Med. Probl. 2021, 58, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Awawdeh, L.; Hemaidat, K.; Al-Omari, W. Higher Maximal Occlusal Bite Force in Endodontically Treated Teeth Versus Vital Contralateral Counterparts. J. Endod. 2017, 43, 871–875. [Google Scholar] [CrossRef]
- Ng, Y.-L.; Mann, V.; Gulabivala, K. A Prospective Study of the Factors Affecting Outcomes of Non-Surgical Root Canal Treatment: Part 2: Tooth Survival. Int. Endod. J. 2011, 44, 610–625. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Cong, M.; Liu, D.; Ren, X. A Robotic Chewing Simulator Supplying Six-Axis Mandibular Motion, High Occlusal Force, and a Saliva Environment for Denture Tests. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2021, 235, 751–761. [Google Scholar] [CrossRef]
- Yilmaz, E.Ç.; Sadeler, R. A Literature Review on Chewing Simulation and Wear Mechanisms of Dental Biomaterials. J. Bio-Tribo-Corros. 2021, 7, 91. [Google Scholar] [CrossRef]
- Ibrahim, H.F.; Hassan, G.S. Qualitative and Quantitative Assessment of the Potential Effect of Cigarette Smoking on Enamel of Human Smokers’ Teeth. Arch. Oral Biol. 2021, 121, 104953. [Google Scholar] [CrossRef]
- Ordinola-Zapata, R.; Lin, F.; Nagarkar, S.; Perdigão, J. A Critical Analysis of Research Methods and Experimental Models to Study the Load Capacity and Clinical Behaviour of the Root Filled Teeth. Int. Endod. J. 2022, 55 (Suppl. 2), 471–494. [Google Scholar] [CrossRef]
Author(s) | Sample Caracterization | Methodology | Results | |||
---|---|---|---|---|---|---|
Tooth/Patient | Enamel Selection and Preparation | Elastic Modulus (GPa) | Compressive Strength (MPa) | Kc (MPa m0.5) | ||
Craig et al. (1961) [14] | Freshly extracted mandibular molars (n = 12) | Enamel samples: 1/32 inch diameter | Compression test | 77.9 ± 4.8 (Side) 84.1 ± 6.2 (Cusp) | 384.5 ± 101.9 370.8 ± 87.6 | - |
Enamel in cusps and lateral surfaces showed similar compressive properties. | ||||||
Staines et al. (1981) [40] | Human teeth | Wet and dried samples mounted in epoxy resin blocks | Indentation | 83 | - | - |
Elastic modulus varied with moisture content and enamel orientation. | ||||||
Mahoney et al. (2000) [41] | Primary maxillary first molars (age: 4–7 y; n = 8) | Teeth mounted in epoxy resin blocks were grinded and polished | Ultra-micro-indentation (UMI) | 80.9 ± 6.7 79.8 ± 8.9 | - | - |
UMI is a potential alternative method for measuring elastic modulus and hardness. | ||||||
Bajaj et al. (2008) [16] | Third Molars (age:17–27 y; n = 8) | Sections from cuspal region oriented with prisms parallel to the plane of crack growth | Fatigue crack growth test | - | - | 0.9 |
Microstructural arrangement of the prisms promotes exceptional resistance to crack growth. | ||||||
Park et al. (2008) [2] | Third Molars (age groups: ‘‘young’’ (18 ≤ age ≤ 30; n = 7)/‘‘old’’ (55 ≤ age; n = 7) | Teeth mounted in polyester resin foundation were sliced and polished | Nanoindentation | 75 (Young,Inner) 82 (Young,Middle) 87 (Young,Outer) 79 (Old,Inner) 90 (Old,Middle) 100 (Old,Outer) | - | 0.88 0.88 0.92 0.88 0.73 0.67 |
Elastic modulus and hardness increased with distance from the DEJ regardless of patient age. | ||||||
Ang et al. (2009) [42] | Third Molar (n = 1) | Tooth crown cut and glued to steel core | Nanoindentation | 123 | - | - |
Understanding the elastic–plastic transition is relevant due to the irreversible wear and fatigue that occur past this transition. | ||||||
Bajaj and arola (2009) [43] | Third Molars (age: 17–22; n = 6) | Small cubes (2 × 2 × 2 mm) of cuspal enamel | Fatigue crack growth test | - | - | 2.04 ± 0.23 |
The microstructure of enamel in the decussated region promotes crack growth toughness approximately three times higher than dentin and over ten times higher than bone. | ||||||
Arola et al. (2010) [39] | - | - | Review | 70–110 | - | 0.7–0.21 |
Many challenges for fatigue characterization of hard tissues can be attributed to their size and the complexity of their microstructure. | ||||||
Chai et al. (2011) [44] | Molars (n = 23) | No preparation (n = 7)/ Slice 1 mm (n = 16) | Contact loading test | - | - | 1.02 |
A transition from chipping to splitting occurs at higher loads for contacts nearer the central axis of the tooth. | ||||||
Zheng et al. (2013) [45] | Third Molars (age groups: “young” (18–25); n = 15; “old” (≥55); n = 15) | Sections (height = NP) perpendicular to the buccolingual direction | Microindentation | 99.47 ± 1.57 (Old) 93.24 ± 2.00 (Young) | - | 1.00 ± 0.14 (Outer) 1.23 ± 0.16 (Middle) 1.22 ± 0.21 (Inner) 1.11 ± 0.12 (Outer) 1.27 ± 0.22 (Middle) 1.23 ± 0.23 (Inner) |
Enamel becomes more prone to cracks with aging partly due to the reduction in the interprismatic organic matrix observed with the maturation of enamel. | ||||||
Chai (2014) [46] | Molars (age: 20–30; n = 6) | - | Bilayer Test | - | - | 0.94 ± 0.24 |
Stress–strain curve is highly nonlinear due to plastic shearing of protein between and within enamel rods. | ||||||
Elfallah et al. (2015) [47] | Third Molars (age: 18–40; n = 24) | Embedded in epoxy resin, polished. Half were treated with bleaching agents | Ultra-micro-indentation | - | - | 1.3 ± 0.5 (control) 0.8 ± 0.3 (HP) 0.7 ± 0.2 (CP) |
Tooth bleaching agents can produce detrimental effects on the mechanical properties of enamel, possibly as a consequence of damaging or denaturing protein components. | ||||||
Yahyazadehfar et al. (2016) [48] | Third Molars (age groups: “young” (17 ≤ age ≤ 25; n = 10) and “old” (age ≥ 55; n = 10) | Small cubes (2 × 2 × 2 mm) of cuspal enamel | Fatigue crack growth test | - | - | 2.05 ± 0.19 (Young,Longitudinal) 1.38 ± 0.35 (Old,Longitudinal) 1.23 ± 0.20 (Young, Transverse) 0.37 ± 0.15 (Old,Transverse) |
Reduction in fracture resistance is attributed to a decrease in the extrinsic toughening capacity. | ||||||
Shimomura et al. (2019) [49] | Third Molars | Cuspal region of the tooth cut horizontally and polished with silicon carbide paper | Nanoindentation | 60 (Mapping) 100 (Quasi-static) 130–150 (Loading) | - | - |
The elastic–plastic transition point and elastic modulus value increased with substantially increased quasi-static loading strain rate. | ||||||
Niu et al. (2019) [50] | Third Molars (age 25–27/female/n = 6) | Sections (3.1 × 2.2 × 1.8 mm) of occlusal enamel | Resonant Ultrasound Spectroscopy (RUS) | 71.7 ± 7.34 | - | - |
RUS could provide precise measurement of elastic properties of dental materials. | ||||||
Dejsuvan et al. (2021) [5] | Deciduous molars (age: 4–12) | Sectioned to obtain small enamel samples | Nanoindentation | 76.46 ± 10.46 (Low caries) 61.29 ± 13.33 (High caries) | - | - |
The outer enamel of the low caries experience group had greater mechanical properties than did that in the high caries experience group. | ||||||
Handbook of nanoindentation with biological application [51] | - | - | - | 83.4 ± 7.1 to 105.2 ± 1.3 | 384 | - |
Craig’s restorative materials 13 ed. [52] | - | - | - | 84 | - | - |
Author(s) | Sample | Methodology | Results | ||
---|---|---|---|---|---|
Tooth/Patient | Dentin Selection and Preparation | Elastic Modulus (GPa) | Compressive Strength (MPa) | ||
Peyton et al. (1952) [15] | First and Second Molars (n = 10) | Sectioned to obtain small cylindrical (ϕ = 1.8 mm; length = 4.5 mm) dentin samples | Compression test | 11.51 | 248 |
The physical properties of dentin are influenced by physiological differences, directional effects in the tooth structure, rate of stress application, ratio length/diameter of the test specimen and soundness of test specimen. | |||||
Craig and Peyton (1958) [4] | First and Second Molars (n = 9) | Sectioned to obtain small cylindrical (ϕ = 0.1 inch; length = 0.1–0.3 inch) dentin samples | Compression test | 16.5–18.6 | 275–300 |
The total deformation below the proportional limit consisted of pure and retarded elastic deformation. | |||||
Watts et al. (1987) [53] | Lower Molars (n = 35) | Sectioned to obtain small (3 × 2.5 × 1.25 mm) dentin samples | Compression test | 13.26 | 260 |
A statistically significant, linear regression relationship was found between modulus (E) and temperature. The higher the temperature, the lower E. | |||||
Mahoney et al. (2000) [41] | Decidious maxillary first molars (age: 4–7; n = 8) | Teeth were mounted in epoxy resin blocks, grinded and polished | UMI | 20.55 ± 2 (50 mN) 19.2 ± 1.84 (150 mN) | - |
UMI is a potential alternative method for measuring elastic modulus and hardness. | |||||
Kinney et al. (2003) [10] | - | - | Review | 18–20 | - |
The elastic properties of dentin depend on the microstructure of the intertubular dentin matrix. | |||||
Yan et al. (2008) [20] | Third Molars (n = 10) | Sectioned to obtain small (1.6 × 1.6 × 10 mm) dentin samples | Three-point flexure test | 15 ± 0.5 (In-plane parallel) 15.4 ± 0.4 (Anti-plane parallel) | - |
The J integral of anti-plane parallel specimens is significantly greater than that of in-plane parallel specimens. | |||||
Arola et al. (2010) [39] | - | - | Review | 12–20 | - |
Many challenges for fatigue characterization of hard tissues can be attributed to their size and the complexity of their microstructure. | |||||
Young June Yoon (2013) [54] | - | - | Speed of Sound and Resonant Ultrasound Spectroscopy | 20.7–25.4 | - |
The use of these methodologies gives results similar to former studies. These methodologies could be used to further study the properties of dentin. | |||||
Rodrigues et al. (2018) [55] | Irradiated and non-irradiated Third Molars (n = 10) | Crowns were sectioned and divided in halves | Indentation | 17.18 ± 1.64 (Non-irradiated, Superficial) 17.88 ± 0.92 (Non-irradiated, Middle) 18.34 ± 1.58 (Non-irradiated, Deep) 14.20 ± 0.66 (Irradiated, Superficial) 13.95 ± 1.05 (Irradiated, Middle) 14.36 ± 1.46 (Irradiated, Deep) | - |
Elastic modulus decreased after irradiation of samples. | |||||
Muslov (2018) [56] | - | - | Mathematical formulation | 23.3 | - |
Dentin and tooth enamel are not isotropic media due to the symmetry of their mineral component hydroxyapatite crystals. | |||||
Craig’s restorative materials 13 ed. [52] | - | - | - | 17 | 297 |
Author(s) | Sample | Methodology | Results | ||||
---|---|---|---|---|---|---|---|
Tooth/Patient | Dentin Selection and Preparation | ∆Kth (MPa m0.5) | Kc (MPa m0.5) | Paris Exponent (m) | Paris Coefficient (C) | ||
Iwamoto and Ruse (2003) [58] | Molars (n = 24) | Sectioned to obtain dentin triangular prisms (4 × 4 × 8 mm) | Notch Triangular Prism Test | - | 1.97 ± 0.17 (Parallel) 1.13 ± 0.36 (Perpendicular) | - | - |
Both the hypermineralized peritubular dentin and the orientation of collagen fibrils surrounding the tubules could be responsible for the significant differences in KC. | |||||||
Nalla (2003) [6] | Molars | Sectioned to obtain small (0.9 × 0.9 × 10 mm) dentin samples | Fatigue Cantilever Test | 1.06 | 1.8 | 8.76 | 6.24 × 10−11 |
The presence of small (on the order of 250 µm) incipient flaws in human teeth will not radically affect their useful life | |||||||
Bajaj et al.(2006) [17] | Second and Third molars (“young” (18–35); n = 8; “old” (≥47); n = 14) | Sectioned to obtain small (6 × 4 × 2 mm) dentin samples | Fatigue crack growth test | 0.7 (Young) 0.5 (Old) | - | 13.3 ± 1.1 21.6 ± 5.2 | 1.76 × 10−5 2.90 × 10−2 |
The fatigue crack growth resistance of human dentin decreases with age and dehydration. | |||||||
Zhang et al. (2007) [18] | Second and Third molars | Sectioned to obtain small (2 × 2 × 2 mm) dentin samples | Fatigue crack growth test | - | 1.65 (Young) 1.3 (Old) | 13.8 ± 7.6 | - |
Future evaluations of fracture and the mechanisms of toughening in these materials should account for the contributions of inelastic deformations. | |||||||
Yan et al. (2008) [20] | Third Molars (n = 10) | Sectioned to obtain small (1.6 × 1.6 × 10 mm) dentin samples | 3-point Flexure Test | - | 2.4 ± 0.2 (In-plane parallel) 2.5 ± 0.2 (Anti-plane parallel) | - | - |
The J integral of anti-plane parallel specimens is significantly greater than that of in-plane parallel specimens. | |||||||
Nazari et al. (2009) [59] | Third Molars (“young”) (18–35); “middle” (35–55; “old” (≥55)) (n = 14) | Sectioned to obtain small (6 × 4 × 2 mm) dentin samples | Fatigue crack growth test | - | 1.65 ± 0.1 (Young) 1.43 ± 0.1 (Middle) 1.17 ± 0.09 (Old) | - | - |
Human dentin exhibits a rising R-curve. There is a significant reduction in both the initiation and plateau components of toughness with age. | |||||||
Yan et al. (2009) [21] | Third Molars (n = 16) | Sectioned to obtain small (1.6 × 1.6 × 10 mm) dentin samples | 3-point Flexure Test | - | 2.2 ± 0.2 (In-plane parallel) 2.4 ± 0.2 (Anti-plane parallel) | - | - |
Human dentin has a fracture surface similar to those of brittle materials. | |||||||
Arola et al. (2010) [39] | - | - | Review | 0.6 | 1.5–2.1 | 10–20 | - |
Many challenges for fatigue characterization of hard tissues can be attributed to their size and the complexity of their microstructure. | |||||||
Ivancik et al. (2011) [60] | Third Molar (n = 31) | Sectioned to obtain small (6 × 4 × 2 mm) dentin samples | Fatigue crack growth test | 0.8 ± 0.12 (Deep) 1.0 ± 0.06 (Middle) 1.2 ± 0.08 (Peripheral) | - | 27.5 ± 7 25.5 ± 2.9 26.7 ± 2.8 | 1.64 × 10−5 ± 0.02 × 10−5 4.41 × 10−8 ± 0.21 × 10−8 5.61 10−10 ± 0.12 × 10−10 |
Molars with deep restorations are more likely to suffer from cracked-tooth syndrome, because of the lower fatigue crack growth resistance of deep dentin | |||||||
Ivancik et al. (2012) [57] | Third Molars (“young” (17–33); n = 32; “old” (≥55); n = 15) | Sectioned to obtain small (6 × 4 × 2 mm) dentin samples | Fatigue crack growth test | 1.03 ± 0.1 (Young, Parallel) 0.83 ± 0.1 (Young,Perpendicular) 0.77 ± 0.1 (Old,Parallel) 0.60 ± 0.1 (Old,Perpendicular) | - | 25.47 ± 3.0 14.15 ± 1 23.11 ± 5.1 24.16 ± 4.3 | 4.79 × 10−8 2.69 × 10−5 6.61 × 10−5 1.58 × 10−2 |
Regardless of tubule orientation, aging of dentin is accompanied by a significant reduction in the resistance to the initiation of fatigue crack growth, as well as a significant increase in the rate of incremental extension. | |||||||
Orrego et al. (2017) [19] | Third Molars (age = 17–33; n = 103) | Sectioned to obtain small (1.5 × 0.5 × 10 mm) dentin samples | 4-point Cyclic Flexure Test | 1.03 ± 0.06 (Middle) 1.23 ± 0.08 (Outer) | - | 25.5 ± 2.9 26.7 ± 2.8 | 4.4 × 10−8 5.6 × 10−10 |
The endurance limit after biofilm exposure was 60% lower than that of the control environment. |
Author(s) | Sample | Methodology | Results | ||
---|---|---|---|---|---|
Tooth/Patient | PDL Selection and Preparation | Elastic Modulus (MPa) | Poisson Ratio | ||
Thresher and Saito (1973) [64] | Upper Incisor | - | 2D FEM | 1379 | 0.45 |
FEM is an appropriate analysis tool for the study of teeth. | |||||
Mandel et al. (1986) [8] | Lower First Premolars (age:23–55/male/n = 20) | Teeth were cut is small samples (height = 1.05 mm) containing dentin, PDL and alveolar bone | Flexural deformation | 3 | - |
In order to compare the mechanical properties of PDL care should be taken to compare areas at the same root level. | |||||
Rees and Jacobsen (1997) [65] | Lower First Premolar (n = 1) | Tooth was embedded in epoxy resin and sectioned bucco-lingually through the centre of the tooth | 2D FEM + Uniaxial tensile test | 50 | 0.49 |
An elastic modulus of 50 MPa gave good correlation between the finite element model and the experimental systems. | |||||
Jones et al. (2001) [66] | Upper Incisors (age = 24.7–36.5; n = 10) | - | 3D FEM + In vivo compressive load test | 1 | 0.45 |
PDL is the main mediator of orthodontic tooth movement. | |||||
Yoshida et al. (2001) [67] | Upper Incisor (age = 24–27/female/n = 2) | - | In vivo compressive load test | 0.12–0.96 | - |
The values of Young’s moduli increased almost exponentially with the increment of load due to a non-linear elasticity of the PDL. | |||||
Wu et al. (2018) [7] | Lower Incisors (age = 31–52/male/n = 3) | Teeth were cut is small samples (8 × 6 × 2 mm) containing dentin, PDL and alveolar bone | Uniaxial tensile test | 0.33–6.82 | - |
The elastic behavior of the PDL is infuenced by the loading rate, tooth type, root level, and individual variation. |
Author(s) | Site | Methodology | Results | ||
---|---|---|---|---|---|
Tooth/Patient | Bone Selection and Preparation | Elastic Modulus (GPa) | Poisson Ratio | ||
Cortical | |||||
Borchers and Reichart (1983) [84] | - | - | FEM | 13.7 | 0.3 |
Presence in the model of a connective tissue layer around the implant reduces stress peaks. | |||||
Schwartz-Dabney and Dechow (2002) [80] | Edentolous Mandibles (age = 58–88; n = 10) | Small cylindrical samples (ϕ = 4 mm) were sectioned from the mandibles | Ultrasonic Waves Emission | E1 = 13.26 E2 = 17.51 E3 = 26.28 | µ12 = 0.25 µ31 = 0.45 µ23 = 0.22 |
Mandibular cortical bone in edentulous mandibles differs from that of dentate mandibles in cortical thickness, elastic and shear moduli, anisotropy, and orientation of the axis of maximum stiffness. | |||||
Lettry et al. (2003) [85] | Mandibles (Premolar and Molar Sections) (age = 53–106; n = 5) | Small prismatic (section = 1 × 2 mm) samples were sectioned from the mandibles | 3-point Bending Test | 5–15 (Approximation) | - |
A weak correlation was found between the elastic modulus values and the computer tomography number of the mandible. | |||||
Seong et al. (2009) [86] | Fresh Edentulous Maxilla and Mandibles (n = 4; age = 72–91) | Samples were sectioned (width = 3 mm) from the maxillas and mandibles in different areas | Nanoindentation | 16.8 (Anterior) 19.7 (Posterior) | - |
Bone physical properties differ between regions of the maxilla and mandible. Generally, mandible has higher physical property measurements than maxilla | |||||
Trabecular | |||||
Borchers and Reichart (1983) [84] | N.A. | N.A. | FEM | 1.37 | 0.3 |
Presence in the model of a connective tissue layer around the implant reduces stress peaks. | |||||
Misch et al. (1999) [87] | Fresh Mandibles (n = 9; age = 56–90) | Small cylindrical samples (ϕ = 5 mm; length = 5 mm) were sectioned from the mandibles | Compression Test | 67.48 (Anterior) 47.3 (Premolar) 35.55 (Molar) | - |
Trabecular bone in the mandible possesses significantly higher density, elastic modulus, and ultimate compressive strength in the anterior region than in either the middle or distal regions. | |||||
O’mahony et al. (2000) [79] | Fresh Edentulous Mandible (n = 1/female/age = 74) | Samples (4.4 × 4.4 × 4.8 mm)were sectioned from the mandible | Compression Test | 0.91 (Mesio-Distal) 0.51 (Bucco-Lingual) 0.11 (Infero-Superior) | - |
Models of cancellous bone in the jaw should present a symmetry axis along the infero-superior (weakest) direction. | |||||
Seong et al. (2009) [86] | Fresh Edentulous Maxilla and Mandibles (n = 4; age = 72–91) | Samples were sectioned (width = 3 mm) from the maxillas and mandibles in different areas | Nanoindentation | 16.8 19.7 | - |
Bone physical properties differ between regions of the maxilla and mandible. Generally, mandible has higher physical property measurements than maxilla |
Author(s) | Field of Study and Fatigue/Fracture Criteria | Load/Cycles | Geometry | Type of Study |
---|---|---|---|---|
Sakaguchi et al. (1992) [101] | Fracture Mechanics/Forman crack growth rate | 13.9 N | Maxillary premolar | 2D FEM |
Libman and Nicholls (1995) [134] | Restorations and Crowns/Fracture Appearance | 40 N/Until fracture at 1.2 Hz | Central incisors | Experimental |
Cohen et al. (1997) [135] | Endodontic Posts/- | 22.2 N/4 × 106 cycles at 3 Hz | Premolars and Incisors | Experimental |
Lanza et al. (2005) [136] | Endodontic Posts/Material Failure Limits | 10 N at 125° | Scanned maxillary incisor | 3D FEM |
Dejak et al. (2006) [107] | Fracture Mechanics/Tsai-Wu Ratio | 0 to 200 N | 2-D Finite element model of mandibular molar and crown of maxillary antagonizing molar | 2D FEM |
Cobankara et al. (2008) [137] | Restorations and Crowns/Fracture Appearance | 50 N/6 × 104 cycles at 1.3 Hz24 h later, 1 mm/min compressive load | Mandibular molars | Experimental |
Lin et al. (2010) [138] | Restorations and Crowns/Failure Probability through Weibull Analysis | 50 N/2 × 104 cycles at 3 Hz (Experimental) 100 N (FEM) | Maxillary premolars | Experimental + 3D FEM |
Uy et al. (2010) [139] | Restorations and Crowns, Endodontic Posts/Strain Amplitude | 58.8 N at 135° | First and second premolars | Experimental |
Barani et al. (2011) [140] | Fracture Mechanics/Fracture Appearance (Experimental) and Critical Energy Release Rate (XFEM) | Compression test with indenter | Molars (Experimental), 3-D Dome structure (XFEM) | Experimental + 3D FEM |
Du et al. (2011) [141] | Endodontic Posts/- | 100 N at 45° | Lower first premolar | 3D FEM |
Rodríguez-Cervantes et al. (2011) [142] | Endodontic Posts/- | 0–50 N/1.2 × 106 cycles | Scanned premolars and modelled PDL and bone | 3D FEM |
Nie et al. (2012) [104] | Restorations and Crowns/Fracture Appearance | 127.4 N at 45°/1.2 × 106 cycles at 6 Hz | Lower premolars | Experimental |
Benazzi et al. (2014) [143] | Stress Distributions/- | 100 N | Lower second premolar | 3D FEM |
Toledano et al. (2014) [144] | Restorations and Crowns/- | 49 N/1 × 105 cycles | Halves of third molars | Experimental |
Toledano et al. (2015) [105] | Adhesives/- | 225 N/259,200 cycles at 3 Hz | Third molars | Experimental |
Vukicevic et al. (2015) [22] | Restorations and Crowns/Fatigue Failure Index, Stress Ratio, Goodman’s Line, Paris Law | 100, 150 and 200 N/1 × 106 cycles | Maxillary second premolars | 3D FEM |
Zhu et al. (2015) [145] | Restorations and Crowns/Fracture Appearance or Fluid Penetration | 260 N/2 × 106 cycles at 4 Hz | Upper first premolars | Experimental |
Gao et al. (2016) [146] | Fracture Mechanics/Maximum Strain Energy (Zhang (2011) criteria) | 100–700 N/1 × 106 cycles at 2 Hz | Third molars | Experimental |
Toledano et al. (2016) [147] | Adhesives/Fracture Appearance | 225 N/259,200 cycles at 3 Hz | Third molars | Experimental |
Ossareh et al. (2018) [23] | Fracture Mechanics/Fracture Appearance | 50 N/1.2 × 106 cycles at 1.6 Hz w/6 × 103 2 min cycles × 5 °C/55 °C (Experimental) 100 N (FEM) | Mandibular premolars | Experimental + 3D FEM |
Chen et al. (2021) [148] | Restorations and Crowns/Fracture Appearance | 50 N/1.2 × 106 cycles w/2 × 104 cycles × 5 °C/55 °C (Experimental) | Maxillary premolars | Experimental + 3D FEM |
Chen et al. (2021) [149] | Restorations and Crowns/Fracture Appearance | 50 N at 45° (tongue direction)/1.2 × 106 cycles at 2 Hz. (Experimental)50 N oblique compressive load (FEM) | Maxillary premolars | Experimental + 3D FEM |
Author(s) | Field of Study and Fracture/Fatigue Criteria | Load/Cycles | Geometry | Type of Study |
---|---|---|---|---|
Kovarik et al. (1992) [161] | Endodontic Posts/Fracture appearance | 340 N/1× 106 cycles at 1 Hz | Canines | Experimental |
Rees (2002) [162] | Stress distributions/Maximum Principal Stress | 500 N | Lower second premolar | 2D FEM |
Maceri et al. (2007) [163] | Endodontic Posts/Rankine Stress | 400 N (Vertical) 200 N (45°) | Lower premolar | 3D FEM |
Hayashi et al. (2008) [164] | Endodontic Posts/Fracture appearance | 90° at 0.5 mm/min (Static, Upper premolar) 45° at 0.5 mm/min (Static, Lower premolar) 90° (Fatigue, Upper premolar) 45° (Fatigue, Lower premolar) 2 × 106 cycles at 2 Hz | Upper and lower premolars | Experimental |
Cheng et al. (2009) [165] | Stress distributions/- | 500 N (0°, 30°, 45° and 60°) | Simulated canals | 3D FEM |
Magne et al. (2010a) [166] | Restorations and Crowns/Fracture Appearance | 200 N/5 × 106 3 cycles at 5 Hz Then 200 N increasing steps until 1200 N/Max. 3 × 104 cycles/step at 5 Hz | Maxillary molars | Experimental |
Magne (2010b) [167] | Restorations and Crowns/Maximum Principal Stress | 200 N, 700 N | Mandibular molar | 3D FEM |
Inoue et al. (2011) [168] | Material Sciences/Fracture Appearance | 5 MPa steps/1 × 105 cycles (Staircase method) | Bovine lower central incisors | Experimental |
Kasai et al. (2012) [169] | Stress Distributions/- | 100 N, 200 N and 800 N | Mandible w/two implants in the molar region Mandible w/four implants in the pre- and molar regions | 3D FEM |
Nie et al. (2012) [104] | Restorations and Crowns, Endodontic Posts/Fracture Appearance | Increasing load at 45° until fracture is detected | Lower premolars | Experimental |
Magne et al. (2014) [24] | Restorations and Crowns/Fracture Appearance | 200 N/5 × 103 cycles Then 200 N increasing steps until 1400 N/Max. 3 × 104 cyles/step at 10 Hz | Maxillary molars | Experimental |
Jayasudha et al. (2015) [102] | Stress distributions/Maximum Principal Stress | Sinusoidal 800 N/1 cycle for 4 ms | Incisor | 3D FEA |
Kayumi et al. (2015) [170] | Stress Distributions/- | 40 N, 100 N, 200 N, 400 N and 800 N | Mandible w/ eight implants in the pre- and molar regions | 3D FEM |
Toledano et al. (2015) [105] | Adhesives/- | 225 N/6171 cycles at 0.072 Hz (Cyclic Clenching) 225 N/For 24 h and 72 h (Permanent Clenching) | Third molars | Experimental |
Gao et al. (2016) [146] | Fracture Mechanics/Maximum Strain Energy (Zhang (2011) criteria) | 100 N-700 N/Until reaching critical displacement at 2 Hz | Third molars | Experimental |
Toledano et al. (2016) [147] | Adhesives/Fracture Appearance | 225 N/6171 cycles at 0.072 Hz (Cyclic Clenching) 225 N/For 24 h and 72 h (Permanent Clenching) | Third molars | Experimental |
Magne and Cheung (2017) [103] | Stress Distributions/- | 500 N | Maxillary first molar | 3D FEM |
Missau et al. (2017) [171] | Fracture Mechanics/Fracture Appearance | 200 N/5 × 103 cycles Then 100 N increasing steps until 900 N/Max. 3 × 104 cyles per step at 10 Hz | Canines | Experimental |
Da Fonseca et al. (2018) [172] | Restoration and Crowns/- | 300 N (Occlusal) 300 N (Oblique) | Maxillary premolar | 3D FEM |
Yoon et al. (2018) [173] | Endodontic Posts/- | 300 N | Mandibular first molar | 3D FEM |
Dartora et al. (2019) [25] | Restoration and Crowns/Fracture Appearance and Mohr-Coulomb stress | 200 N/5 × 103 cycles Then 200 N increasing steps until 2800 N/Max. 1 × 104 cycles/step at 20 Hz (Experimental) 300 N at 30° (tongue long-axis) (FEM) | Mandibular molars | 3D FEM and Experimental |
Wan et al. (2019) [174] | Fracture Mechanics/Maximum Principal Stress | 0,2 mm displacement | Human premolars | 3D FEM |
Fráter et al. (2021) [175] | Endodontic Posts/Fracture Appearance | 100–500 N/2.5 × 104 cycles at 5 Hz 600–1000 N/3 × 105 cycles at 5 Hz | Upper premolars | Experimental |
He et al. (2021) [176] | Restoration and Crowns/- | 600 N (Occlusal) + 20 N (bucco-lingual) | First mandibular molar | 3D FEM |
Kim et al. (2021) [106] | Restoration and Crowns/Maximum Principal Stress and Von Mises | 1000 N | Lower first molar | 3D FEM |
Meng et al. (2021) [177] | Restoration and Crowns/- | 600 N | Mandibular molars | 3D FEM |
Zheng et al. (2021) [178] | Restoration and Crowns/- | 200 N Calculations from 300 N to 1500 N in proportion to 200 N results | Mandibular molar | 3D FEM and Statistical |
Lin et al. (2022) [26] | Fracture Mechanics/Fracture Appearance, Fracture Probability and Cumulative Damage and S-N curve | 100 N Increasing steps until 400 N/3 × 103 cycles/step Then 50 N increasing steps until 850 N/1 × 103 cycles/step (Experimental) Static loads at each step (FEM) | Mandibular premolars | 3D FEM and Experimental |
Author(s) | Field of Study | Loads | Geometry | Type of Study |
---|---|---|---|---|
Kaidonis et al. (1998) [194] | Materials Science | 32 N, 99.5 N, 162 N/1.33 Hz | Premolars | Experimental |
Dejak et al. (2006) [107] | Fracture Mechanics | 0–200 N with 0.1 mm medial and lateral displacement | 2D Mandibular molar and crown of maxillary antagonizing molar | 2D FEM |
Yang et al. (2016) [28] | Stress Distributions | 908 N, 1470 N, 1960 N, and 2205 N in recorded incision direction | Jaw model | 3D FEM |
Magne and cheung (2017) [103] | Stress Distributions | 500 N | Maxillary first molar | 3D FEM |
Ortún-terrazas et al. (2020) [29] | Materials Science | Recorded reaction forces on the lower left cuspid tooth of the full dentition model | Jaw model and Incisive | Experimental + 3D FEM |
Sagl et al. (2022) [27] | Biomechanics | 3 mm lateral excursion with 6 different inclinations | Jaw model | 3D FEM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorado, S.; Arias, A.; Jimenez-Octavio, J.R. Biomechanical Modelling for Tooth Survival Studies: Mechanical Properties, Loads and Boundary Conditions—A Narrative Review. Materials 2022, 15, 7852. https://doi.org/10.3390/ma15217852
Dorado S, Arias A, Jimenez-Octavio JR. Biomechanical Modelling for Tooth Survival Studies: Mechanical Properties, Loads and Boundary Conditions—A Narrative Review. Materials. 2022; 15(21):7852. https://doi.org/10.3390/ma15217852
Chicago/Turabian StyleDorado, Saúl, Ana Arias, and Jesus R. Jimenez-Octavio. 2022. "Biomechanical Modelling for Tooth Survival Studies: Mechanical Properties, Loads and Boundary Conditions—A Narrative Review" Materials 15, no. 21: 7852. https://doi.org/10.3390/ma15217852
APA StyleDorado, S., Arias, A., & Jimenez-Octavio, J. R. (2022). Biomechanical Modelling for Tooth Survival Studies: Mechanical Properties, Loads and Boundary Conditions—A Narrative Review. Materials, 15(21), 7852. https://doi.org/10.3390/ma15217852