Supercapacitor Properties of rGO-TiO2 Nanocomposite in Two-component Acidic Electrolyte
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of rGO/TiO2 Composite
2.2. Physical Techniques
2.3. Standard Contact Porosimetry
2.4. Electrochemical Methods
3. Results and Discussion
3.1. X-ray Photoelectron Spectra
3.2. SEM
3.3. Porosimetric Data
3.4. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conway, B.E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Bagotsky, V.S.; Skundin, A.M.; Volfkovich, Y.M. Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors; John Wiley & Sons: New York, NY, USA, 2015. [Google Scholar]
- Patel, K.K.; Singhal, T.; Pandey, V.; Sumangala, T.; Sreekanth, M. Evolution and recent developments of high performance electrode material for supercapacitors: A review. J. Energy Storage 2021, 44, 103366. [Google Scholar] [CrossRef]
- Hepel, M. Advances in micro-supercapacitors (MSCs) with high energy density and fast charge-discharge capabilities for flexible bioelectronic devices—A review. Electrochem. Sci. Adv. 2022, e2100222. [Google Scholar] [CrossRef]
- Yaseen, M.; Khattak, M.A.K.; Humayun, M.; Usman, M.; Shah, S.S.; Bibi, S.; Hasnain, B.S.U.; Ahmad, S.M.; Khan, A.; Shah, N.; et al. A Review of Supercapacitors: Materials Design, Modification, and Applications. Energies 2021, 14, 7779. [Google Scholar] [CrossRef]
- Nzisabira, J.; Louvigny, Y.; Duysinx, P. Comparison of ultra capacitors, hydraulic accumulators and batteries technologies to optimize hybrid vehicle ecoefficiency. In Proceedings of the 2009 International Conference on Power Engineering, Energy and Electrical Drives, Lisbon, Portugal, 18–20 March 2009; pp. 353–358. [Google Scholar] [CrossRef] [Green Version]
- Simon, P.; Gogotsi, Y.; Dunn, B. Where Do Batteries End and Supercapacitors Begin? Science 2014, 343, 1210–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Yang, Z.; Liu, S.; Zhang, Q.; Han, Y. A comprehensive overview of hybrid construction machinery. Adv. Mech. Eng. 2016, 8, 1687814016636809. [Google Scholar] [CrossRef] [Green Version]
- Azaïs, P. Manufacturing of Industrial Supercapacitor. Supercapacitor Materials, Systems, and Applications; Béguin, F., Frackowiak, E., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; p. 320. [Google Scholar]
- Huang, S.; Zhu, X.; Sarkar, S.; Zhao, Y. Challenges and opportunities for supercapacitors. APL Mater. 2019, 7, 100901. [Google Scholar] [CrossRef] [Green Version]
- Utetiwabo, W.; Yang, L.; Tufail, M.K.; Zhou, L.; Chen, R.; Lian, Y.; Yang, W. Electrode materials derived from plastic wastes and other industrial wastes for supercapacitors. Chin. Chem. Lett. 2020, 31, 1474–1489. [Google Scholar] [CrossRef]
- Chodankar, N.R.; Patil, S.J.; Hwang, S.-K.; Shinde, P.A.; Karekar, S.V.; Raju, G.S.R.; Ranjith, K.S.; Olabi, A.G.; Dubal, D.P.; Huh, Y.S.; et al. Refurbished carbon materials from waste supercapacitors as industrial-grade electrodes: Empowering electronic waste. Energy Storage Mater. 2022, 49, 564–574. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, J.; Wang, T.; Shao, J.; Wang, D.; Yang, Y.-W. Mesoporous Transition Metal Oxides for Supercapacitors. Nanomaterials 2015, 5, 1667–1689. [Google Scholar] [CrossRef]
- An, C.; Zhang, Y.; Guo, H.; Wang, Y. Metal oxide-based supercapacitors: Progress and prospectives. Nanoscale Adv. 2019, 1, 4644–4658. [Google Scholar] [CrossRef] [Green Version]
- Rozhdestvenska, L.M.; Chaban, M.O.; Dzyazko, Y.S.; Palchik, O.V.; Dzyazko, O.G. Formation of lithium-selective sorbent in nanoreactors of the support based on titanium dioxide. Appl. Nanosci. 2021, 12, 1113–1122. [Google Scholar] [CrossRef]
- Chaban, M.O.; Rozhdestvenska, L.M.; Palchyk, O.V.; Dzyazko, Y.S.; Dzyazko, O.G. Structural characteristics and sorption properties of lithium-selective composite materials based on TiO2 and MnO2. Appl. Nanosci. 2018, 9, 1037–1045. [Google Scholar] [CrossRef]
- Perlova, O.V.; Dzyazko, Y.S.; Palchik, O.V.; Martovyi, I.S. Hydrated titanium dioxide modified with potassium cobalt hexacyanoferrate(II) for sorption of cationic and anionic complexes of uranium(VI). Appl. Nanosci. 2021, 12, 651–663. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Stoller, M.D.; Velamakanni, A.; Piner, R.D.; Ruoff, R.S. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 2010, 48, 2118–2122. [Google Scholar] [CrossRef]
- Miller, J.R.; Outlaw, R.A.; Holloway, B.C. Graphene Double-Layer Capacitor with ac Line-Filtering Performance. Science 2010, 329, 1637–1639. [Google Scholar] [CrossRef]
- Luo, W.-B.; Chou, S.-L.; Wang, J.-Z.; Zhai, Y.-C.; Liu, H.-K. A Metal-Free, Free-Standing, Macroporous Graphene@g-C3N4Composite Air Electrode for High-Energy Lithium Oxygen Batteries. Small 2015, 11, 2817–2824. [Google Scholar] [CrossRef]
- Perlova, O.V.; Dzyazko, Y.S.; Palchik, A.V.; Ivanova, I.S.; Perlova, N.O.; Danilov, M.O.; Rusetskii, I.A.; Kolbasov, G.Y.; Dzyazko, A.G. Composites based on zirconium dioxide and zirconium hydrophosphate containing graphene-like additions for removal of U(VI) compounds from water. Appl. Nanosci. 2020, 10, 4591–4602. [Google Scholar] [CrossRef]
- Nagaraju, P.; Alsalme, A.; Alswieleh, A.; Jayavel, R. Facile in-situ microwave irradiation synthesis of TiO2/graphene nanocomposite for high-performance supercapacitor applications. J. Electroanal. Chem. 2018, 808, 90–100. [Google Scholar] [CrossRef]
- Ates, M.; Bayrak, Y.; Yoruk, O.; Caliskan, S. Reduced graphene oxide/Titanium oxide nanocomposite synthesis via microwave-assisted method and supercapacitor behaviors. J. Alloy. Compd. 2017, 728, 541–551. [Google Scholar] [CrossRef]
- Thirugnanam, L.; Sundara, R. Few layer graphene wrapped mixed phase TiO2 nanofiber as a potential electrode material for high performance supercapacitor applications. Appl. Surf. Sci. 2018, 444, 414–422. [Google Scholar] [CrossRef]
- Agharezaei, P.; Abdizadeh, H.; Golobostanfard, M.R. Flexible supercapacitor electrodes based on TiO2/rGO/TiO2 sandwich type hybrids. Ceram. Int. 2018, 44, 4132–4141. [Google Scholar] [CrossRef]
- Pham, V.H.; Nguyen-Phan, T.-D.; Tong, X.; Rajagopalan, B.; Chung, J.S.; Dickerson, J.H. Hydrogenated TiO2@reduced graphene oxide sandwich-like nanosheets for high voltage supercapacitor applications. Carbon 2018, 126, 135–144. [Google Scholar] [CrossRef]
- Prasannalakshmi, P.; Shanmugam, N.; Kumar, A.S.; Kannadasan, N. Phase-dependent electrochemistry of TiO2 nanocrystals for supercapacitor applications. J. Electroanal. Chem. 2016, 775, 356–363. [Google Scholar] [CrossRef]
- Raj, C.C.; Srimurugan, V.; Flamina, A.; Prasanth, R. Tuning the carrier density of TiO2 nanotube arrays by controlling the oxygen vacancies for improved areal capacitance in supercapacitor applications. Mater. Chem. Phys. 2020, 248, 122925. [Google Scholar] [CrossRef]
- Alonso-Tellez, A.; Masson, R.; Robert, D.; Keller, N.; Keller, V. Comparison of Hombikat UV100 and P25 TiO2 performance in gas-phase photocatalytic oxidation reactions. J. Photochem. Photobiol. A Chem. 2012, 250, 58–65. [Google Scholar] [CrossRef]
- Volfkovich, Y.M.; Filippov, A.N.; Bagotsky, V.S. Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology; Springer: London, UK, 2014. [Google Scholar] [CrossRef]
- Volfkovich, Y.M.; Sakars, A.V.; Volinsky, A. Application of the standard porosimetry method for nanomaterials. Int. J. Nanotechnol. 2005, 2, 292. [Google Scholar] [CrossRef]
- Rouquerol, J.; Baron, G.; Denoyel, R.; Giesche, H.; Groen, J.; Klobes, P.; Levitz, P.; Neimark, A.V.; Rigby, S.; Skudas, R.; et al. Liquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC Technical Report). Pure Appl. Chem. 2011, 84, 107–136. [Google Scholar] [CrossRef]
- Klym, H.; Karbovnyk, I.; Luchechko, A.; Kostiv, Y.; Pankratova, V.; Popov, A.I. Evolution of Free Volumes in Polycrystalline BaGa2O4 Ceramics Doped with Eu3+ Ions. Crystals 2021, 11, 1515. [Google Scholar] [CrossRef]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Eigler, S.; Dotzer, C.; Hof, F.; Bauer, W.; Hirsch, A. Sulfur Species in Graphene Oxide. Chem.-A Eur. J. 2013, 19, 9490–9496. [Google Scholar] [CrossRef]
- Long, D.; Li, W.; Ling, L.; Miyawaki, J.; Mochida, I.; Yoon, S.-H. Preparation of Nitrogen-Doped Graphene Sheets by a Combined Chemical and Hydrothermal Reduction of Graphene Oxide. Langmuir 2010, 26, 16096–16102. [Google Scholar] [CrossRef]
- Wang, K.; Li, L.; Zhang, T.; Liu, Z. Nitrogen-doped graphene for supercapacitor with long-term electrochemical stability. Energy 2014, 70, 612–617. [Google Scholar] [CrossRef]
- Śliwak, A.; Grzyb, B.; Díez, N.; Gryglewicz, G. Nitrogen-doped reduced graphene oxide as electrode material for high rate supercapacitors. Appl. Surf. Sci. 2017, 399, 265–271. [Google Scholar] [CrossRef]
- Raj, T.V.; Hoskeri, P.A.; Muralidhara, H.; Prasanna, B.; Kumar, K.Y.; Alharthi, F.A.; Raghu, M. Tantalum pentoxide functionalized nitrogen-doped reduced graphene oxide as a competent electrode material for enhanced specific capacitance in a hybrid supercapacitor device. J. Alloy. Compd. 2020, 861, 158572. [Google Scholar] [CrossRef]
- Barclay, M.; Hill, S.B.; Fairbrother, D.H. Use of X-ray photoelectron spectroscopy and spectroscopic ellipsometry to characterize carbonaceous films modified by electrons and hydrogen atoms. Appl. Surf. Sci. 2019, 479, 557–568. [Google Scholar] [CrossRef]
- Lei, Y.; Jiang, J.; Wang, Y.; Bi, T.; Zhang, L. Structure evolution and stress transition in diamond-like carbon films by glancing angle deposition. Appl. Surf. Sci. 2019, 479, 12–19. [Google Scholar] [CrossRef]
- Okpalugo, T.; Papakonstantinou, P.; Murphy, H.; McLaughlin, J.; Brown, N. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 2005, 43, 153–161. [Google Scholar] [CrossRef]
- Kovtyukhova, N.I.; Mallouk, T.E.; Pan, A.L.; Dickey, E.C. Individual Single-Walled Nanotubes and Hydrogels Made by Oxidative Exfoliation of Carbon Nanotube Ropes. J. Am. Chem. Soc. 2003, 125, 9761–9769. [Google Scholar] [CrossRef]
- Lesiak, B.; Kövér, L.; Tóth, J.; Zemek, J.; Jiricek, P.; Kromka, A.; Rangam, N. C sp2/sp3 hybridisations in carbon nanomaterials—XPS and (X)AES study. Appl. Surf. Sci. 2018, 452, 223–231. [Google Scholar] [CrossRef]
- Carvalho, A.; Costa, M.; Marangoni, V.; Ng, P.; Nguyen, T.; Neto, A.C. The Degree of Oxidation of Graphene Oxide. Nanomaterials 2021, 11, 560. [Google Scholar] [CrossRef] [PubMed]
- Shulga, Y.; Kabachkov, E.; Korepanov, V.; Khodos, I.; Kovalev, D.; Melezhik, A.; Tkachev, A.; Gutsev, G. The Concentration of C(sp3) Atoms and Properties of an Activated Carbon with over 3000 m2/g BET Surface Area. Nanomaterials 2021, 11, 1324. [Google Scholar] [CrossRef] [PubMed]
- Lazar, P.; Mach, R.; Otyepka, M. Spectroscopic Fingerprints of Graphitic, Pyrrolic, Pyridinic, and Chemisorbed Nitrogen in N-Doped Graphene. J. Phys. Chem. C 2019, 123, 10695–10702. [Google Scholar] [CrossRef]
- Gould, R.F. Contact Angle, Wettability, and Adhesion, Advances in Chemistry Series. In Contact Angle, Wettability, and Adhesion; Gould, R.F., Ed.; Advances in Chemistry (AMERICAN CHEMICAL SOCIETY): Washington, DC, USA, 1964; Volume 43, pp. i–iii. ISBN 9780841200449. [Google Scholar]
- Abad, Z.A.K.; Nemati, A.; Khachatourian, A.M.; Golmohammad, M. The Effect of Pre-reduction of Graphene Oxide on the Electrochemical Performance of rGO-TiO2 Nanocomposite. Iran. J. Mater. Sci. Eng. 2020, 17, 55–61. [Google Scholar] [CrossRef]
Peak | Position, eV | Content, % |
---|---|---|
C1 | 284.52 | 61.07 |
C2 | 285.31 | 12.21 |
C3 | 286.41 | 20.1 |
C4 | 288.13 | 4.13 |
C5 | 289.78 | 2.49 |
Hydrophilic Porosity cm3/g | Hydrophobic Porosity cm3/g | Total Porosity cm3/g | Hydrophilic Specific Surface Area m2/g | Total Specific Surface Area m2/g | Average Wetting Angle by Water |
---|---|---|---|---|---|
13.3 | 3.0 | 16.3 | 93 | 227 | 63.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volfkovich, Y.M.; Rychagov, A.Y.; Sosenkin, V.E.; Baskakov, S.A.; Kabachkov, E.N.; Shulga, Y.M. Supercapacitor Properties of rGO-TiO2 Nanocomposite in Two-component Acidic Electrolyte. Materials 2022, 15, 7856. https://doi.org/10.3390/ma15217856
Volfkovich YM, Rychagov AY, Sosenkin VE, Baskakov SA, Kabachkov EN, Shulga YM. Supercapacitor Properties of rGO-TiO2 Nanocomposite in Two-component Acidic Electrolyte. Materials. 2022; 15(21):7856. https://doi.org/10.3390/ma15217856
Chicago/Turabian StyleVolfkovich, Yury M., Alexey Y. Rychagov, Valentin E. Sosenkin, Sergey A. Baskakov, Eugene N. Kabachkov, and Yury M. Shulga. 2022. "Supercapacitor Properties of rGO-TiO2 Nanocomposite in Two-component Acidic Electrolyte" Materials 15, no. 21: 7856. https://doi.org/10.3390/ma15217856
APA StyleVolfkovich, Y. M., Rychagov, A. Y., Sosenkin, V. E., Baskakov, S. A., Kabachkov, E. N., & Shulga, Y. M. (2022). Supercapacitor Properties of rGO-TiO2 Nanocomposite in Two-component Acidic Electrolyte. Materials, 15(21), 7856. https://doi.org/10.3390/ma15217856