Tribological Properties of Cu-MoS2-WS2-Ag-CNT Sintered Composite Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sinter Preparation
2.2. Wear Tests
2.3. Tests of Worn Surfaces and of Worn Debris
3. Results and Discussion
4. Conclusions
- -
- The lowest coefficient of friction (0.15) was observed for Cu + 5% MoS2 + 5% WS2 + 2% Ag sinter. The coefficient of friction for the sinter with silver addition was similar to that of pure copper and was 0.89. The friction coefficient for the sinter with carbon nanotubes was 0.56.
- -
- The multi-component sinters with the addition of CNTs were characterized by smoothed curves of changes in the coefficient of friction vs. the time of friction.
- -
- The lowest weight losses were found for Cu + 2% CNTs and Cu + 5% MoS2 + 5% WS2 + 2% Ag sinters.
- -
- A mass increase was found for all the counter-specimens as a result of spreading sinter components, including the copper matrix, on their surfaces at a contact point of the friction pair.
- -
- The Cu + 10% Ag sinter was characterized by the highest amount and greatest size of worn debris.
- -
- The main wear mechanisms of the produced sinters were micro-cutting and micro-ploughing. In addition, adhesive and oxidation wear were observed.
- -
- On the worn surfaces of sinters and counter-specimens, the presence of the tribofilm was observed. Primary traces of the grinding process in the friction tracks indicated a low wear of counter-specimens.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, M.; Pan, L.; Duan, H.; Wan, C.; Yang, T.; Gao, M.; Yu, S. Study on Wear Resistance and Corrosion Resistance of HVOF Surface Coating Refabricate for Hydraulic Support Column. Coatings 2021, 11, 1457. [Google Scholar] [CrossRef]
- Omrani, E.; Moghadam, A.D.; Kasar, A.K.; Rohatgi, P.; Menezes, P.L. Tribological Performance of Graphite Nanoplatelets Reinforced Al and Al/Al2O3 Self-Lubricating Composites. Materials 2021, 14, 1183. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tang, B.; Wang, L.; Wang, D.; Dong, W.; Li, X. Microstructure, Microhardness and Tribological Properties of Bronze–Steel Bimetallic Composite Produced by Vacuum Diffusion Welding. Materials 2022, 15, 1588. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Chen, B.; Liu, F.; Sun, M.; Zhang, H.; Wu, C. Microstructure and Mechanical Properties of Composites Obtained by Spark Plasma Sintering of Ti3SiC2-15 vol.% Cu Mixtures. Materials 2022, 15, 2515. [Google Scholar] [CrossRef]
- Piasecki, A.; Kotkowiak, M.; Makuch, N.; Kulka, M. Wear behavior of self-lubricating boride layers produced on Inconel 600-alloy by laser alloying. Wear 2019, 426–427, 919–933. [Google Scholar] [CrossRef]
- Waqas, M.; Zahid, R.; Bhutta, M.U.; Khan, Z.A.; Saeed, A. A Review of Friction Performance of Lubricants with Nano Additives. Materials 2021, 14, 6310. [Google Scholar] [CrossRef]
- Hu, N.; Zhang, X.; Wang, X.; Wu, N.; Wang, S. Study on Tribological Properties and Mechanisms of Different Morphology WS2 as Lubricant Additives. Materials 2020, 13, 1522. [Google Scholar] [CrossRef] [Green Version]
- Kosarchuk, V.; Chausov, M.; Pylypenko, A.; Tverdomed, V.; Maruschak, P.; Vasylkiv, V. Increasing Wear Resistance of Heavy-Loaded Friction Pairs by Nanoparticles in Conventional Lubricants: A Proof of Concept. Lubricants 2022, 10, 64. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, X.; Lin, J.; Zhang, P. Rheological and Frictional Properties of Lithium Complex Grease with Graphene Additives. Lubricants 2022, 10, 57. [Google Scholar] [CrossRef]
- Tóth, Á.D.; Szabó, Á.I.; Leskó, M.Z.; Rohde-Brandenburger, J.; Kuti, R. Tribological Properties of the Nanoscale Spherical Y2O3 Particles as Lubricant Additives in Automotive Application. Lubricants 2022, 10, 28. [Google Scholar] [CrossRef]
- Piasecki, A.; Kulka, M.; Kotkowiak, M. Wear resistance improvement of 100CrMnSi6-4 bearing steel by laser boriding using CaF2 self-lubricating addition. Tribol. Int. 2016, 97, 173–191. [Google Scholar] [CrossRef]
- Tang, H.; Cao, K.; Wu, Q.; Li, C.; Yang, X.; Yan, X. Synthesis and tribological properties of copper matrix solid self-lubricant composites reinforced with NbSe2 nanoparticles. Cryst. Res. Technol. 2011, 46, 195–200. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, K.; Yao, C.; Nie, P.; Huang, J.; Li, Z. Microstructure and tribological properties of laser cladded self-lubricating nickel-base composite coatings containing nano-Cu and h-BN solid lubricants. Surf. Coat. Technol. 2019, 359, 485–494. [Google Scholar] [CrossRef]
- Elkady, O.A.M.; Abu-Oqail, A.; Ewais, E.M.M.; El-Sheikh, M. Physico-mechanical and tribological properties of Cu/h-BN nanocomposites synthesized by PM route. J. Alloys Compd. 2015, 625, 309–317. [Google Scholar] [CrossRef]
- Zhang, A.; Han, J.; Su, B.; Meng, J. A novel CoCrFeNi high entropy alloy matrix self-lubricating composite. J. Alloys Compd. 2017, 725, 700–710. [Google Scholar] [CrossRef]
- Piasecki, A.; Kotkowiak, M.; Kulka, M. Self-lubricating surface layers produced using laser alloying of bearing steel. Wear 2017, 376–377, 993–1008. [Google Scholar] [CrossRef]
- Kotkowiak, M.; Piasecki, A.; Kulka, M. The influence of solid lubricant on tribological properties of sintered Ni–20% CaF2 composite material. Ceram. Int. 2019, 45, 17103–17113. [Google Scholar] [CrossRef]
- Piasecki, A.; Kotkowiak, M.; Kulka, M. The effect of CaF2 and BaF2 solid lubricants on wear resistance of laserborided 100CrMnSi6-4 bearing steel. Arch. Mater. Sci. Eng. 2017, 86, 15–23. [Google Scholar] [CrossRef]
- Wen, S.; Dai, C.; Mao, W.; Ren, Z.; Wang, X.; Zhao, Y.; Han, G. Microstructure and Wear Properties of HVAF Sprayed Cu-Zr-Al-Ag-Co Amorphous Coatings at Different Spray Temperatures. Coatings 2022, 12, 458. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, H.; Liu, F. Microstructure and Tribological Properties of Spark-Plasma-Sintered Ti3SiC2-Pb-Ag Composites at Elevated Temperatures. Materials 2022, 15, 1437. [Google Scholar] [CrossRef]
- Ye, F.; Lou, Z.; Wang, Y.; Liu, W. Wear mechanism of Ag as solid lubricant for wide range temperature application in micro-beam plasma cladded Ni60 coatings. Tribol. Int. 2022, 167, 107402. [Google Scholar] [CrossRef]
- Wang, D.; Chen, W.; Sun, Q.; Wang, L.; Zhu, S.; Cheng, J.; Yang, J. Tribological properties of Ni3Al-Ni3Nb-Ag self-lubricating alloys at a wide temperature range. Wear 2021, 480–481, 203933. [Google Scholar] [CrossRef]
- Mi, P.; Ye, F. Wear performance of the WC/Cu self-lubricating textured coating. Vacuum 2018, 157, 17–20. [Google Scholar] [CrossRef]
- Moghadam, A.D.; Omrani, E.; Menezes, P.L.; Rohatgi, P.K. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene—A review. Compos. Part B Eng. 2015, 77, 402–420. [Google Scholar] [CrossRef]
- Gong, H.; Yu, C.; Zhang, L.; Xie, G.; Guo, D.; Luo, J. Intelligent lubricating materials: A review. Compos. Part B Eng. 2020, 202, 108450. [Google Scholar] [CrossRef]
- Kumar, R.; Hussainova, I.; Rahmani, R.; Antonov, M. Solid Lubrication at High-Temperatures—A Review. Materials 2022, 15, 1695. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.F.; Jiang, Y.; Hardell, J.; Prakash, B.; Fanget, Q.F. Influence of service temperature on tribological characteristics of self-lubricant coatings: A review. Front. Mater. Sci. 2013, 7, 28–39. [Google Scholar] [CrossRef]
- Freschi, M.; Di Virgilio, M.; Haiko, O.; Mariani, M.; Andena, L.; Lecis, N.; Kömi, J.; Dotelli, G. Investigation of second phase concentration effects on tribological and electrical properties of Cu–WS2 composites. Tribol. Int. 2022, 166, 107357. [Google Scholar] [CrossRef]
- Gao, Q.; Yan, H.; Qin, Y.; Zhang, P.; Guo, J.; Chen, Z.; Yu, Z. Laser cladding Ti-Ni/TiN/TiW + TiS/WS2 self-lubricating wear resistant composite coating on Ti-6Al-4V alloy. Opt. Laser Technol. 2019, 113, 182–191. [Google Scholar] [CrossRef]
- Lu, D.; Qian, G.; Feng, Y.; Zhao, H.; Zhou, Z.; Zhang, X. Tribological Behaviors of Cu/RGO/WS2 Composites in Air and Vacuum Environments. Tribol. Trans. 2020, 63, 621–633. [Google Scholar] [CrossRef]
- Tonge, P.; Roy, A.; Patel, P.; Beall, C.J.; Stoyanov, P. Tribological Evaluation of Lead-Free MoS2-Based Solid Film Lubricants as Environmentally Friendly Replacements for Aerospace Applications. Lubricants 2022, 10, 7. [Google Scholar] [CrossRef]
- Amini, M.; Azadegan, B.; Akbarzadeh, H.; Gharaei, R. Analysis of MoS2 and WS2 nano-layers role on the radiation resistance of various Cu/MS2/Cu and Cu/MS2@Cu@MS2/Cu nanocomposites. Materialia 2022, 21, 101281. [Google Scholar] [CrossRef]
- Kałużny, J.; Kulczycki, A.; Dzięgielewski, W.; Piasecki, A.; Gapiński, B.; Mendak, M.; Runka, T.; Łukawski, D.; Stepanenko, O.; Merkisz, J.; et al. The Indirect Tribological Role of Carbon Nanotubes Stimulating Zinc Dithiophosphate Anti-Wear Film Formation. Nanomaterials 2020, 10, 1330. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Tian, S.; Menezes, P.L.; Xiong, G. Carbon solid lubricants: Role of different dimensions. Int. J. Adv. Manuf. Technol. 2020, 107, 3875–3895. [Google Scholar] [CrossRef]
- Aristizabal, K.; Katzensteiner, A.; Bachmaier, A.; Mücklich, F.; Suarez, S. Study of the structural defects on carbon nanotubes in metal matrix composites processed by severe plastic deformation. Carbon 2017, 125, 156–161. [Google Scholar] [CrossRef]
- Aristizabal, K.; Tayrac, A.; Katzensteiner, A.; Bachmaier, A.; Suarez, S. Friction and Tribo-Chemical Behavior of SPD-Processed CNT-Reinforced Composites. Lubricants 2019, 7, 75. [Google Scholar] [CrossRef] [Green Version]
- Reinert, L.; Suárez, S.; Rosenkranz, A. Tribo-Mechanisms of Carbon Nanotubes: Friction and Wear Behavior of CNT-Reinforced Nickel Matrix Composites and CNT-Coated Bulk Nickel. Lubricants 2016, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Bastwros, M.M.H.; Esawi, A.M.K.; Wifi, A. Friction and wear behavior of Al–CNT composites. Wear 2013, 307, 164–173. [Google Scholar] [CrossRef]
- Kong, X.; Liu, Y.; Chen, M.; Zhang, T.; Wang, Q.; Wang, F. Heterostructured NiCr matrix composites with high strength and wear resistance. J. Mater. Sci. Technol. 2022, 105, 142–152. [Google Scholar] [CrossRef]
- Gautam, R.K.S.; Rao, U.S.; Tyagi, R. High temperature tribological properties of Ni-based self-lubricating coatings deposited by atmospheric plasma spray. Surf. Coat. Technol. 2019, 372, 390–398. [Google Scholar] [CrossRef]
- Shi, X.; Song, S.; Zhai, W.; Wang, M.; Xu, Z.; Yao, J.; Qamar Ud Din, A.; Zhang, Q. Tribological behavior of Ni3Al matrix self-lubricating composites containing WS2, Ag and hBN tested from room temperature to 800 °C. Mater. Des. 2014, 55, 75–84. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, S.; Wu, G.; Gao, J.; Yang, X.; Wu, H. Tribological properties of high-entropy alloys: A review. Int. J. Miner. Metall. Mater. 2022, 29, 389–403. [Google Scholar] [CrossRef]
- Ding, H.; Bao, X.; Jamili-Shirvan, Z.; Jin, J.; Deng, L.; Yao, K.; Gong, P.; Wang, X. Enhancing strength-ductility synergy in an ex situ Zr-based metallic glass composite via nanocrystal formation within high-entropy alloy particles. Mater. Des. 2021, 210, 110108. [Google Scholar] [CrossRef]
- Chen, X.; Han, Z. A low-to-high friction transition in gradient nano-grained Cu and Cu-Ag alloys. Friction 2021, 9, 1558–1567. [Google Scholar] [CrossRef]
- Rigney, D.A. Transfer, mixing and associated chemical and mechanical processes during the sliding of ductile materials. Wear 2000, 245, 1–9. [Google Scholar] [CrossRef]
- Chen, X.; Han, Z.; Li, X.; Lu, K. Lowering coefficient of friction in Cu alloys with stable gradient nanostructures. Sci. Adv. 2016, 2, e1601942. Available online: https://www.science.org/doi/10.1126/sciadv.1601942 (accessed on 19 September 2022). [CrossRef] [Green Version]
- Kim, H.J.; Karthikeyan, S.; Rigney, D. A simulation study of the mixing, atomic flow and velocity profiles of crystalline materials during sliding. Wear 2009, 267, 1130–1136. [Google Scholar] [CrossRef]
- Rigney, D.A.; Karthikeyan, S. The Evolution of Tribomaterial During Sliding: A Brief Introduction. Tribol. Lett. 2010, 39, 3–7. [Google Scholar] [CrossRef]
- Singh, J.B.; Wen, J.G.; Bellon, P. Nanoscale characterization of the transfer layer formed during dry sliding of Cu–15wt.% Ni–8wt.% Sn bronze alloy. Acta Mater. 2008, 56, 3053–3064. [Google Scholar] [CrossRef]
- Chen, X.; Han, Z.; Lu, K. Wear mechanism transition dominated by subsurface recrystallization structure in Cu–Al alloys. Wear 2014, 320, 41–50. [Google Scholar] [CrossRef]
- Furlan, K.P.; de Mello, J.D.B.; Klein, A.N. Self-lubricating composites containing MoS2: A review. Tribol. Int. 2018, 120, 280–298. [Google Scholar] [CrossRef]
- Seynstahl, A.; Krauß, S.; Bitzek, E.; Meyer, B.; Merle, B.; Tremmel, S. Microstructure, Mechanical Properties and Tribological Behavior of Magnetron-Sputtered MoS2 Solid Lubricant Coatings Deposited under Industrial Conditions. Coatings 2021, 11, 455. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, W.; Zhang, C. Microstructure evolution and tribological performance of Cu-WS2 self-lubricating composites. Wear 2018, 412–413, 109–119. [Google Scholar] [CrossRef]
- Rajkumar, K.; Aravindan, S. Tribological studies on microwave sintered copper–carbon nanotube composites. Wear 2011, 270, 613–621. [Google Scholar] [CrossRef]
- Reinert, L.; Lasserre, F.; Gachot, C.; Grützmacher, P.; MacLucas, T.; Souza, N.; Mücklich, F.; Suarez, S. Long-lasting solid lubrication by CNT-coated patterned surfaces. Sci. Rep. 2017, 7, 42873. [Google Scholar] [CrossRef]
Chemical Composition [wt. %] | |||||
---|---|---|---|---|---|
No. | Cu | MoS2 | WS2 | Ag | CNTs |
1 | bal. | 10 | |||
2 | bal. | 20 | |||
3 | bal. | 20 | |||
4 | bal. | 2 | |||
5 | bal. | 5 | 5 | ||
6 | bal. | 5 | 5 | 2 | |
7 | bal. | 5 | 5 | 2 | 2 |
8 | bal. | 5 | 5 | 2 |
Friction Pair No. | Point | Cu | Ni | O | Mo | W | Ag | S | C |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 78.7 | 1.9 | 12.7 | 6.7 | ||||
2 | 79.1 | 1.7 | 12.4 | 6.8 | |||||
3 | 79.9 | 1.3 | 12 | 6.7 | |||||
4 | 81.5 | 1.5 | 10.4 | 6.6 | |||||
2 | 5 | 87.8 | 0.2 | 3.4 | 5.2 | 3.4 | |||
6 | 83.2 | 0.3 | 5 | 6.6 | 4.8 | ||||
7 | 86.6 | 0 | 5.3 | 5.1 | 3 | ||||
8 | 82.8 | 0.2 | 6.6 | 6.3 | 4.1 | ||||
3 | 9 | 85.1 | 0 | 1.3 | 10.1 | 3.5 | |||
10 | 78.3 | 0.1 | 1.4 | 15.8 | 4.5 | ||||
11 | 79.2 | 0.1 | 3.3 | 12.8 | 4.7 | ||||
12 | 77 | 0.1 | 1.6 | 16.5 | 4.8 | ||||
4 | 13 | 80.7 | 2.7 | 10.9 | 5.8 | ||||
14 | 76.8 | 1.7 | 10.1 | 11.4 | |||||
15 | 81.7 | 2.4 | 10.2 | 5.8 | |||||
16 | 80.5 | 4.8 | 8.9 | 5.9 | |||||
5 | 17 | 94.8 | 0 | 1.7 | 1.1 | 1.4 | 1 | ||
18 | 87.2 | 0.3 | 3.9 | 2.3 | 3.7 | 2.8 | |||
19 | 72.6 | 0 | 1.7 | 0.3 | 20 | 5.4 | |||
20 | 85 | 0 | 7.9 | 1.9 | 2.9 | 2.2 | |||
6 | 21 | 87 | 0.6 | 3.3 | 1.9 | 3.5 | 1.8 | 1.9 | |
22 | 91.5 | 0.5 | 2.2 | 1.2 | 1.7 | 1.6 | 1.4 | ||
23 | 83.1 | 0 | 5.7 | 1.5 | 4.9 | 2.2 | 2.6 | ||
24 | 83.6 | 0.9 | 2.6 | 1.6 | 6.5 | 2 | 2.8 | ||
7 | 25 | 75 | 0.7 | 2.1 | 2.8 | 5.5 | 1.7 | 3.7 | 8.7 |
26 | 77 | 0.9 | 5.8 | 1.9 | 3.1 | 1.7 | 2.2 | 7.4 | |
27 | 75.2 | 0.6 | 3.1 | 1.6 | 5.5 | 1.5 | 2.4 | 9.9 | |
28 | 76.6 | 1.3 | 2.9 | 1.9 | 3.7 | 1.4 | 2 | 10.1 | |
8 | 29 | 76 | 0.3 | 4.3 | 1.9 | 4.3 | 2.4 | 10.8 | |
30 | 73.2 | 0.4 | 3.1 | 3 | 4.4 | 2.9 | 13 | ||
31 | 74.3 | 0.5 | 4.8 | 2.8 | 3.7 | 2.6 | 11.3 | ||
32 | 73.9 | 0.1 | 3.3 | 2.3 | 8.4 | 2.6 | 9.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piasecki, A.; Kotkowiak, M.; Tulinski, M.; Čep, R. Tribological Properties of Cu-MoS2-WS2-Ag-CNT Sintered Composite Materials. Materials 2022, 15, 8424. https://doi.org/10.3390/ma15238424
Piasecki A, Kotkowiak M, Tulinski M, Čep R. Tribological Properties of Cu-MoS2-WS2-Ag-CNT Sintered Composite Materials. Materials. 2022; 15(23):8424. https://doi.org/10.3390/ma15238424
Chicago/Turabian StylePiasecki, Adam, Mateusz Kotkowiak, Maciej Tulinski, and Robert Čep. 2022. "Tribological Properties of Cu-MoS2-WS2-Ag-CNT Sintered Composite Materials" Materials 15, no. 23: 8424. https://doi.org/10.3390/ma15238424
APA StylePiasecki, A., Kotkowiak, M., Tulinski, M., & Čep, R. (2022). Tribological Properties of Cu-MoS2-WS2-Ag-CNT Sintered Composite Materials. Materials, 15(23), 8424. https://doi.org/10.3390/ma15238424