Synthesis of Superhydrophobic Barium Hexaferrite Coatings with Low Magnetic Hardness
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Study of Topography and the Elemental and Structural-Phase Compositions of BaM Coatings
3.2. Magnetic and Hydrophobic Properties of BaM Coatings
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Y.; Yu, Q.; Li, M.; Sun, S.; Zhao, H.; Jin, S.; Wang, J. An overview of low-temperature plasma surface modification of carbon materials for removal of pollutants from liquid and gas phases. Plasma Process. Polym. 2021, 18, 3. [Google Scholar] [CrossRef]
- Ye, Z.; Zhao, L.; Nikiforov, A.; Giraudon, J.; Chen, Y.; Wang, J.; Tu, X. A review of the advances in catalyst modification using nonthermal plasma: Process, Mechanism and pplications. Adv. Colloid Interface Sci. 2020, 308, 102755. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Kettlitz, M.; Kolb, J.F. How activated carbon improves the performance of non-thermal plasma removing methyl ethyl ketone from a gas stream. Clean. Eng. Technol. 2021, 4, 100234. [Google Scholar] [CrossRef]
- Filkov, M.; Kolesnikov, A. Plasmachemical Synthesis of Nanopowders in the System Ti(O,C,N) for Material Structure Modification. J. Nanosci. 2016, 2016, 1361436. [Google Scholar] [CrossRef] [Green Version]
- Sazonov, R.; Kholodnaya, G.; Ponomarev, D.; Lapteva, O.; Konusov, F.; Gadirov, R.; Zhirkov, I. Pulsed plasma chemical synthesis of TiO2@TixCyOz nanocomposite. Fuller. Nanotub. Carbon Nanostruct. 2021, 29, 567–575. [Google Scholar] [CrossRef]
- Vinnik, D.A.; Tarasova, A.Y.; Zherebtsov, D.A.; Gudkova, S.A.; Galimov, D.M.; Zhivulin, V.E.; Trofimov, E.A.; Nemrava, S.; Perov, N.S.; Isaenko, L.I.; et al. Magnetic and Structural Properties of Barium Hexaferrite BaFe12O19 from Various Growth Tech- 380 niques. Materials 2017, 10, 578. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Yu, Z.; Sokolov, A.S.; Yu, C.; Sun, K.; Jiang, X.; Harris, V.G. Tailoring magnetic properties of self-biased hexaferrites using an alternative copolymer of isobutylene and maleic anhydride. AIP Adv. 2018, 8, 056221. [Google Scholar] [CrossRef] [Green Version]
- Trukhanov, S.V.; Trukhanov, A.V.; Kostishyn, V.G.; Panina, L.V.; Trukhanov, A.V.; Turchenko, V.A.; Matzui, L.Y. Investigation into the structural features and microwave absorption of doped barium hexaferrites. Dalton Trans. 2017, 46, 9010–9021. [Google Scholar] [CrossRef] [Green Version]
- Trukhanov, A.V.; Kostishin, V.G.; Korovushkin, V.V.; Panina, L.V.; Trukhanov, S.V.; Turchenko, V.A.; Trukhanova, E.L. Mössbauer Studies and the Microwave Properties of Al3+- and In3+-Substituted Barium Hexaferrites. Phys. Solid State 2018, 60, 1768–1777. [Google Scholar] [CrossRef]
- Kimura, T.; Lawes, G.; Ramirez, A.P. Electric Polarization Rotation in a Hexaferrite with Long-Wavelength Magnetic Structures. Phys. Rev. Lett. 2005, 94, 137201. [Google Scholar] [CrossRef]
- Gurbuz, A.; Omar, N.; Ozdemir, I.; Karonglanli, A.C.; Celik, E. Structural, Thermal and Magnetic properties of Ваrium-ferrite powders substituted with Mn, Cu or Co and X (X = Sr and Ni) prepared by the Sol-Gel method. Mater. Technol. 2012, 46, 305–310. [Google Scholar]
- Pawar, D.K.; Pawar, S.M.; Patil, P.S.; Kolekar, S.S. Synthesis of nanocrystalline nickel–zinc ferrite (Ni0.8Zn0.2Fe2O4) thin films by chemical bath deposition method. J. Alloys Compd. 2011, 509, 3587. [Google Scholar] [CrossRef]
- Somvanshi, S.B.; Kharat, P.B.; Khedkar, M.V.; Jadhav, K.M. Hydrophobic to hydrophilic surface transformation of nano-scale zinc ferrite via oleic acid coating: Magnetic hyperthermia study towards biomedical applications. Ceram. Int. 2020, 46, 7642. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Emelyanenko, A.M. Hydrophobic materials and coatings. Russ. Chem. Rev. 2008, 77, 583–600. [Google Scholar] [CrossRef]
- Mohamed, A.M.A.; Abdullah, A.M.; Younan, N.A. Corrosion behavior of superhydrophobic surfaces: A review. Arab. J. Chem. 2015, 8, 749–765. [Google Scholar] [CrossRef] [Green Version]
- Drelich, J.; Marmur, A. Physics and applications of superhydrophobic and superhydrophilic surfaces and coatings. Surf. Innov. 2014, 2, 211–227. [Google Scholar] [CrossRef]
- Manoharan, K.; Bhattacharya, S. Superhydrophobic surfaces review: Functional application, fabrication techniques and limitations. J. Micromanuf. 2019, 2, 59–78. [Google Scholar] [CrossRef]
- Hooda, A.; Goyat, M.S.; Pandey, J.K.; Kumar, A.; Gupta, R. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings. Prog. Org. Coat. 2020, 142, 105557. [Google Scholar] [CrossRef]
- Waseem, A.; Johar, M.A.; Hassan, M.A.; Bagal, I.V.; Abdullah, A.; Ha, J.-S.; Ryu, S.-W. GaN Nanowire Growth Promoted by In–Ga–Au Alloy Catalyst with Emphasis on Agglomeration Temperature and In Composition. ACS Omega 2021, 6, 3173. [Google Scholar] [CrossRef]
- Isakaev, E.K.; Sinkevich, O.A.; Tyuftyaev, A.S.; Chinnov, V.F. Investigation of low-temperature plasma generator with divergent channel of the output electrode and some applications of this generator. High Temp. 2010, 48, 97–125. [Google Scholar] [CrossRef]
- Kongsong, P.; Taleb, A.; Masae, M.; Jeenarong, A.; Hansud, P.; Khumruean, S. Effect of nitrogen doping on the photocatalytic activity and hydrophobic property of rutile TiO2 nanorods array. Surf. Interface Anal. 2018, 50, 1271–1277. [Google Scholar] [CrossRef]
- Paesano, A.J.; Hallouche, B.; Medeiros, S.N.; Rocha, R.A.; Sharma, P. Structural and magnetic studies on mechanosynthesized BaFe12−xMnxO19. J. Magn. Magn. Mater. 2007, 316, 29–33. [Google Scholar] [CrossRef]
- Yuan, Y.; Lee, T.R. Surface Science Techniques; Bracco, G., Holst, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3–34. [Google Scholar]
- Wagner, C.D.; Muilenberg, G.E. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Data for Use in X-ray Photoelectron Spectroscopy; Perkin-Elmer: Waltham, MA, USA, 1979; 190p. [Google Scholar]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Cao, S.; Qu, T.; Li, Y.; Zhang, A.; Xue, L.; Zhao, Y.; Shui, J. Electrocatalytically Active Hollow Carbon Nanospheres Derived from PS-b -P4VP Micelles. Part. Part. Syst. Charact. 2018, 35, 1700404. [Google Scholar] [CrossRef]
- Praserthdam, S.; Rittiruam, M.; Maungthong, K. Performance controlled via surface oxygen-vacancy in Ti-based oxide catalyst during methyl oleate epoxidation. Sci. Rep. 2020, 10, 18952. [Google Scholar] [CrossRef]
- Pillai, V.; Kumar, P.; Multani, M.S.; Shah, D.O. Structure and magnetic properties of nanoparticles of barium ferrite synthesized using microemulsion processing. Colloids Surf. A Physicochem. Eng. Asp. 1993, 80, 69–75. [Google Scholar] [CrossRef]
- Han, D.H.; Wang, J.P.; Luo, H.L. Crystallite size effect on saturation magnetization of fine ferrimagnetic particles. J. Magn. Magn. Mater. 1994, 136, 176–182. [Google Scholar] [CrossRef]
- Jeevan, J.; Yang-Ki, H.; Gavin, S.; Abo, S.; Jae-Jin, L.; Ji-Hoon, P. MFM studies of magnetic domain patterns in bulk barium ferrite (BaFe12O19) single crystals. J. Magn. Magn. Mater. 2011, 323, 2627–2631. [Google Scholar] [CrossRef]
- Goto, K.; Ito, M.; Sakurai, T. Studies on Magnetic Domains of Small Particles of Barium Ferrite by Colloid-SEM Method. Jpn. J. Appl. Phys. 1980, 19, 1339–1346. [Google Scholar] [CrossRef]
- Kojima, H.; Goto, K. New Remanent Structure of Magnetic Domains in BaFe12O19. J. Phys. Soc. Jpn. 1962, 17, 584. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, Q.; Yu, M. Difference between stress and magnetism relationships of ferromagnetic materials under tensile and compressive stresses. Results Phys. 2021, 28, 104572. [Google Scholar] [CrossRef]
- Shrimali, K.; Jin, J.; Hassas, B.V.; Wang, X.; Miller, J.D. The surface state of hematite and its wetting characteristics. J. Colloid Interface Sci. 2016, 477, 16. [Google Scholar] [CrossRef] [PubMed]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546. [Google Scholar] [CrossRef]
- Yang, C.; Tartaglino, U.; Persson, B.N.J. Influence of Surface Roughness on Superhydrophobicity. Phys. Rev. Lett. 2006, 97, 116103. [Google Scholar] [CrossRef]
Sample | Ba | Fe | O | C | N |
---|---|---|---|---|---|
Type I | 0.8 | 2.4 | 22.7 | 74.1 | 0 |
Type M | 1.5 | 2.6 | 52.9 | 42.1 | 0.9 |
Type A | 0.6 | 1.8 | 49.9 | 46.9 | 0.8 |
Out-of-Plane | In-Plane | |||||||
---|---|---|---|---|---|---|---|---|
Sample | Ms,emu/g | Mr,emu/g | Mr/Ms | Hc,Oe | Ms,emu/g | Mr,emu/g | Mr/Ms | Hc,Oe |
M | 42 | 12 | 0.28 | 490 | 25 | 5 | 0.2 | 210 |
A | 62 | 11 | 0.18 | 180 | 50 | 11 | 0.22 | 430 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muslimov, A.E.; Gadzhiev, M.K.; Kanevsky, V.M. Synthesis of Superhydrophobic Barium Hexaferrite Coatings with Low Magnetic Hardness. Materials 2022, 15, 7865. https://doi.org/10.3390/ma15217865
Muslimov AE, Gadzhiev MK, Kanevsky VM. Synthesis of Superhydrophobic Barium Hexaferrite Coatings with Low Magnetic Hardness. Materials. 2022; 15(21):7865. https://doi.org/10.3390/ma15217865
Chicago/Turabian StyleMuslimov, Arsen E., Makhach Kh Gadzhiev, and Vladimir M. Kanevsky. 2022. "Synthesis of Superhydrophobic Barium Hexaferrite Coatings with Low Magnetic Hardness" Materials 15, no. 21: 7865. https://doi.org/10.3390/ma15217865
APA StyleMuslimov, A. E., Gadzhiev, M. K., & Kanevsky, V. M. (2022). Synthesis of Superhydrophobic Barium Hexaferrite Coatings with Low Magnetic Hardness. Materials, 15(21), 7865. https://doi.org/10.3390/ma15217865