Scintillation Characteristics of the Single-Crystalline Film and Composite Film-Crystal Scintillators Based on the Ce3+-Doped (Lu,Gd)3(Ga,Al)5O12 Mixed Garnets under Alpha and Beta Particles, and Gamma Ray Excitations
Abstract
:1. Introduction
2. Experimental—Scintillating Properties and Ionizing Sources
3. Measurement Result
3.1. GAGG:Ce Substrate
3.2. SCF and Composite Scintillators
4. Discussion
- (a)
- The shape of the decay curves measured by β-particle and γ-photon excitation of PL-22-8 and the “Composite scintillator” are very similar; see Figure 15 and Figure 16. The response is excited in the substrate and by particles of almost the same LET. In addition, the 1/e values presented in Table 5 are mostly similar.
- (b)
- The LY measured under γ-excitation is very similar among all samples with the notable exception of the “Composite scintillator” (lower LY) and bare GGAG:Ce substrate (higher LY). In addition, LY seems to monotonously decrease with increasing SCF thickness. Therefore, some scintillation photon losses, probably caused by absorption or deteriorated light collection efficiency, takes place in the SCF. These losses are significant in the “Composite scintillator” sample due to the complex nature of the sample (SCF on SCF on SCF on substrate).
- (c)
- The energy resolution under γ-photon excitation should be inversely proportional to the number of produced photoelectrons (Nphels), as it is not necessary to consider the so-called intrinsic energy resolution in this study (the material of the substrate is the same). This assumption is valid within the margins of measurement precision.
- (d)
- The highest light under α-excitation is exhibited for the GAGG:Ce substrate, followed by PL 22-8 (Lu1.5Gd1.5Al3Ga2O12:Ce) and PL 16-4 (Lu1.5 Gd1.5Al1.5Ga3.5O12:Ce); see Table 4. Similar results of LY/composition dependence were observed in the past as well [31,52]. A Tb-containing SCF exhibits the lowest LY values. Radioluminescence spectra of these SCFs reveal weak Tb3+ 4f-4f emission peaks, which is probably a reason for the lower LY compared with those without Tb3+ ions emission traces. Finally, the ”Composite scintillator“ sample exhibits a low LY value, significantly lower than the expectation for YAG:Ce. However, it is possible that the complex structure of the sample results in the deterioration of the outermost YAG:Ce SCF layer.
- (e)
- The energy resolution measured under α-particle excitation is generally quite poor. A roughly identifiable general trend is there: a lower LY results in a worse ER; see Table 4.
- (f)
- The decay curve of PL 22-8 (Lu1.5Gd1.5Al3Ga2O12:Ce) measured under α-excitation (see Figure 15) first decays much faster than the curve excited by β-particles and γ-photons, and a later, more intense, slower component is presented. The result must be an interplay of different compositions and a much higher LET of α-particles. Unfortunately, without a more detailed characterization by various methods, the origin of the difference cannot be convincingly discussed. For other samples, there is a significant difference as well; see Figure 16 and Table 5. Such results suggest the general feasibility of the application of SCF+substrate systems for particle identification by pulse shape discrimination. The decay curve of the “Composite scintillator” is particularly fast, probably due to the fast decay of YAG:Ce, which does not exhibit as many long scintillation decay components as Lu-containing garnets.
- (g)
- The ratio of LY values measured with an amplifier shaping time of 10 μs and shaping time of 0.5 μs indicates the presence of scintillation decay components of decay times of units of μs. For γ-photons and for the bare GAGG:Ce substrate under α-excitation as well, it is 111–119%, which is near the values observed before [67]. The only notable exception is the “Composite scintillator” sample, for which it is 146%. Therefore, it is possible that the substrate quality for this sample might be slightly worse, affecting all the other results (e.g., LY of this substrate).
- (h)
- The ratio LY(10 μs)/LY(0.5 μs) varies a lot for all samples from 114% to 380%. Such a variability is to be expected due to the variability in SCF composition and probably quality. The results obtained during this study do not allow for deeper discussion of these differences.
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Eijk, C.W.E. Inorganic scintillators medical imaging. Phys. Med. Biol. 2002, 47, R85–R106. [Google Scholar] [CrossRef]
- Nikl, M.; Nikl, M. Scintillation detectors for X-rays. Meas. Sci. Technol. 2006, 17, R37–R54. [Google Scholar] [CrossRef]
- Yamada, H.; Suzuki, A.; Uchida, Y.; Yoshida, M.; Yamamoto, M. A Scintillator G2O2S:Pr,Ce,F for X-ray Computed Tomography. J. Electrochem. Soc. 1989, 136, 2713–2714. [Google Scholar] [CrossRef]
- Yoshino, M.; Kamada, K.; Shoji, Y.; Kurosawa, S.; Yokota, Y.; Ohashi, Y.; Yoshikawa, A.; Yamamoto, S. Development of Eu:SrI2 Scintillator Array for Gamma-Ray Imaging Applications. IEEE Trans. Nucl. Sci. 2017, 64, 1647–1651. [Google Scholar] [CrossRef]
- D’Ambrosio, C.; de Notaristefani, F.; Leutz, H.; Puertolas, D.; Rosso, E. X-Ray Detection with a Scintillating YAP-Window Hybrid Photomultiplier Tube. IEEE Trans. Nucl. Sci. 2000, 47, 6–12. [Google Scholar] [CrossRef] [Green Version]
- D’Ambrosio, C.; Leutz, H.; Piedigrossi, D.; Rosso, E.; Cencelli, V. Gamma spectroscopy and optoelectronic imaging with hybrid photon detector. NIM Phys. Res. A 2003, 497, 186–197. [Google Scholar] [CrossRef]
- Martin, T.; Koch, A. Recent development in X-ray imaging with micrometer spatial resolution. J. Synchrotron Radiat. 2006, 13, 180–194. [Google Scholar] [CrossRef] [Green Version]
- Martin, T.; Douissard, P.-A.; Couchaud, M.; Cecilia, A.; Baumbach, T.; Dupré, K.; Rack, A. LSO-based single crystal film scintillator for synchrotron-based hard X-ray microimaging. IEEE Trans. Nucl. Sci. 2009, 56, 1412–1418. [Google Scholar] [CrossRef]
- Tous, J.; Horvath, M.; Pina, L.; Blazek, K.; Sopko, B. High-resolution application of YAG:Ce and LuAG:Ce imaging detectors with CCD X-ray camera. NIM Phys Res. A 2008, 591, 264–267. [Google Scholar] [CrossRef]
- Auffray, E.; Baccaro, S.; Beckers, T.; Benhammou, Y.; Belsky, A.N.; Borgia, B.; Boutet, D.; Chipaux, R.; Dafinei, I.; de Notaristefani, F.; et al. Extensive studies on CeF3 crystals, a good candidate for electromagnetic calorimetry at future accelerators. NIM Phys. Res. A 1996, 383, 367–390. [Google Scholar] [CrossRef]
- Aleksandrov, D.V.; Burachas, S.F.; Ippolitov, M.S.; Lebedev, V.A.; Manko, V.I.; Nikulin, S.A.; Nyanin, A.S.; Sibiriak, I.G.; Tsvetkov, A.A.; Vasiliev, A.A. A high resolution electromagnetic calorimeter based on lead-tungstate crystals. NIM Phys. Res. A 2005, 550, 169–184. [Google Scholar] [CrossRef]
- Nikl; Yoshikawa, A.; Kamada, K.; Nejezchleb, K.; Stanek, C.R.; Mares, J.A.; Blazek, K. Development of LuAG based scintillator crystals—A review. Prog. Cryst. Growth Character. Mater. 2012, 59, 47–72. [Google Scholar]
- Mares, J.A.; Nikl, M.; Beitlerova, A.; Horodysky, P.; Blažek, K.; Bartoš, K.; D’Aambrosio, C. Scintillation Properties of Ce3+- and Pr3+-Doped LuAG, YAG and Mixed LuxY1-x AG Garnet Crystals. IEEE Trans. Nucl. Sci. 2012, 59, 2120–2125. [Google Scholar] [CrossRef]
- Mares, J.A.; Beiterova, A.; Nikl, M.; Solovieva, N.; D’Ambrosio, C.; Blazek, K.; Maly, P.; Nejezchleb, K.; de Notaristefani, F. Scintillation response of Ce-doped or intrinsic scintillating crystals in the range up to 1 MeV. Rad. Meas. 2004, 38, 353–357. [Google Scholar] [CrossRef]
- Mares, J.A.; Nikl, M.; Beitlerová, A.; Blažek, K.; Horodysky, P.; Nejezchleb, K.; D’Ambrosio, C. Scintillation properties of Pr3+-doped lutetium and yttrium aluminum garnets: Comparison with Ce3+-doped ones. Opt. Mater. 2011, 34, 424–427. [Google Scholar] [CrossRef]
- Dujardin, C.; Mancini, C.; Amans, D.; Ledoux, G.; Abler, D.; Auffray, E.; Lecoq, P.; Perrodin, D.; Petrosyan, A.; Ovanesyan, K.L. LuAG: Ce fibers for high energy calorimetry. J. Appl. Phys. 2010, 108, 013510. [Google Scholar] [CrossRef]
- Swiderski, L.; Moszynski, M.; Nassalski, A.; Syntfeld-Kazuch, A.; Szczesniak, T.; Kamada, K.; Tsutsumi, K.; Usuki, Y.; Yanagida, T.; Yoshikawa, A. Light Yield Non-Proportionality and Energy Resolution of Praseodymium Doped LuAG Scintillator. IEEE Trans. Nucl. Sci. 2009, 56, 934–938. [Google Scholar] [CrossRef]
- Chewpraditkul, W.; Swidierski, L.; Moszynski, M.; Szczesniak, T.; Syntfeld-Kazuch, A.; Wanarak, C.; Limsuwan, P. Scintillation properties of LuAG:Ce, YAG:Ce and LYSO:Ce crystals for gamma-ray detection. IEEE Trans. Nucl. Sci. 2009, 56, 3800–3805. [Google Scholar] [CrossRef]
- Crytur Ltd.: Turnov, Czech Republic. Available online: www.crytur.cz (accessed on 1 September 2022).
- Nikl, M.; Mihokova, E.; Pejchal, J.; Vedda, A.; Zorenko, Y.; Nejezchleb, K. The antisite LuAl defect-related trap in Lu3Al5O12:Ce single crystal. Phys. Status Solidi B 2005, 242, R119–R121. [Google Scholar] [CrossRef]
- Zorenko, Y.; Gorbenko, V.; Voloshinovskii, A.; Stryganyuk, G.; Mikhailin, V.; Kolobanov, V.; Spassky, D.; Nikl, M.; Blazek, K. Exciton-related luminescence in LuAG:Ce single crystals and single crystalline films. Phys. Status Solidi B 2005, 202, 1113–1119. [Google Scholar] [CrossRef]
- Ferrand, B.; Chambaz, B.; Couchaud, M. Liquid phase epitaxy: A versatile technique for the development of miniature optical components in single crystal dielectric media. Opt. Mater. 1999, 11, 101–114. [Google Scholar] [CrossRef]
- Levinstein, H.J.; Landorf, R.W.; Blank, S.L. The growth of high quality garnet thin films for supercooled melts. Appl. Phys. Lett. 1971, 19, 486–488. [Google Scholar] [CrossRef]
- Gornert, P.; Bormann, S.; Voigt, F.; Wendt, M. Study of the liquid phase epitaxy process of garnet layers by induced striations. Phys. Status Solidi A 1977, 41, 505–511. [Google Scholar] [CrossRef]
- Robertson, J.M.; van Tool, M.V. Cathodoluminescent garnet layers. Thin Solid Film. 1984, 114, 221–240. [Google Scholar] [CrossRef]
- Paul-Antoine, D.; Martin, T.; Riva, F.; Zorenko, Y.; Zorenko, T.; Paprocki, K.; Fedorov; Bilski, P.; Twardak, A. Epitaxial growth of LuAG:Ce and LuAG:Ce,Pr films and their scintillation properties. IEEE Trans. Nucl. Sci. 2016, 63, 1726–1732. [Google Scholar]
- Zorenko, Y.; Gorbenko, V.; Voznyak, T.; Savchyn, V.; Nizhankovskiy, S.; Dan’ko, A.; Puzikov, V.; Laguta, V.; Mares, J.A.; Nikl, M.; et al. Luminescent and scintillation properties of Lu3Al5O12:Sc single crystal and single crystalline films. Opt. Mater. 2012, 34, 2080–2085. [Google Scholar] [CrossRef]
- Witkiewicz-Lukaszek, S.; Gorbenko, V.; Zorenko, T.; Sidletskiy, O.; Arhipov, P.; Fedorov, A.; Mareš, J.A.; Kučerková, R.; Nikl, M.; Zorenko, Y. Liquid phase epitaxy growth of high-performance composite scintillators based on single crystalline films and crystals of LuAG. CrystEngComm 2020, 22, 3713–3724. [Google Scholar] [CrossRef]
- Chewpraditkul, W.; Pattanaboonmee, N.; Chewpraditkul, W.; Szczesniak, T.; Moszynski, M.; Kamada, K.; Yoshikawa, A.; Kučerková, R.; Nikl, M. Optical and scintillation properties of LuGd2Al2Ga3O12:Ce, Lu2GdAl2Ga3O12:Ce, and Lu2YAl2Ga3O12:Ce single crystals: A comparative study. NIM Phys. Res. A 2021, 1004, 165381. [Google Scholar] [CrossRef]
- Kamada, K.; Endo, T.; Tsutsumi, K.; Yanagida, T.; Fujimoto, Y.; Fukabori, A.; Yoshikawa, A.; Pejchal, J.; Nikl, M. Composition engineering in cerium-doped (Lu,Gd)3(Ga,Al)5O12 single-crystal scintillators. Cryst. Growth Des. 2011, 11, 4484–4490. [Google Scholar] [CrossRef]
- Kamada, K.; Yanagida, T.; Pejchal, J.; Nikl, M.; Endo, T.; Tsutumi, K.; Fujimoto, Y.; Fukabori, A.; Yoshikawa, A. Scintillator-oriented combinatorial search in Ce-doped (Y,Gd)3(Ga,Al)5O12 multicomponent garnet compounds. J. Phys. D Appl. Phys. 2011, 44, 505104. [Google Scholar] [CrossRef]
- Sidletskiy, O.; Gerasymov, I.; Kurtsev, D.; Kononets, V.; Pedash, V.; Zelenskaya, O.; Tarasov, V.; Gektin, A.; Grinyov, B.; Lebbou, K.; et al. Engineering of bulk and fiber-shaped YAGG:Ce scintillator crystals. CrystEngComm 2017, 19, 1001–1007. [Google Scholar] [CrossRef]
- Vrubel, I.; Polozkov, R.G.; Shelykh, I.A.; Khanin, V.M.; Rodnyi, P.A.; Ronda, C.R. Bandgap engineering in yttrium−aluminum garnet with Ga doping. Cryst. Growth Des. 2017, 17, 1863–1869. [Google Scholar] [CrossRef]
- Ueda, J.; Tanabe, S.; Nakanishi, T. Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement. J. Appl. Phys. 2011, 110, 053102. [Google Scholar] [CrossRef] [Green Version]
- Ogiegło, J.M.; Katelnikovas, A.; Zych, A.; Justel, T.; Meijerink, A.; Ronda, C.R. Luminescence and luminescence quenching in Gd3(Ga,Al)5O12 scintillators doped with Ce3+. J. Phys. Chem. A 2013, 117, 2479–2484. [Google Scholar] [CrossRef]
- Ueda, J.; Aishima, K.; Tanabe, S. Temperature and compositional dependence of optical and optoelectronic properties in Ce3+-doped Y3Sc2Al3-xGaxO12 (x = 1, 2, 3). Opt. Mater. 2013, 35, 1952. [Google Scholar] [CrossRef]
- Wu, Y.; Ren, G. Energy transfer and radiative recombination processes in (Gd,Lu)3Ga3Al2O12: Pr3+ scintillators. Opt. Mater. 2013, 35, 2146. [Google Scholar] [CrossRef]
- Khanin, V.; Venevtsev, I.; Chernenko, K.; Pankratov, V.; Klementiev, K.; van Swieten, T.; van Bunningen, A.J.; Vrubel, I.; Shendrik, R.; Ronda, C.; et al. Exciton interaction with Ce3+ and Ce4+ ions in (LuGd)3(Ga,Al)5O12 ceramics. J. Lumin. 2021, 237, 118150. [Google Scholar] [CrossRef]
- Kamada, K.; Kurosawa, S.; Prusa, P.; Nikl, M.; Kochurikin, V.V.; Endo, T.; Tsutsumi, K.; Sato, H.; Yokota, Y.; Sugiyama, K.; et al. Cz grown 2-in. size Ce:Gd3(Al,Ga)5O12 single crystal; relationship between Al, Ga site occupancy and scintillation properties. Opt. Mater. 2014, 36, 1942–1945. [Google Scholar] [CrossRef] [Green Version]
- Lucchini, M.T.; Babin, V.; Bohacek, P.; Gundacker, S.; Kamada, K.; Nikl, M.; Petrosyan, A.; Yoshikawa, A.; Auffray, E. Effect of Mg2+ ions co-doping on timing performance and radiation tolerance of cerium doped Gd3Al2Ga3O12 crystals. Nucl. Instrum. Methods Phys. Res. A 2016, 816, 176–183. [Google Scholar] [CrossRef]
- Korzhik, M.; Alenkov, V.; Buzanov, O.; Dosovitskiy, G.; Fedorov, A.; Kozlov, D.; Mechinsky, V.; Nargelas, S.; Tamulaitis, G.; Vaitkevičius, A. Engineering of a new single-crystal multi-ionic fast and high-light-yield scintillation material (Gd0.5Y0.5)3Al2Ga3O12:Ce,Mg. CrystEngComm 2020, 22, 2502–2506. [Google Scholar] [CrossRef]
- Pankratova, V.; Kozlova, A.P.; Buzanov, O.A.; Chernenko, K.; Shendrik, R.; Šarakovskis, A.; Pankratov, V. Time-resolved luminescence and excitation spectroscopy of co-doped Gd3Ga3Al2O12 scintillating crystals. Sci. Rep. 2020, 10, 20388. [Google Scholar] [CrossRef]
- Spassky, D.; Fedyunin, F.; Rubtsova, E.; Tarabrina, N.; Morozov, V.; Dzhevakov, P.; Chernenko, K.; Kozlova, N.; Zabelina, E.; Kasimova, V.; et al. Structural, optical and luminescent properties of undoped Gd3Al-xGa5-xO12 (x = 0,1,2,3) and Gd2YAl2Ga3O12 single crystals. Opt. Mater. 2022, 125, 112079. [Google Scholar] [CrossRef]
- Nargelas, S.; Talochka, Y.; Vaitkevicius, A.; Dosovitskiy, G.; Buzanov, O.; Vasil’ev, A.; Malinauskas, T.; Korzhik, M.; Tamulaitis, G. Influence of matrix composition and its fluctuations on excitation relaxation and emission spectrum of Ce ions in (GdxY1-x)3Al2Ga3 O12(GdxY1-x)3Al2Ga3O12:Ce scintillators. J. Lumin. 2022, 242, 118590. [Google Scholar] [CrossRef]
- Martinazzoli, L.; Kratochwil, N.; Gundacker, S.; Auffray, E. Scintillation properties and timing performance of state-of-the-art Gd3Al2Ga3O12 single crystals. Nucl. Instrum. Methods Phys. Res. A 2021, 1000, 165231. [Google Scholar] [CrossRef]
- Drozdowski, W.; Brylew, K.; Witkowski, M.E.; Wojtowicz, A.J.; Solarz, P.; Kamada, K.; Yoshikawa, A. Studies of light yield as a function of temperature and low temperature thermoluminescence of Gd3Al2Ga3O12:Ce scintillator crystals. Opt. Mater. 2014, 36, 1665–1669. [Google Scholar] [CrossRef]
- Prusa, P.; Kamada, K.; Nikl, M.; Yoshikawa, A.; Mares, J.A. Light yield of (Lu, Y, Gd)3Al2Ga3O12:Ce garnets. Radiat. Meas. 2013, 56, 62–65. [Google Scholar] [CrossRef]
- Yoshikawa, A.; Kamada, K.; Kurosawa, S.; Shoji, Y.; Yokota, Y.; Chani, V.I.; Nikl, M. Crystal growth and scintillation properties of multi-component oxide single crystals: Ce:GGAG and Ce:La-GPS. J. Lumin. 2016, 169, 387–393. [Google Scholar] [CrossRef] [Green Version]
- Witkiewicz-Lukaszek, S.; Gorbenko, V.; Zorenko, T.; Paprocki, K.; Sidletskiy, O.; Fedorov, A.; Kucerkova, R.; Mares, J.A.; Nikl, M.; Zorenko, Y. Epitaxial growth of composite scintillators based on Tb3Al5O12:Ce single crystalline films and Gd3Al2.5Ga2.5O12:Ce crystal substrates. CrystEngComm 2018, 20, 3994–4002. [Google Scholar] [CrossRef]
- Witkiewicz-Lukaszek, S.; Gorbenko, V.; Zorenko, T.; Sidletskiy, O.; Gerasymov, I.; Fedorov, A.; Yoshikawa, A.; Mares, J.A.; Yu, Z. Development of composite scintillators based on single crystalline films and crystals of Ce3+-doped (Lu,Gd)3(Al,Ga)5O12 mixed garnet compounds. Cryst. Growth Des. 2018, 18, 1834–1842. [Google Scholar] [CrossRef]
- Kucera, M.; Hanus, M.; Onderisinova, Z.; Prusa, P.; Beitlerova, A.; Nikl, M. Energy Transfer and Scintillation Properties of Ce3+ Doped (LuYGd)3(AlGa)5O12 Multicomponent Garnets. IEEE Trans. Nucl. Sci. 2014, 61, 282–289. [Google Scholar] [CrossRef]
- Průša, P.; Kucera, M.; Mares, J.A.; Hanus, M.; Beitlerova, A.; Onderisinova, Z.; Nikl, M. Scintillation properties of the Ce-doped multicomponent garnet epitaxial films. Opt. Mater. 2013, 35, 2444–2448. [Google Scholar] [CrossRef]
- Witkiewicz-Lukaszek, S.; Gorbenko, V.; Zorenko, T.; Syrotych, Y.; Mareš, J.A.; Nikl, M.; Zorenko, Y.; Sidletskiy, O.; Yoshikawa, A.; Bilski, P. Composite detectors based on single crystalline films and single crystals of garnet compounds. Materials 2022, 15, 1249. [Google Scholar] [CrossRef] [PubMed]
- Gorbenko, V.; Łukaszek, S.W.; Zorenko, T.; Syrotych, Y.; Mareš, J.A.; Kučerková, R.; Nikl, M.; Sidletskiy, O.; Fedorov, A.; Zorenko, Y. Development of Composite Scintillators Based on the LuAG:Pr Single Crystalline Films and LuAG:Sc Single Crystal. Crystals 2021, 11, 846. [Google Scholar] [CrossRef]
- Glenn, F. Knoll, Radiation Detection and Measurements, 3rd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Prusa, P.; Nikl, M.; Mares, J.A.; Kucera, M.; Nitsch, K.; Beitlerova, A. The α-particle excited scintillation response of YAG:Ce thin films grown by liquid phase epitaxy. Phys. Status Solidi A 2009, 206, 1494–1500. [Google Scholar] [CrossRef]
- Mares, J.A.; Witkiewicz-Lukaszek, S.; Gorbenkob, V.; Zorenko, T.; Kucerkova, R.; Beitlerova, A.; D′Ambrosio, C.; Dlouhy, J.; Nikl, M.; Zorenko, Y. Alpha and gamma spectroscopy of composite scintillators based on the LuAG:Pr crystals and single crystalline films of LuAG:Ce and (Lu,Gd,Tb)AG:Ce garnets. Opt. Mater. 2019, 96, 109268. [Google Scholar] [CrossRef]
- D′Ambrosio, C.; Leutz, H. Hybrid photon detectors. NIM Phys. Res. A 2003, 501, 463–498. [Google Scholar] [CrossRef] [Green Version]
- Mares, J.A.; D’Ambrosio, C. Hybrid photomultipliers—Their properties and application in scintillation studies. Opt. Mater. 2007, 30, 22–25. [Google Scholar] [CrossRef]
- van Loef, E.V.D. Halide Scintillators. Ph.D. Thesis, Delft University of Technology, Delft, The Netherland, 2003. [Google Scholar]
- Moszynski, M.; Szczesniak, T.; Kapusta, M.; Szawlowski, M.; Iwanowska, J.; Gierlik, M.; Syntfeld-Kazuch, A.; Swidierski, M.; Melcher, C.L.; Ericsson, L.A.; et al. Characterization of scintillators by modern photomultipliers—A new source of errors. IEEE Trans. Nucl. Sci. 2010, 57, 1367–1374. [Google Scholar] [CrossRef]
- Wolszczak, W.; Dorenbos, P. Nonproportional response of scintillators to alpha particle excitation. IEEE Trans. Nucl. Sci. 2017, 64, 1580–1591. [Google Scholar]
- Chu, S.; Ekström, L.; Firestone, R. The Lund/LBNL Nuclear Data Search. Available online: http://nucleardata.nuclear.lu.se/toi/ (accessed on 1 September 2022).
- XCOM: Photon Cross Section Database. Available online: https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html (accessed on 1 September 2022).
- Valentine, J.; Rooney, B.; Li, J. The light yield nonproportionality component of scintillator energy resolution. IEEE Trans. Nucl. Sci. 1998, 45, 512–517. [Google Scholar] [CrossRef]
- Sidletskyi, O.; Gorbenko, V.; Zorenko, T.; Syrotych, Y.; Witkiewicz-Lukaszek, S.; Mares, J.A.; Kucerkova, R.; Nikl, M.; Gerasymov, I.; Kurtsev, D.; et al. Composition engineering of (Lu,Gd,Tb)3(Al,Ga)5O12 Substrate Scintillators. Crystals 2022, 12, 1366. [Google Scholar] [CrossRef]
- Kamada, K.; Prusa, P.; Nikl, M.; Piemonte, C.; Tarolli, A.; Yanagida, T.; Endo, T.; Tsutumi, K.; Yoshikawa, A. 2-inch size crystal growth of Ce:Gd3Al2Ga3O12 with various Ce concentration and their scintillation properties. In Proceedings of the 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) N26-5, Anaheim, CA, USA, 27 October–3 November 2012. [Google Scholar]
Source | Energy (keV)/YR (%) | Radiation | Half-Life (years) | Remarks |
---|---|---|---|---|
241Am (α) | 5442.8/13.0 5485.7/84.5 | α-particles | 432.5 | γ-rays present, mainly 59.54 keV |
239Pu | 5144.3/15.1 5156.6/73.3 | α-particles | 2.4 × 104 | almost no γ-rays present |
241Am (γ) | 59.54/35.9 | γ | 432.5 | the most intense γ-ray energy |
133Ba | 31.0/64.5 81.0/34.1 302.85/18.33 356.02/62.1 | X-ray γ γ γ | 10.5 | the most used X and γ-ray energies |
109Cd | 22.1/55.7 25.0/9.2 | X-ray Kα X-ray Kβ | 1.3 | Low half-life |
57Co | 122.06/85.6 136.47/10.7 | γ γ | 0.75 | Low half-life |
60Co | 1172.2/100 1332.5/100 | γ γ | 5.27 | |
137Cs | 661.66/85.1 | γ | 30.1 | The most used source |
152Eu | 39.91/57.4 121.78/28.6 344.28/26.5 | Xray Kα γ γ | 13.5 | the most used energies |
Sr90/Y90 | β -(av) 196 (90Sr) β -(max) 546 (90Sr) β -(av) 939 (90Y) β -(max) 2283.9 (90Y) | β β β β | 28.8 (90Sr) 2.7 days (90Y) | 90Y is daughter of 90Sr |
241Am-excited (59.54 keV) characteristic X-ray radiation of different elements * | 8.16 13.6 17.8 22.6 32.3 45.5 | Cu Kα + Kβ Rb Kα + Kβ Mo Kα + Kβ Ag Kα + Kβ Ba Kα + Kβ Tb Kα + Kβ |
Crystal | LuAG | YAG | Gd3AlxGa5-xO12 (x = 0–5) | GGG | GAG | LSO |
---|---|---|---|---|---|---|
dpen (μm) | 10.25 | 11.1 | 10.4–9.4 | 9.8 | 10.7 | 10.4 |
Sample | Composition | Flux | Thickness (µm) | Remarks |
---|---|---|---|---|
GAGG:Ce crystal | Gd3Al2.5Ga2.5O12:Ce | Czochralski method | 1 mm | Substrate only |
PL 22-8 SCF | Lu1.5Gd1.5Al3Ga2O12:Ce/ GAGG:Ce-substrate | BaO | 16 | |
PL 25-10 SCF | Tb1.5Gd1.5Al2.5Ga2.5O12:Ce/ GAGG:Ce-substrate | BaO | 63 | Weak Tb3+ emission lines observed |
PL 16-4 SCF | Gd1.5Lu1.5Al1.5Ga3.5O12:Ce/ GAGG:Ce-substrate | PbO | 32 | |
PL 19-10 SCF | Tb2GdAl1.5Ga3.5O12:Ce/ GAGG:Ce-substrate | PbO | 33 | |
Composite scintillators | YAG:Ce(17 µm)/TbAG:Ce (74 µm)/GAGG:Ce(3 µm/ GAGG:Ce-substrate | PbO | YAG SCF 17 µm TbAG:Ce SCF 74 µm GAGG:Ce 3 µm |
Sample | Composition | LY (ph/MeV) α—4800 keV γ—66,166 keV | ER (%) α—4800 keV γ—661.66 keV | Remarks |
---|---|---|---|---|
GAGG:Ce crystal substrate 1 mm | Gd3Al2.5Ga2.5O12:Ce | α—4570–5310 γ—34,500–39,600 | α—28–35 γ—6–8 | γ -rays nonprop.~80% at 30 keV |
PL 22-8 SCF | Lu1.5Gd1.5Al3Ga2O12:Ce/ GAGG:Ce-substrate | α—1790–2720 γ—29,600–34,300 | α—13–31 γ—around ≈6 | |
PL 25-10 SCF | Tb1.5Gd1.5Al2.5Ga2.5O12:Ce/GAGG:Ce-substrate | α—220–250 γ—28,600–31,800 | α—28–35 γ—4–8 | Tb3+ peaks slightly observed |
PL 16-4 SCF | Gd1.5Lu1.5Al1.5Ga3.5O12:Ce/ GAGG: Ce-substrate | α—1050–1610 γ—32,900–39,200 | α—24–39 γ—5–7 | |
PL 19-10 SCF | Tb2GdAl1.5Ga3.5O12:Ce/ GAGG:Ce-substrate | α—73–280 γ—28,700–33,600 | α—51–83 γ—6.8–8 | |
Composite scintillators | YAG:Ce/TbAG:Ce/GAGG:Ce/GAGG:Ce-substrate | α—450–780 γ—17,100–25,000 | α—20–28 γ—8.6–13 |
Sample (Exact Composition, see Table 3) | Radiation | 1st Exponential ns (%) | 2nd Exponential ns (%) | 3rd Exponential ns (%) | 1/e Value |
---|---|---|---|---|---|
GAGG:Ce substrate | α-4800 keV β-90Sr/90Y γ-661.66 keV | 237 (83.6) 310 (88) 239 (84.2) | 816 (16.4) 990 (12) 836 (15.8) | - - - | 414 460 211 |
PL 22-8 | α-4800 keV β-90Sr/90Y γ-661.66 keV | 99 (90) 193 (75.3) 203 (81.2) | 1640 (10) 688 (24.7) 763 (18.8) | - - - | 117 265 260 |
PL 25-10 | α-4800 keV β-90Sr/90Y γ-661.66 keV | 223 (8) 84.3 (34.4) 122 (62.2) | 457 (34.3) 268 (55.6) 387 (34.9) | 2270 (2) 799 (10.1) 1230 (3) | 294 206 190 |
PL 16-4 | α-4800 keV β-90Sr/90Y γ-661.66 keV | 38.3 (36.7) 242 (83.1) 73.3 (34.7) | 153 (53.1) 837 (16.9) 295 (56.8) | 1650 (10.2) - 967 (8.5) | 114 300 211 |
PL 19-10 | α-4800 keV β-90Sr/90Y γ-661.66 keV | 336 (87) 250 (80.4) 134 (70.9) | 1300 (13) 825 (19.6) 617 (29.1) | - - - | 431 318 207 |
Composite scintillator | α-4800 keV β-90Sr/90Y γ-661.66 keV | 46 (91.1) 443 (94.6) 387 (90.1) | 510 (7.6) 2440 (5.4) 1510 (9.9) | 8869 (1.3) - - | 53.1 475 431 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mares, J.A.; Gorbenko, V.; Kucerkova, R.; Prusa, P.; Beitlerova, A.; Zorenko, T.; Pokorny, M.; Witkiewicz-Łukaszek, S.; Syrotych, Y.; D’Ambrosio, C.; et al. Scintillation Characteristics of the Single-Crystalline Film and Composite Film-Crystal Scintillators Based on the Ce3+-Doped (Lu,Gd)3(Ga,Al)5O12 Mixed Garnets under Alpha and Beta Particles, and Gamma Ray Excitations. Materials 2022, 15, 7925. https://doi.org/10.3390/ma15227925
Mares JA, Gorbenko V, Kucerkova R, Prusa P, Beitlerova A, Zorenko T, Pokorny M, Witkiewicz-Łukaszek S, Syrotych Y, D’Ambrosio C, et al. Scintillation Characteristics of the Single-Crystalline Film and Composite Film-Crystal Scintillators Based on the Ce3+-Doped (Lu,Gd)3(Ga,Al)5O12 Mixed Garnets under Alpha and Beta Particles, and Gamma Ray Excitations. Materials. 2022; 15(22):7925. https://doi.org/10.3390/ma15227925
Chicago/Turabian StyleMares, Jiri A., Vitalii Gorbenko, Romana Kucerkova, Petr Prusa, Alena Beitlerova, Tetiana Zorenko, Martin Pokorny, Sandra Witkiewicz-Łukaszek, Yurii Syrotych, Carmelo D’Ambrosio, and et al. 2022. "Scintillation Characteristics of the Single-Crystalline Film and Composite Film-Crystal Scintillators Based on the Ce3+-Doped (Lu,Gd)3(Ga,Al)5O12 Mixed Garnets under Alpha and Beta Particles, and Gamma Ray Excitations" Materials 15, no. 22: 7925. https://doi.org/10.3390/ma15227925
APA StyleMares, J. A., Gorbenko, V., Kucerkova, R., Prusa, P., Beitlerova, A., Zorenko, T., Pokorny, M., Witkiewicz-Łukaszek, S., Syrotych, Y., D’Ambrosio, C., Nikl, M., Sidletskiy, O., & Zorenko, Y. (2022). Scintillation Characteristics of the Single-Crystalline Film and Composite Film-Crystal Scintillators Based on the Ce3+-Doped (Lu,Gd)3(Ga,Al)5O12 Mixed Garnets under Alpha and Beta Particles, and Gamma Ray Excitations. Materials, 15(22), 7925. https://doi.org/10.3390/ma15227925