Uncovering the Effect of Al Addition on the Hydrogen Storage Properties of the Ternary TiVNb Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Synthesis and Microstructure of the Pristine Alloys
3.2. Hydrogen Absorption
3.3. Thermodynamics of Hydrogen Absorption
3.4. Hydrogen Desorption
3.5. Hydrogen Absorption/Desorption Cycling and Kinetics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, F.; Wang, J.; Zhang, Y.; Wu, Z.; Zhang, Z.; Zhao, F.; Huot, J.; Grobivć Novaković, J.; Novaković, N. Recent Progress on the Development of High Entropy Alloys (HEAs) for Solid Hydrogen Storage: A Review. Int. J. Hydrog. Energy 2022, 47, 11236–11249. [Google Scholar] [CrossRef]
- Yadav, T.P.; Kumar, A.; Verma, S.K.; Mukhopadhyay, N.K. High-Entropy Alloys for Solid Hydrogen Storage: Potentials and Prospects. Trans. Indian Natl. Acad. Eng. 2022, 7, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Shahi, R.R.; Gupta, A.K.; Kumari, P. Perspectives of High Entropy Alloys as Hydrogen Storage Materials. Int. J. Hydrogen Energy 2022, S0360319922007297. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural Development in Equiatomic Multicomponent Alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Sahlberg, M.; Karlsson, D.; Zlotea, C.; Jansson, U. Superior Hydrogen Storage in High Entropy Alloys. Sci. Rep. 2016, 6, 36770. [Google Scholar] [CrossRef] [Green Version]
- Zlotea, C.; Sow, M.A.; Ek, G.; Couzinié, J.-P.; Perrière, L.; Guillot, I.; Bourgon, J.; Møller, K.T.; Jensen, T.R.; Akiba, E.; et al. Hydrogen Sorption in TiZrNbHfTa High Entropy Alloy. J. Alloy. Compd. 2019, 775, 667–674. [Google Scholar] [CrossRef]
- Montero, J.; Zlotea, C.; Ek, G.; Crivello, J.-C.; Laversenne, L.; Sahlberg, M. TiVZrNb Multi-Principal-Element Alloy: Synthesis Optimization, Structural, and Hydrogen Sorption Properties. Molecules 2019, 24, 2799. [Google Scholar] [CrossRef] [Green Version]
- Montero, J.; Ek, G.; Laversenne, L.; Nassif, V.; Zepon, G.; Sahlberg, M.; Zlotea, C. Hydrogen Storage Properties of the Refractory Ti–V–Zr–Nb–Ta Multi-Principal Element Alloy. J. Alloy. Compd. 2020, 835, 155376. [Google Scholar] [CrossRef]
- Bouzidi, A.; Laversenne, L.; Nassif, V.; Elkaim, E.; Zlotea, C. Hydrogen Storage Properties of a New Ti-V-Cr-Zr-Nb High Entropy Alloy. Hydrogen 2022, 3, 270–284. [Google Scholar] [CrossRef]
- Bouzidi, A.; Laversenne, L.; Zepon, G.; Vaughan, G.; Nassif, V.; Zlotea, C. Hydrogen Sorption Properties of a Novel Refractory Ti-V-Zr-Nb-Mo High Entropy Alloy. Hydrogen 2021, 2, 399–413. [Google Scholar] [CrossRef]
- Strozi, R.B.; Leiva, D.R.; Huot, J.; Botta, W.J.; Zepon, G. Synthesis and Hydrogen Storage Behavior of Mg–V–Al–Cr–Ni High Entropy Alloys. Int. J. Hydrog. Energy 2021, 46, 2351–2361. [Google Scholar] [CrossRef]
- Cardoso, K.R.; Roche, V.; Jorge, A.M., Jr.; Antiqueira, F.J.; Zepon, G.; Champion, Y. Hydrogen Storage in MgAlTiFeNi High Entropy Alloy. J. Alloy. Compd. 2021, 858, 158357. [Google Scholar] [CrossRef]
- Ferraz, M.d.B.; Botta, W.J.; Zepon, G. Synthesis, Characterization and First Hydrogen Absorption/Desorption of the Mg35Al15Ti25V10Zn15 High Entropy Alloy. Int. J. Hydrog. Energy 2022, 47, 22881–22892. [Google Scholar] [CrossRef]
- Montero, J.; Ek, G.; Sahlberg, M.; Zlotea, C. Improving the Hydrogen Cycling Properties by Mg Addition in Ti-V-Zr-Nb Refractory High Entropy Alloy. Scr. Mater. 2021, 194, 113699. [Google Scholar] [CrossRef]
- Montero, J.; Ek, G.; Laversenne, L.; Nassif, V.; Sahlberg, M.; Zlotea, C. How 10 At% Al Addition in the Ti-V-Zr-Nb High-Entropy Alloy Changes Hydrogen Sorption Properties. Molecules 2021, 26, 2470. [Google Scholar] [CrossRef]
- Pineda-Romero, N.; Witman, M.; Stavila, V.; Zlotea, C. The Effect of 10 at.% Al Addition on the Hydrogen Storage Properties of the Ti0.33V0.33Nb0.33 Multi-Principal Element Alloy. Intermetallics 2022, 146, 107590. [Google Scholar] [CrossRef]
- Zlotea, C.; Oumellal, Y.; Msakni, M.; Bourgon, J.; Bastide, S.; Cachet-Vivier, C.; Latroche, M. First Evidence of Rh Nano-Hydride Formation at Low Pressure. Nano Lett. 2015, 15, 4752–4757. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A Critical Review of High Entropy Alloys and Related Concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Ding, X.; Chen, R.; Cao, W.; Song, Q. Study on Hydrogen Storage Property of (ZrTiVFe) Al High-Entropy Alloys by Modifying Al Content. Int. J. Hydrog. Energy 2022, 47, 8409–8418. [Google Scholar] [CrossRef]
- Stepanov, N.D.; Shaysultanov, D.G.; Salishchev, G.A.; Tikhonovsky, M.A. Structure and Mechanical Properties of a Light-Weight AlNbTiV High Entropy Alloy. Mater. Lett. 2015, 142, 153–155. [Google Scholar] [CrossRef]
- Senkov, O.N.; Senkova, S.V.; Woodward, C. Effect of Aluminum on the Microstructure and Properties of Two Refractory High-Entropy Alloys. Acta Mater. 2014, 68, 214–228. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y. Prediction of High-Entropy Stabilized Solid-Solution in Multi-Component Alloys. Mater. Chem. Phys. 2012, 132, 233–238. [Google Scholar] [CrossRef]
- Guo, S.; Ng, C.; Lu, J.; Liu, C.T. Effect of Valence Electron Concentration on Stability of Fcc or Bcc Phase in High Entropy Alloys. J. Appl. Phys. 2011, 109, 103505. [Google Scholar] [CrossRef] [Green Version]
- Yurchenko, N.Y.; Stepanov, N.D.; Zherebtsov, S.V.; Tikhonovsky, M.A.; Salishchev, G.A. Structure and Mechanical Properties of B2 Ordered Refractory AlNbTiVZrx (x = 0–1.5) High-Entropy Alloys. Mater. Sci. Eng. A 2017, 704, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Yang, X.; Dahmen, K.; Liaw, P.; Zhang, Y. Microstructures and Crackling Noise of AlxNbTiMoV High Entropy Alloys. Entropy 2014, 16, 870–884. [Google Scholar] [CrossRef] [Green Version]
- He, J.Y.; Liu, W.H.; Wang, H.; Wu, Y.; Liu, X.J.; Nieh, T.G.; Lu, Z.P. Effects of Al Addition on Structural Evolution and Tensile Properties of the FeCoNiCrMn High-Entropy Alloy System. Acta Mater. 2014, 62, 105–113. [Google Scholar] [CrossRef]
- Couzinié, J.P.; Dirras, G.; Perrière, L.; Chauveau, T.; Leroy, E.; Champion, Y.; Guillot, I. Microstructure of a Near-Equimolar Refractory High-Entropy Alloy. Mater. Lett. 2014, 126, 285–287. [Google Scholar] [CrossRef]
- Laurent-Brocq, M.; Akhatova, A.; Perrière, L.; Chebini, S.; Sauvage, X.; Leroy, E.; Champion, Y. Insights into the Phase Diagram of the CrMnFeCoNi High Entropy Alloy. Acta Mater. 2015, 88, 355–365. [Google Scholar] [CrossRef]
- Dornheim, M. Thermodynamics of Metal Hydrides: Tailoring Reaction Enthalpies of Hydrogen Storage Materials. In Thermodynamics—Interaction Studies—Solids, Liquids and Gases; Moreno Pirajn, J.C., Ed.; InTech Europe: Rijeka, Croatia, 2011; ISBN 978-953-307-563-1. [Google Scholar]
- Akiba, E.; Okada, M. Metallic Hydrides III: Body-Centered-Cubic Solid-Solution Alloys. MRS Bull. 2002, 27, 699–703. [Google Scholar] [CrossRef]
- Strozi, R.B.; Leiva, D.R.; Zepon, G.; Botta, W.J.; Huot, J. Effects of the Chromium Content in (TiVNb)100−xCrx Body-Centered Cubic High Entropy Alloys Designed for Hydrogen Storage Applications. Energies 2021, 14, 3068. [Google Scholar] [CrossRef]
- Nygård, M.M.; Fjellvåg, Ø.S.; Sørby, M.H.; Sakaki, K.; Ikeda, K.; Armstrong, J.; Vajeeston, P.; Sławiński, W.A.; Kim, H.; Machida, A.; et al. The Average and Local Structure of TiVCrNbD x (x = 0, 2.2, 8) from Total Scattering and Neutron Spectroscopy. Acta Mater. 2021, 205, 116496. [Google Scholar] [CrossRef]
- Zlotea, C.; Bouzidi, A.; Montero, J.; Ek, G.; Sahlberg, M. Compositional Effects on the Hydrogen Storage Properties in a Series of Refractory High Entropy Alloys. Front. Energy Res. 2022, 10, 991447. [Google Scholar] [CrossRef]
Composition | Al Content (at. fraction) | Molar Mass (g/mol) | Density ρ (g/cm3) | Lattice Distortion δ (%) | VEC |
---|---|---|---|---|---|
TiVNb | 0 | 63.9 | 6.4 | 4.4 | 4.7 |
Al0.05(TiVNb)0.95 | 0.05 | 62.1 | 6.3 | 4.3 | 4.6 |
Al0.10(TiVNb)0.90 | 0.10 | 60.2 | 6.1 | 4.2 | 4.5 |
Al0.175(TiVNb)0.825 | 0.175 | 57.4 | 5.8 | 4.1 | 4.4 |
Al0.25(TiVNb)0.75 | 0.25 | 54.7 | 5.6 | 3.9 | 4.25 |
Composition | Form | Phase Structure | Space Group | Lattice Parameter (Å) | Reference |
---|---|---|---|---|---|
TiVNb | as-cast | bcc | Im-3m | 3.211(2) | [17] |
(TiVNb)H2.0 | dihydride | fcc | Fm-3m | 4.443(1) | |
Al0.05(TiVNb)0.95 | as-cast | bcc | Im-3m | 3.203(1) | Present work |
Al0.05(TiVNb)0.95H1.84 | dihydride | fcc | Fm-3m | 4.418(1) | Present work |
Al0.10(TiVNb)0.90 | as-cast | bcc | Im-3m | 3.197(1) | [17] |
Al0.10(TiVNb)0.90H1.59 | dihydride | fcc | Fm-3m | 4.376(1) | |
Al0.175(TiVNb)0.825 | as-cast | bcc | Im-3m | 3.194(2) | Present work |
Al0.175(TiVNb)0.825H0.81 | hydride | bcc | Im-3m | 3.279(6) | Present work |
Al0.25(TiVNb)0.75 | as-cast | bcc | Im-3m | 3.189(1) | Present work |
Al0.25(TiVNb)0.75H0.69 | hydride | bcc | Im-3m | 3.225(10) | Present work |
Composition | Element | Nominal (at. %) | Overall Average (at. %) | Dendritic Zone (at. %) | Interdendritic Zone (at. %) |
---|---|---|---|---|---|
Al0.05(TiVNb)0.95 | Al (K) | 5 | 5.1 (0.4) | 4.9 (0.2) | 5.7 (0.2) |
Ti (K) | 31.6 | 31.4 (1.9) | 30.6 (1.3) | 34.4 (0.5) | |
V (K) | 31.6 | 31.3 (2.0) | 30.4 (1.2) | 34.6 (0.4) | |
Nb (L) | 31.6 | 32.1 (4.2) | 34 (2.6) | 25.3 (1.1) | |
Al0.10(TiVNb)0.90 | Al (K) | 10 | 9.8 (0.4) | 9.7 (0.4) | 10 (0.1) |
Ti (K) | 30 | 29.6 (0.8) | 29.3 (0.7) | 30.5 (0.3) | |
V (K) | 30 | 29.5 (1.1) | 28.9 (0.6) | 31.1 (0.1) | |
Nb (L) | 30 | 31.1 (2.1) | 32.1 (1.5) | 28.4 (0.5) | |
Al0.175(TiVNb)0.825 | Al (K) | 17.5 | 16.8 (0.2) | 16.7 (0.1) | 17 (0.3) |
Ti (K) | 27.5 | 27.5 (0.5) | 27.2 (0.5) | 28 (0.3) | |
V (K) | 27.5 | 27.7 (0.5) | 27.4 (0.3) | 28.3 (0.1) | |
Nb (L) | 27.5 | 28 (1.1) | 28.7 (0.5) | 26.7 (0.6) | |
Al0.25(TiVNb)0.75 | Al (K) | 25 | 25.7 (0.8) | 25.3 (0.6) | 26.5 (0.7) |
Ti (K) | 25 | 24.6 (0.8) | 24.2 (0.5) | 25.5 (0.8) | |
V (K) | 25 | 24.4 (0.3) | 24.3 (0.2) | 24.8 (0.3) | |
Nb (L) | 25 | 25.2 (1.9) | 26.2 (1.1) | 23.2 (1.6) |
Composition | ΔHabs (kJ/mol H2) | ΔSabs (J/K·mol H2) | |
---|---|---|---|
Experimental | Machine Learning | ||
TiVNb | −67 (±5) [17] | −58 [17] | −157 (±11) [17] |
Al0.05(TiVNb)0.95 | −52 (±1.5) | −52 [17] | −141 (±3) |
Al0.10(TiVNb)0.90 | −49 (±1) [17] | −51 [17] | −154 (±2) [17] |
Composition | Form | Phase | Phase Fraction (%) | Lattice Parameter (Å) |
---|---|---|---|---|
Al0.05(TiVNb)0.95H1.8 | dihydride | fcc | 100 | 4.412(1) |
Al0.05(TiVNb)0.95H1.3 | intermediate | bccmh ** fcc | 35 65 | 3.349(1) 4.392(1) |
Al0.05(TiVNb)0.95H0.9 | monohydride | bccmh ** | 100 | 3.342(1) |
Al0.05(TiVNb)0.95H0.5 | intermediate | bccss * bccmh ** | 28 72 | 3.255(1) 3.312(1) |
Al0.05(TiVNb)0.95 | desorbed | bcc | 100 | 3.206(1) |
(TiVNb)H2.0 | dihydride | fcc | 100 | 4.439(1) |
(TiVNb)H1.3 | intermediate | bccmh ** fcc | 65 35 | 3.353(1) 4.425(1) |
(TiVNb)H0.9 | monohydride | bccmh ** fcc | 98 2 | 3.346(1) 4.423(1) |
(TiVNb)H0.5 | intermediate | bccss * bccmh ** | 50 50 | 3.262(1) 3.328(1) |
TiVNb | desorbed | bcc | 100 | 3.219(1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pineda-Romero, N.; Zlotea, C. Uncovering the Effect of Al Addition on the Hydrogen Storage Properties of the Ternary TiVNb Alloy. Materials 2022, 15, 7974. https://doi.org/10.3390/ma15227974
Pineda-Romero N, Zlotea C. Uncovering the Effect of Al Addition on the Hydrogen Storage Properties of the Ternary TiVNb Alloy. Materials. 2022; 15(22):7974. https://doi.org/10.3390/ma15227974
Chicago/Turabian StylePineda-Romero, Nayely, and Claudia Zlotea. 2022. "Uncovering the Effect of Al Addition on the Hydrogen Storage Properties of the Ternary TiVNb Alloy" Materials 15, no. 22: 7974. https://doi.org/10.3390/ma15227974
APA StylePineda-Romero, N., & Zlotea, C. (2022). Uncovering the Effect of Al Addition on the Hydrogen Storage Properties of the Ternary TiVNb Alloy. Materials, 15(22), 7974. https://doi.org/10.3390/ma15227974