Luminescence Properties and Energy Transfer in SrLa2Sc2O7 Co-Doped with Bi3+/M (M = Eu3+, Mn4+, or Yb3+)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phase Information
3.2. Luminescence Properties of SLSO:0.06Bi3+, yEu3+
3.3. Luminescence Properties of SLSO:0.06Bi3+, mMn4+
3.4. Luminescence Properties of SLSO:0.06Bi3+, zYb3+
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, Y.; Guo, N.; Li, J.; Xin, Y.; Lü, W.; Miao, Y. Dual-emissive Ln3+/Mn4+ Co-doped double perovskite phosphor via site-beneficial occupation. Mater. Adv. 2021, 2, 1402–1412. [Google Scholar] [CrossRef]
- Wang, W.; Yang, H.; Fu, M.; Zhang, X.; Guan, M.; Wei, Y.; Lin, C.C.; Li, G. Superior thermally-stable narrow-band green emitter from Mn2+-doped zero thermal expansion (ZTE) material. Chem. Eng. J. 2021, 415, 128979. [Google Scholar] [CrossRef]
- Yuan, L.; Jin, Y.; Xiong, G.; Wu, H.; Li, J.; Liu, H.; Chen, L.; Hu, Y. Flux-assisted low-temperature synthesis of Mn4+-doped unusual broadband deep-red phosphors toward warm w-LEDs. J. Alloys Compd. 2021, 870, 159394. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, G.-E.; Li, L.; Hu, C.-L.; Lin, S.; Mao, J.-G. Rare-Earth-Free Barium Borostannate with Deep-Blue Light Emission. Chem. Mater. 2021, 33, 1852–1859. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, Y.; Ma, X. Tunable multicolor room-temperature phosphorescence including white-light emission from amorphous copolymers. Chem. Eng. J. 2021, 412, 128689. [Google Scholar] [CrossRef]
- Li, K.; Shang, M.; Lian, H.; Lin, J. Recent development in phosphors with different emitting colors via energy transfer. J. Mater. Chem. C. 2016, 4, 5507–5530. [Google Scholar] [CrossRef]
- Yuan, B.; Huang, Y.; Yu, Y.M.; Seo, H.J. Luminescence and structure of Eu2+-doped Ba2CaMg2Si6O17. Ceram. Int. 2012, 38, 2219–2223. [Google Scholar] [CrossRef]
- Yu, R.; Zhong, S.; Xue, N.; Li, H.; Ma, H. Synthesis, structure, and peculiar green emission of NaBaBO3:Ce3+ phosphors. Dalton Trans. 2014, 43, 10969–10976. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Yu, X. Synthesis and luminescence properties of Bi3+-doped YVO4 phosphors. J. Alloys Compd. 2011, 509, 9897–9900. [Google Scholar] [CrossRef]
- Guo, C.; Ding, X.; Luan, L.; Xu, Y. Two-color emitting of Eu2+ and Mn2+ co-doped Sr2Mg3P4O15 for UV LEDs. Sens. Actuators B Chem. 2010, 143, 712–715. [Google Scholar] [CrossRef]
- Maggay, I.V.B.; Lin, P.-C.; Liu, W.-R. Enhanced luminescence intensity of novel red-emitting phosphor-Sr3Lu2(BO3)4:Bi3+,Eu3+ via energy transfer. J. Solid State Light 2014, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Yu, Z.; Noh, H.M.; Lee, B.R.; Choi, B.C.; Park, S.H.; Jeong, J.H.; Du, P.; Song, M. Designing multi-mode optical thermometers via the thermochromic LaNbO4:Bi3+/Ln3+ (Ln = Eu, Tb, Dy, Sm) phosphors. Chem. Eng. J. 2021, 415, 128977. [Google Scholar] [CrossRef]
- Liu, D.; Yun, X.; Li, G.; Dang, P.; Molokeev, M.S.; Lian, H.; Shang, M.; Lin, J. Enhanced Cyan Emission and Optical Tuning of Ca3Ga4O9:Bi3+ for High-Quality Full-Spectrum White Light-Emitting Diodes. Adv. Opt. Mater. 2020, 8, 2001037. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, D.; Wang, W.; Yan, S.; Liu, J.; Liang, Y. Long-lasting ultraviolet-A persistent luminescence and photo stimulated persistent luminescence in Bi3+-doped LiScGeO4 phosphor. Inorg. Chem. Front. 2020, 7, 3063–3071. [Google Scholar] [CrossRef]
- Xiong, P.; Li, Y.; Peng, M. Recent Advances in Super Broad Infrared Luminescence Bismuth-Doped Crystals. iScience 2020, 23, 101578. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, L.; Liu, Z.; Tian, S.; Zhang, H.; Xu, X.; Qiu, J.; Yu, X. Achieving high thermal stability of different rare-earth ions in a single matrix host via the manipulation of the local structure by a solid solution. Phys. Chem. Chem. Phys. 2020, 22, 16294–16300. [Google Scholar] [CrossRef]
- de Weerd, C.; Gomez, L.; Zhang, H.; Buma, W.J.; Nedelcu, G.; Kovalenko, M.V.; Gregorkiewicz, T. Energy Transfer between Inorganic Perovskite Nanocrystals. J. Phys. Chem. C 2016, 120, 13310–13315. [Google Scholar] [CrossRef] [Green Version]
- Brédas, J.-L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Charge-Transfer and Energy-Transfer Processes in π-Conjugated Oligomers and Polymers: A Molecular Picture. Chem. Rev. 2004, 104, 4971–5004. [Google Scholar] [CrossRef]
- Powell, R.C.; Soos, Z.G. Singlet exciton energy transfer in organic solids. J. Lumin. 1975, 11, 1–45. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, Y.; Shen, Y.; Lin, J.; Fu, J.; Lei, L.; Ye, R.; Deng, D.; Xu, S. Designing Optical Thermometers Using Down/Up conversion Ca14Al10Zn6O35: Ti4+, Eu3+/Yb3+, Er3+ Thermosensitive Phosphors. Inorg. Chem. 2022, 61, 10667–10677. [Google Scholar] [CrossRef]
- Ji, R.; Seto, T.; Liu, W.; Wang, Y. Broadband Yellow Phosphor Discovered by Single-Particle Analysis Based on Fluorescence Microscopy, Scanning Electron Microscopy, Cathodoluminescence, and Energy-Dispersive X-ray Spectroscopy. J. Phys. Chem. A 2022, 126, 4647–4656. [Google Scholar] [CrossRef] [PubMed]
- Nanda, S.S.; Nayak, P.; Gupta, S.K.; Rawat, N.S.; Goutam, U.K.; Dash, S. Structural, optical spectroscopy and energy transfer features of Tb3+-activated (Y, Gd)F3 nanophosphors for UV-based LEDs. New J. Chem. 2022, 46, 15617–15627. [Google Scholar] [CrossRef]
- Zuo, X.-G.; Wang, Y.; Wei, L.; Lv, X.-S.; Fu, Y.-B.; Li, J.; Zhang, Y.-Y.; Wang, X.-P.; Liu, B.; Yang, Y.-G. Luminescence properties and energy transfer of La3Ga5SiO14:Eu3+, Tb3+ phosphors. Cryst. Eng. Comm. 2021, 23, 4194–4204. [Google Scholar] [CrossRef]
- Huang, A.; Yang, Z.; Yu, C.; Chai, Z.; Qiu, J.; Song, Z. Tunable and white light emission of a single-phased Ba2Y(BO3)2Cl: Bi3+, Eu3+ phosphor by energy transfer for ultraviolet converted white LEDs. J. Phys. Chem. C 2017, 121, 5267–5276. [Google Scholar] [CrossRef]
- Xie, Y.; Geng, X.; Guo, J.; Shi, W.; Lv, Q.; Kong, J.; Li, Y.; Deng, B.; Yu, R. Luminescence of a novel double-perovskite Sr2InSbO6:Eu3+ orange-red-emitting phosphor for white LEDs and visualization of latent fingerprints. Mater. Res. Bull. 2022, 146, 111574. [Google Scholar] [CrossRef]
- Hao, Z.; Zhang, J.; Zhang, X.; Wang, X. CaSc2O4:Eu3+: A tunable full-color emitting phosphor for white light emitting diodes. Opt. Mater. 2011, 33, 355–358. [Google Scholar] [CrossRef]
- Xin, S.; Wang, Y.; Wang, Z.; Zhang, F.; Wen, Y.; Zhu, G. An Intense Red-Emitting Phosphor YBa3(PO4)3: Eu3+ for Near-Ultraviolet Light Emitting Diodes Application. Electrochem. Solid-State Lett. 2011, 14, H438–H441. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, H.; Fu, L. Structural changes of TiO2 gel using Eu3+ ion as the fluorescence probe. J. Inorg. Mater. 1999, 14, 630–634. [Google Scholar]
- Cao, R.; Xiao, H.; Zhang, F.; Cheng, X.; Su, L.; Xiao, F.; Luo, Z.; Chen, T. Synthesis, energy transfer, charge compensation and luminescence properties of CaZrO3: Eu3+, Bi3+, Li+ phosphor. J. Mater. Sci. Mater. Electron. 2019, 30, 2327–2333. [Google Scholar] [CrossRef]
- Tang, Z.; Jiang, L.; Yang, J.; Tang, J.; Wu, A. Eu3+-Activated Alkali Rare-Earth Double-Tungstate Nanoparticles for Near-Ultraviolet-Light-Triggered Indoor Illumination. ACS Appl. Nano Mater. 2022, 5, 9072–9083. [Google Scholar] [CrossRef]
- Li, J.; Huang, J.; Jiang, P.; Gao, W.; Cong, R.; Yang, T. Complex crystal structure and photoluminescence of Bi3+-doped and Bi3+/Eu3+ co-doped Ca7Mg2Ga6O18. Dalton Trans. 2021, 50, 6848–6856. [Google Scholar] [CrossRef]
- Zheng, B.; Zhang, X.; Zhang, D.; Wang, F.; Zheng, Z.; Yang, X.; Yang, Q.; Song, Y.; Zou, B.; Zou, H. Ultra-wideband phosphor Mg2Gd8(SiO4)6O2: Ce3+, Mn2+: Energy transfer and pressure-driven color tuning for potential applications in LEDs and pressure sensors. Chem. Eng. J. 2022, 427, 131897. [Google Scholar] [CrossRef]
- Huang, D.; Dang, P.; Lian, H.; Zeng, Q.; Lin, J. Luminescence and energy-transfer properties in Bi3+/Mn4+-codoped Ba2GdNbO6 double-perovskite phosphors for white-light-emitting diodes. Inorg. Chem. 2019, 58, 15507–15519. [Google Scholar] [CrossRef]
- Ding, J.; Kuang, M.; Liu, S.; Zhang, Z.; Huang, K.; Huo, J.; Ni, H.; Zhang, Q.; Li, J. Sensitization of Mn2+ luminescence via efficient energy transfer to suit the application of high color rendering WLEDs. Dalton Trans. 2022, 51, 9501–9510. [Google Scholar] [CrossRef]
- Rastogi, C.K.; Sharma, S.K.; Sasmal, S.; Pala, R.G.S.; Kumar, J.; Sivakumar, S. Terbium Ion-Mediated Energy Transfer in WO3:Tb3+ and Eu3+ Phosphors for UV-Sensitized White Light Emission. J. Phys. Chem. C 2021, 125, 6163–6175. [Google Scholar] [CrossRef]
- Awater, R.H.P.; Dorenbos, P. Towards a general concentration quenching model of Bi3+ luminescence. J. Lumin. 2017, 188, 487–489. [Google Scholar] [CrossRef]
- Li, Z.-J.; Liu, B.; Zhang, Y.-Y.; Zhang, N.-N.; Shi, Q.; Wei, L.; Yu, H.-J.; Fu, Y.-B.; Li, Q.-G.; Yang, Y.-G. Compounds, Cyan, deep red and white light emission generated by SrLaGa3O7: Bi3+, SrLaGa3O7: Mn4+ and SrLaGa3O7: Bi3+/Mn4+ phosphors. J. Alloys Compd. 2022, 894, 162455. [Google Scholar] [CrossRef]
- Huang, D.; Dang, P.; Wei, Y.; Bai, B.; Lian, H.; Zeng, Q.; Lin, J. A deep-red-emitting Bi3+/Mn4+-doped CaLi6La2Nb2O12 phosphor: Luminescence and energy transfer properties. Mater. Res. Bull. 2020, 124, 110743. [Google Scholar] [CrossRef]
- Zhou, R.; Kou, Y.; Wei, X.; Duan, C.; Chen, Y.; Yin, M. Broadband down conversion based near-infrared quantum cutting via cooperative energy transfer in YNbO4: Bi3+, Yb3+ phosphor. Appl. Phys. B 2012, 107, 483–487. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, S.; Mu, Z.; Wu, F.; Nie, Z.; Zhu, D.; Feng, X.; Zhang, Q. Near-infrared quantum cutting via energy transfer in Bi3+, Yb3+ co-doped Lu2GeO5 down-converting phosphor. J. Alloys Compd. 2019, 784, 611–619. [Google Scholar] [CrossRef]
- Fujita, K.; Watanabe, R.; Iso, Y.; Isobe, T. Preparation and characterization of Y2O3:Bi3+, Yb3+ nanosheets with wavelength conversion from near-ultraviolet to near-infrared. J. Lumin. 2018, 198, 243–250. [Google Scholar] [CrossRef]
- Yadav, R.V.; Yadav, R.S.; Bahadur, A.; Singh, A.K.; Rai, S.B. Enhanced quantum cutting via Li+ doping from a Bi3+/Yb3+-codoped gadolinium tungstate phosphor. Inorg. Chem. 2016, 55, 10928–10935. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Yang, H.; Wang, Z.; Li, P. Luminescence Properties and Energy Transfer in SrLa2Sc2O7 Co-Doped with Bi3+/M (M = Eu3+, Mn4+, or Yb3+). Materials 2022, 15, 8040. https://doi.org/10.3390/ma15228040
Wang T, Yang H, Wang Z, Li P. Luminescence Properties and Energy Transfer in SrLa2Sc2O7 Co-Doped with Bi3+/M (M = Eu3+, Mn4+, or Yb3+). Materials. 2022; 15(22):8040. https://doi.org/10.3390/ma15228040
Chicago/Turabian StyleWang, Tao, Huifang Yang, Zhijun Wang, and Panlai Li. 2022. "Luminescence Properties and Energy Transfer in SrLa2Sc2O7 Co-Doped with Bi3+/M (M = Eu3+, Mn4+, or Yb3+)" Materials 15, no. 22: 8040. https://doi.org/10.3390/ma15228040
APA StyleWang, T., Yang, H., Wang, Z., & Li, P. (2022). Luminescence Properties and Energy Transfer in SrLa2Sc2O7 Co-Doped with Bi3+/M (M = Eu3+, Mn4+, or Yb3+). Materials, 15(22), 8040. https://doi.org/10.3390/ma15228040