Effect of Impact Position on Repaired Composite Laminates Subjected to Multi-Impacts
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, J.; Li, G.; Wang, Z.; Zhao, X.L. Fatigue behavior of concrete beams reinforced with glass and carbon-fiber reinforced polymer (GFRP/CFRP) bars after exposure to elevated temperatures. Compos. Struct. 2019, 229, 111427. [Google Scholar] [CrossRef]
- Charalambides, M.N.; Hardouin, R.; Kinloch, A.J.; Matthews, F.L. Adhesively-bonded repairs to fibre-composite materials I: Experimental. Compos. Part A Appl. Sci. Manuf. 1998, 29, 1371–1381. [Google Scholar] [CrossRef]
- Kaye, R.H.; Heller, M. Through-thickness shape optimisation of bonded repairs and lap-joints. Int. J. Adhes. Adhes. 2002, 22, 7–21. [Google Scholar] [CrossRef]
- Oztelcan, C.; Ochoab, O.O.; Martin, J.; Sem, K. Design and analysis of test coupons for composite blade repairs. Compos. Struct. 1997, 37, 185–1893. [Google Scholar] [CrossRef]
- Whittingham, B.; Baker, A.A.; Harman, A.; Bitton, D. Micrographic studies on adhesively bonded scarf repairs to thick composite aircraft structure. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1419–1432. [Google Scholar] [CrossRef]
- Cheng, P.; Gong, X.-J.; Hearn, D.; Aivazzadeh, S. Tensile behaviour of patch-repaired CFRP laminates. Compos. Struct. 2011, 93, 582–589. [Google Scholar] [CrossRef]
- Soutis, C.; Duan, D.-M.; Goutas, P. Compressive behaviour of CFRP laminates repaired with adhesively bonded external patches. Compos. Struct. 1999, 45, 289–301. [Google Scholar] [CrossRef]
- Charalambides, M.N.; Kinloch, A.J.; Matthews, F.L. Adhesively-bonded repairs to fibre-composite materials II: Finite element modelling. Compos. Part A Appl. Sci. Manuf. 1998, 29, 1383–1396. [Google Scholar] [CrossRef]
- Campilho, R.D.S.G.; de Moura, M.F.S.F.; Domingues, J.J.M.S. Modelling single and double-lap repairs on composite materials. Compos. Sci. Technol. 2005, 65, 1948–1958. [Google Scholar] [CrossRef]
- Papanikos, P.; Tserpes, K.I.; Labeas, G.; Pantelakis, S. Progressive damage modelling of bonded composite repairs. Theor. Appl. Fract. Mech. 2005, 43, 189–1898. [Google Scholar] [CrossRef]
- Hu, F.Z.; Soutis, C. Strength prediction of patch-repaired CFRP laminates loaded in compression. Compos. Sci. Technol. 2000, 60, 1103–1114. [Google Scholar] [CrossRef]
- Liu, X.; Wang, G. Progressive failure analysis of bonded composite repairs. Compos. Struct. 2007, 81, 331–340. [Google Scholar] [CrossRef]
- Smahdi, S.; Kinloch, A.J.; Matthews, F.L.; Crisfield, M.A. The static mechanical performance of repaired composite sandwich beams: Part I—Experimental characterisation. J. Sandw. Struct. Mater. 2003, 5, 179–202. [Google Scholar] [CrossRef]
- Balcı, O.; Çoban, O.; Bora, M.Ö.; Akagündüz, E.; Yalçin, E.B. Experimental investigation of single and repeated impacts for repaired honeycomb sandwich structures. Mater. Sci. Eng. A 2017, 682, 23–30. [Google Scholar] [CrossRef]
- Andrew, J.J.; Arumugam, V.; Saravanakumar, K.; Dhakal, H.N.; Santuli, C. Compression after impact strength of repaired GFRP composite laminates under repeated impact loading. Compos. Struct. 2015, 133, 911–920. [Google Scholar] [CrossRef]
- Ivañez, I.; Sánchez-Saez, S.; Garcia-Castillo, S.K.; Barbero, E.; Amaro, A.M.; Reis, P.N.B. Impact response of repaired sandwich structures. Polym. Compos. 2020, 41, 3014–3022. [Google Scholar] [CrossRef]
- Coelho, S.R.M.; Reis, P.N.B.; Ferreira, J.A.M.; Pereira, A.M. Effects of external patch configuration on repaired composite laminates subjected to multi-impacts. Compos. Struct. 2017, 168, 259–265. [Google Scholar] [CrossRef]
- Kumari, P.; Alam, A.; Saahil. Influence of the impact position on scarf repair composite under low velocity impact: FEA investigation. Mater. Today Proc. 2021, 38, 3005–3013. [Google Scholar] [CrossRef]
- Hou, Y.; Tie, Y.; Li, C.; Sapanathan, T.; Rachik, M. Low-velocity impact behaviors of repaired CFRP laminates: Effect of impact location and external patch configurations. Compos. Part B Eng. 2019, 163, 669–680. [Google Scholar] [CrossRef]
- Hosur, M.V.; Karim, M.R.; Jeelani, S. Experimental investigations on the response of stitched/unstitched woven S2-glass/SC15 epoxy composites under single and repeated low velocity impact loading. Compos. Struct. 2003, 61, 89–102. [Google Scholar] [CrossRef]
- Chalkley, P.; Baker, A. Development of a generic repair joint for certification of bonded composite repairs. Int. J. Adhes. Adhes. 1999, 19, 121–132. [Google Scholar] [CrossRef]
- Baker, A.; Gunnion, A.J.; Wang, J. On the certification of bonded repairs to primary composite aircraft components. J. Adhes. 2015, 91, 4–38. [Google Scholar] [CrossRef]
- Khan, S.H.; Khan, A.A.; Husain, A. Effect of fibre orientation on damage resistance of composite laminates. Int. J. Crashworth. 2021, 26, 270–282. [Google Scholar] [CrossRef]
- Amaro, A.M.; Reis, P.N.B.; Magalhaes, A.G.; de Moura, M.F.S.F. The Influence of the boundary conditions on low-velocity impact composite damage. Strain 2011, 47, E220–E226. [Google Scholar] [CrossRef]
- Reis, P.N.B.; Ferreira, J.A.M.; Santos, P.; Richardson, M.O.W.; Santos, J.B. Impact response of kevlar composites with filled epoxy matrix. Compos. Struct. 2012, 94, 3520–3528. [Google Scholar] [CrossRef]
- Reis, P.N.B.; Ferreira, J.A.M.; Zhang, Z.Y.; Benameur, T.; Richardson, M.O.W. Impact response of kevlar composites with nanoclay enhanced epoxy matrix. Compos. Part B Eng. 2013, 46, 7–14. [Google Scholar] [CrossRef]
- Belingardi, G.; Vadori, R. Low velocity impact tests of laminate glass-fiber-epoxy matrix composite material plates. Int. J. Impact Eng. 2002, 27, 213–229. [Google Scholar] [CrossRef]
- Aslan, Z.; Karakuzu, R.; Okutan, B. The response of laminated composite plates under low-velocity impact loading. Compos. Struct. 2003, 59, 119–127. [Google Scholar] [CrossRef]
- Hosur, M.V.; Adbullah, M.; Jeelani, S. Studies on the low-velocity impact response of woven hybrid composites. Compos. Struct. 2005, 67, 253–262. [Google Scholar] [CrossRef]
- Reis, P.N.B.; Santos, P.; Ferreira, J.A.M.; Richardson, M.O.W. Impact response of sandwich composites with nano-enhanced epoxy resin. J. Reinf. Plast. Compos. 2013, 32, 898–906. [Google Scholar] [CrossRef]
- Schoeppner, G.A.; Abrate, S. Delamination threshold loads for low velocity impact on composite laminates. Compos. Part A Appl. Sci. Manuf. 2000, 31, 903–915. [Google Scholar] [CrossRef]
- Río, T.G.; Zaer, R.; Barbero, E.; Navarro, C. Damage in CFRPs due to low velocity impact at low temperature. Compos. Part B Eng. 2005, 36, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Amaro, A.M.; Reis, P.N.B.; de Moura, M.F.S.F.; Santos, J.B. Influence of the specimen thickness on low velocity impact behavior of composites. J. Polym. Eng. 2012, 32, 53–58. [Google Scholar] [CrossRef]
- Amaro, A.M.; Reis, P.N.B.; Neto, M.A.; Louro, C. Effects of alkaline and acid solutions on glass/epoxy composites. Polym. Degrad. Stab. 2013, 98, 853–862. [Google Scholar] [CrossRef]
- David-West, O.S.; Nash, D.H.; Banks, W.M. An experimental study of damage accumulation in balanced CFRP laminates due to repeated impact. Compos. Struct. 2008, 83, 247–258. [Google Scholar] [CrossRef]
- Whitney, J.M.; Nuismer, R.J. Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations. J. Compos. Mater. 1974, 8, 253–265. [Google Scholar] [CrossRef]
- Reis, P.N.B.; Coelho, C.A.C.P.; Navalho, F.V.P. Impact response of composite sandwich cylindrical shells. Appl. Sci. 2021, 11, 10958. [Google Scholar] [CrossRef]
- Amaro, A.M.; Reis, P.N.B.; Neto, M.A. Experimental study of temperature effects on composite laminates subjected to multi-impacts. Compos. Part B Eng. 2016, 98, 23–29. [Google Scholar] [CrossRef]
- Reis, P.N.B.; Neto, M.A.; Amaro, A.M. Multi-impact behaviour of composite laminates under constant and different energy levels. Compos. Struct. 2022, 294, 115788. [Google Scholar] [CrossRef]
- Amaro, A.M.; Reis, P.N.B.; de Moura, M.F.S.F. Delamination effect on bending behaviour in carbon–epoxy composites. Strain 2011, 47, 203–208. [Google Scholar] [CrossRef]
- Davies, G.A.O.; Hitchings, D.; Zhou, G. Impact damage and residual strengths of woven fabric glass/polyester laminates. Compos. Part A Appl. Sci. Manuf. 1996, 27, 1147–1156. [Google Scholar] [CrossRef]
- Richardson, M.O.W.; Wisheart, M.J. Review of low-velocity impact properties of composite materials. Compos. Part A Appl. Sci. Manuf. 1996, 27, 1123–1131. [Google Scholar] [CrossRef]
- Dalfi, H.; Katnam, K.B.; Potluri, P. Intra-laminar toughening mechanisms to enhance impact damage tolerance of 2D woven composite laminates via yarn-level fiber hybridization and fiber architecture. Polym. Compos. 2019, 40, 4573–4587. [Google Scholar] [CrossRef]
Geometry | Load (kN) | Displacement (mm) | Restored Energy (%) | Impact Bending Stiffness (N/mm) |
---|---|---|---|---|
CS_0 | 3.61 (0.12) | 4.9 (0.39) | 64.7 (1.10) | 721.3 (6.96) |
CS_15 | 2.81 (0.06) | 5.3 (0.08) | 42.5 (1.41) | 522.7 (15.3) |
CS_35 | 4.08 (0.02) | 4.6 (0.17) | 51.1 (1.11) | 844 (17.51) |
R_0 | 2.52 (0.11) | 5.1 (0.27) | 28.5 (2.33) | 440.2 (34.35) |
R_15 | 3.38 (0.15) | 4.1 (0.15) | 49.6 (8.16) | 814 (10.15) |
R_35 | 4.42 (0.14) | 4.2 (0.13) | 52.1 (1.19) | 1015.4 (13.57) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, P.N.B.; Coelho, S.R.M.; Bezazi, A. Effect of Impact Position on Repaired Composite Laminates Subjected to Multi-Impacts. Materials 2022, 15, 8039. https://doi.org/10.3390/ma15228039
Reis PNB, Coelho SRM, Bezazi A. Effect of Impact Position on Repaired Composite Laminates Subjected to Multi-Impacts. Materials. 2022; 15(22):8039. https://doi.org/10.3390/ma15228039
Chicago/Turabian StyleReis, Paulo N. B., Sara R. M. Coelho, and Abderrezak Bezazi. 2022. "Effect of Impact Position on Repaired Composite Laminates Subjected to Multi-Impacts" Materials 15, no. 22: 8039. https://doi.org/10.3390/ma15228039
APA StyleReis, P. N. B., Coelho, S. R. M., & Bezazi, A. (2022). Effect of Impact Position on Repaired Composite Laminates Subjected to Multi-Impacts. Materials, 15(22), 8039. https://doi.org/10.3390/ma15228039