Influence of the Peek Abutments on Mechanical Behavior of the Internal Connections Single Implant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Desing
2.2. Surface Topography (SEM/FEG)
2.3. Energy Dispersive X-ray (EDX)
2.4. X-ray Diffraction Analysis (XRD)
2.5. Maximum Fracture Load
2.6. Fatigue Analysis
2.7. Finite Element Analysis (FEA)
3. Results
3.1. Surface Topography (SEM/FEG)
3.2. Energy Dispersive X-ray (EDX)
3.3. X-ray Diffraction Analysis (XRD)
3.4. Maximum Fracture Load
3.5. Fatigue Analysis
3.6. Finite Element Analysis (FEA)
4. Discussion
5. Conclusions
- PEEK abutments can withstand moderate forces and should be indicated with caution for implant-supported rehabilitation;
- Limitations of PEEK abutments include a large vertical displacement and plastic strain at the abutment-implant interface;
- PEEK abutments may be suitable as temporary rehabilitation, especially in the anterior region and for patients without parafunction, but joint failure must be considered.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quirynen, M.; Naert, I.; Van Steenberghe, D. Fixture design and overload influence marginal bone loss and fixture success in the Brånemark system. Clin. Oral Implant. Res. 1992, 3, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Mericske-Stern, R.; Venetz, E.; Fahrländer, F.; Bürgin, W. In vivo force measurements on maxillary implants supporting a fixed prosthesis or an overdenture: A pilot study. J. Prosthet. Dent. 2000, 84, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Isidor, F. Influence of forces on peri-implant bone. Clin. Oral Implant. Res. 2006, 17, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Cehreli, M.; Duyck, J.; De-Cooman, M.; Puers, R.; Naert, I. Implant design, and interface force transfer. A photoelastic and strain-gauge analysis. Clin. Oral Implant. Res. 2004, 15, 249–257. [Google Scholar] [CrossRef]
- Naveau, A.; Rignon-Bret, C.; Wulfman, C. Zirconia abutments in the anterior region: A systematic review of mechanical and esthetic outcomes. J. Prosthet. Dent. 2019, 121, 775–781.e1. [Google Scholar] [CrossRef]
- Tribst, J.P.M.; Dal Piva, A.M.O.; Bottino, M.A.; Nishioka, R.S.; Borges, A.L.S.; Özcan, M. Digital Image Correlation and Finite Element Analysis of Bone Strain Generated by Implant-Retained Cantilever Fixed Prosthesis. Eur. J. Prosthodont. Restor. Dent. 2020, 28, 10–17. [Google Scholar]
- Huang, H.L.; Huang, J.S.; Ko, C.C.; Hsu, J.T.; Chang, C.H.; Chen, M.Y. Effects of a splinted prosthesis supported a wide implant or two implants: A three-dimensional finite element analysis. Clin. Oral Implant. Res. 2005, 16, 466–472. [Google Scholar] [CrossRef]
- Hollweg, H.; Jacques, L.B.; da Silva Moura, M.; Bianco, V.C.; Souza, E.A.; Rubo, J.H. Deformation of implant abutments after framework connection using strain gauges. J. Oral Implantol. 2012, 38, 125–132. [Google Scholar] [CrossRef]
- Matos, J.D.; Arcila, L.V.; Ortiz, L.P.; Lopes, G.R.; Anami, L.C.; Ramos, N.C.; Saavedra, G.S.; Tribst, J.P.; Bottino, M.A. Hybrid abutment during prosthetic planning and oral rehabilitation. Minerva Dent. Oral Sci. 2022, 71, 107–116. [Google Scholar] [CrossRef]
- Suedam, V.; Souza, E.A.; Moura, M.S.; Jacques, L.B.; Rubo, J.H. Effect of abutment’s height and framework alloy on the load distribution of mandibular cantilevered implant-supported prosthesis. Clin. Oral Implant. Res. 2009, 20, 196–200. [Google Scholar] [CrossRef]
- Suedam, V.; Moretti-Neto, R.T.; Sousa, E.A.; Rubo, J.H. Effect of cantilever length and alloy framework on the stress distribution in the peri-implant area of cantilevered implant-supported fixed partial dentures. J. Appl. Oral Sci. 2016, 24, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Tribst, J.P.; Rodrigues, V.A.; Dal Piva, A.O.; Borges, A.L.; Nishioka, R.S. The importance of correct implant positioning and masticatory load direction on a fixed prosthesis. J. Clin. Exp. Dent. 2017, 10, e81–e87. [Google Scholar] [CrossRef] [PubMed]
- ISO 14801; International Organization for Standardization. Dentistry—Implants—Dynamic Fatigue Test for Endosseous Dental Implants, 3rd ed. International Organization for Standardization: Geneva, Switzerland, 2016; Volume 3, p. 9.
- Neumann, E.A.; Villar, C.C.; França, F.M. Fracture resistance of abutment screws made of titanium, polyetheretherketone, and carbon fiber-reinforced polyetheretherketone. Braz. Oral Res. 2014, 28, S1806-83242014000100239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stawarczyk, B.; Beuer, F.; Wimmer, T.; Jahn, D.; Sener, B.; Roos, M.; Schmidlin, P.R. Polyetheretherketone-a suitable material for fixed dental prostheses. J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101, 1209–1216. [Google Scholar] [CrossRef]
- Osman, R.B.; Elkhadem, A.H.; Ma, S.; Swain, M.V. Titanium versus zirconia implants supporting maxillary overdentures: Three-dimensional finite element analysis. Int. J. Oral Maxillofac. Implant. 2013, 28, e198–e208. [Google Scholar] [CrossRef] [Green Version]
- Matos, J.D.M.; de Santos, A.C.M.; Nakano, L.J.N.; Vasconcelos, J.E.L.; Andrade, V.C.; Nishioka, R.S.; Bottino, M.A.; Lopes, G.R.S. Metal alloys in dentistry: An outdated material or required for oral rehabilitation? Int. J. Odontostomatol. 2021, 15, 702–711. [Google Scholar] [CrossRef]
- Villefort, R.F.; Diamantino, P.J.S.; Zeidler, S.L.V.V.; Borges, A.L.S.; Silva-Concílio, L.R.; Saavedra, G.D.F.A.; Tribst, J.P.M. Mechanical Response of PEKK and PEEK as Frameworks for Implant-Supported Full-Arch Fixed Dental Prosthesis: 3D Finite Element Analysis. Eur. J. Dent. 2021, 16, 115–121. [Google Scholar] [CrossRef]
- Heboyan, A.; Lo Giudice, R.; Kalman, L.; Zafar, M.S.; Tribst, J.P.M. Stress Distribution Pattern in Zygomatic Implants Supporting Different Superstructure Materials. Materials 2022, 15, 4953. [Google Scholar] [CrossRef]
- Souza, A.C.; Xavier, T.A.; Platt, J.A.; Borges, A.L. Effect of Base and Inlay Restorative Material on the Stress Distribution and Fracture Resistance of Weakened Premolars. Oper. Dent. 2015, 40, E158–E166. [Google Scholar] [CrossRef] [Green Version]
- Agustín-Panadero, R.; Serra-Pastor, B.; Roig-Vanaclocha, A.; Román-Rodriguez, J.L.; Fons-Font, A. Mechanical behavior of provisional implant prosthetic abutments. Med. Oral Patol. Oral Cir. Bucal. 2015, 20, e94–e102. [Google Scholar] [CrossRef]
- Papathanasiou, I.; Kamposiora, P.; Papavasiliou, G.; Ferrari, M. The use of PEEK in digital prosthodontics: A narrative review. BMC Oral Health 2020, 20, 217. [Google Scholar] [CrossRef] [PubMed]
- Blanch-Martínez, N.; Arias-Herrera, S.; Martínez-González, A. Behavior of polyether-ether-ketone (PEEK) in prostheses on dental implants. A review. J. Clin. Exp. Dent. 2021, 13, e520–e526. [Google Scholar] [CrossRef]
- Peng, T.Y.; Shih, Y.H.; Hsia, S.M.; Wang, T.H.; Li, P.J.; Lin, D.J.; Sun, K.T.; Chiu, K.C.; Shieh, T.M. In Vitro Assessment of the Cell Metabolic Activity, Cytotoxicity, Cell Attachment, and Inflammatory Reaction of Human Oral Fibroblasts on Polyetheretherketone (PEEK) Implant-Abutment. Polymers 2021, 13, 2995. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.T.; Koak, J.Y.; Lim, Y.J.; Kim, S.K.; Kwon, H.B.; Kim, M.J. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Siddiqui, F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J. Prosthodont. Res. 2016, 60, 12–19. [Google Scholar] [CrossRef]
- Evans, A.; Horton, H.; Unsworth, A.; Briscoe, A. The influence of nominal stress on wear factors of carbon fiber-reinforced polyetheretherketone (PEEK-OPTIMA® Wear Performance) against zirconia toughened alumina (Biolox® delta ceramic). Proc. Inst. Mech. Eng. H 2014, 228, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Steiner, M.; Mitsias, M.E.; Ludwig, K.; Kern, M. In vitro evaluation of a mechanical testing chewing simulator. Dent. Mater. 2009, 25, 494–499. [Google Scholar] [CrossRef]
- Gehrke, P.; Dhom, G.; Brunner, J.; Wolf, D.; Degidi, M.; Piattelli, A. Zirconium implant abutments: Fracture strength and influence of cyclic loading on retaining-screw loosening. Quintessence Int. 2006, 37, 19–26. [Google Scholar]
- Duan, Y.; Gonzalez, J.A.; Kulkarni, P.A.; Nagy, W.W.; Griggs, J.A. Fatigue lifetime prediction of a reduced-diameter dental implant system: Numerical and experimental study. Dent. Mater. 2018, 34, 1299–1309. [Google Scholar] [CrossRef]
- Martins, J.N.R.; Martins, R.F.; Braz-Fernandes, F.M.; Silva, E.J.N.L. What Meaningful Information Are the Instruments Mechanical Testing Giving Us? A Comprehensive Review. J. Endod. 2022, 48, 985–1004. [Google Scholar] [CrossRef]
- Park, J.M.; Baek, C.H.; Heo, S.J.; Kim, S.K.; Koak, J.Y.; Kim, S.K.; Belser, U.C. An In Vitro Evaluation of the Loosening of Different Interchangeable Abutments in Internal-Connection-Type Implants. Int. J. Oral Maxillofac. Implant. 2017, 32, 350–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.Y.; Jeong, I.D.; Lee, J.J.; Bae, S.Y.; Kim, J.H.; Kim, W.C. In vitro assessment of the marginal and internal fits of interim implant restorations fabricated with different methods. J. Prosthet. Dent. 2016, 116, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Schwitalla, A.; Müller, W.D. PEEK dental implants: A review of the literature. J. Oral Implantol. 2013, 39, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Zivko-Babić, J.; Pandurić, J.; Jerolimov, V.; Mioc, M.; Pizeta, L.; Jakovac, M. Bite force in subjects with complete dentition. Coll. Antropol. 2002, 26, 293–302. [Google Scholar]
- Shrestha, R.; Simsiriwong, J.; Shamsaei, N.; Moser, R.D. Cyclic deformation and fatigue behavior of polyether-ether-ketone (PEEK). Int. J. Fatigue 2016, 82, 411–427. [Google Scholar] [CrossRef]
- Simsiriwong, J.; Shrestha, R.; Shamsaei, N.; Lugo, M.; Moser, R.D. Effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK). J. Mech. Behav. Biomed. Mater. 2015, 51, 388–397. [Google Scholar] [CrossRef]
- Wachtel, A.; Zimmermann, T.; Spintig, T.; Beuer, F.; Müller, W.D.; Schwitalla, A.D. A Novel Approach to Prove Bacterial Leakage of Implant-Abutment Connections In Vitro. J. Oral Implant. 2016, 42, 452–457. [Google Scholar] [CrossRef]
- Berberi, A.; Tehini, G.; Rifai, K.; Eddine, F.B.N.; Badran, B.; Akl, H. Leakage evaluation of original and compatible implant-abutment connections: In vitro study using Rhodamine B. J. Dent. Biomech. 2014, 5, 1758736014547143. [Google Scholar] [CrossRef]
- Verdugo, C.L.; Núñez, G.J.; Avila, A.A.; San Martín, C.L. Microleakage of the prosthetic abutment/implant interface with internal and external connection: In vitro study. Clin. Oral Implant. Res. 2013, 25, 1078–1083. [Google Scholar] [CrossRef]
Material | Young’s Modulus (GPa) | Poisson Ratio |
---|---|---|
Titanium [14] | 110 | 0.30 |
PEEK [18] | 3.7 | 0.40 |
Co-Cr [17] | 218 | 0.30 |
Zirconia [18] | 220 | 0.30 |
Carbon-reinforced polymer [19] | 42.7 | 0.30 |
Polyurethane [20] | 3.6 | 0.30 |
Groups | Mean Value (kgf) | SD | CI 95% |
---|---|---|---|
Short Abutment | 64.1 a | ±3.57 | (67.67–60.53) |
Long Abutment | 56.5 a | ±6.14 | (62.64–50.36) |
Fatigue Failure Load | ||||
---|---|---|---|---|
Group | Mean Value (kgf) | SD | CI 95%—Minimum | CI 95%—Maximum |
SA | 674.99 a | ±9.44 | (656.48) | (693.51) |
LA | 563.57 b | ±20.36 | (523.67) | (603.48) |
Number of Cycles to Fatigue Failure | ||||
Group | Mean Value | SD | CI 95%—Minimum | CI 95%—Maximum |
SA | 290,964.41 a | ±13,651.93 | (264,206.61) | (317,722.19) |
LA | 247,494.71 b | ±10,249.97 | (227,404.74) | (267,584.65) |
Analysis Criterion | Group | |
---|---|---|
LA | SA | |
Displacement (mm) | 0.42 | 0.56 |
Microstrain (µm/µm) | 0.0780 | 0.0798 |
Maximum Principal Stress (MPa) | 280.76 | 250.11 |
von Mises Stress (MPa) | 266.69 | 278.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matos, J.D.M.d.; Lopes, G.d.R.S.; Queiroz, D.A.; Pereira, A.L.J.; Sinhoreti, M.A.C.; Ramos, N.d.C.; Lino, V.; de Oliveira, F.R.; Borges, A.L.S.; Bottino, M.A. Influence of the Peek Abutments on Mechanical Behavior of the Internal Connections Single Implant. Materials 2022, 15, 8133. https://doi.org/10.3390/ma15228133
Matos JDMd, Lopes GdRS, Queiroz DA, Pereira ALJ, Sinhoreti MAC, Ramos NdC, Lino V, de Oliveira FR, Borges ALS, Bottino MA. Influence of the Peek Abutments on Mechanical Behavior of the Internal Connections Single Implant. Materials. 2022; 15(22):8133. https://doi.org/10.3390/ma15228133
Chicago/Turabian StyleMatos, Jefferson David Melo de, Guilherme da Rocha Scalzer Lopes, Daher Antonio Queiroz, André Luiz Jesus Pereira, Mário Alexandre Coelho Sinhoreti, Nathália de Carvalho Ramos, Vinicius Lino, Flavio Rosa de Oliveira, Alexandre Luiz Souto Borges, and Marco Antonio Bottino. 2022. "Influence of the Peek Abutments on Mechanical Behavior of the Internal Connections Single Implant" Materials 15, no. 22: 8133. https://doi.org/10.3390/ma15228133
APA StyleMatos, J. D. M. d., Lopes, G. d. R. S., Queiroz, D. A., Pereira, A. L. J., Sinhoreti, M. A. C., Ramos, N. d. C., Lino, V., de Oliveira, F. R., Borges, A. L. S., & Bottino, M. A. (2022). Influence of the Peek Abutments on Mechanical Behavior of the Internal Connections Single Implant. Materials, 15(22), 8133. https://doi.org/10.3390/ma15228133