Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, R.; Zulfequar, M.; Sharma, L.; Singh, V.N.; Senguttuvan, T.D. Growth of Nanocrystalline CaCu3Ti4O12 Ceramic by the Microwave Flash Combustion Method: Structural and Impedance Spectroscopic Studies. Cryst. Growth Des. 2015, 15, 1374–1379. [Google Scholar] [CrossRef]
- Pal, K.; Dey, A.; Jana, R.; Ray, P.P.; Bera, P.; Kumar, L.; Mandal, T.K.; Mohanty, P.; Seikh, M.M.; Gayen, A. Citrate Combustion Synthesized Al-Doped CaCu3Ti4O12 Quadruple Perovskite: Synthesis, Characterization and Multifunctional Properties. Phys. Chem. Chem. Phys. 2020, 22, 3499–3511. [Google Scholar] [CrossRef] [PubMed]
- Zhuk, N.A.; Sekushin, N.A.; Krzhizhanovskaya, M.G.; Belyy, V.A.; Korolev, R.I. Electrical Properties of Ni-Doped CaCu3Ti4O12 Ceramics. Solid State Ion. 2021, 364, 115633. [Google Scholar] [CrossRef]
- Thongbai, P.; Jumpatam, J.; Putasaeng, B.; Yamwong, T.; Maensiri, S. The Origin of Giant Dielectric Relaxation and Electrical Responses of Grains and Grain Boundaries of W-Doped CaCu3Ti4O12 Ceramics. J. Appl. Phys. 2012, 112, 114115. [Google Scholar] [CrossRef]
- Marković, S.; Lukić, M.; Jovalekić, Č.; Škapin, S.D.; Suvorov, D.; Uskoković, D. Sintering Effect on Microstructure and Electrical Properties of CaCu3Ti4O12 ceramics. Ceram. Trans. 2013, 240, 337–348. [Google Scholar] [CrossRef] [Green Version]
- Fernández, J.F.; Leret, P.; Romero, J.J.; De Frutos, J.; De La Rubia, M.Á.; Martín-González, M.S.; Costa-Krämer, J.L.; Fierro, J.L.G.; Quesada, A.; García, M.Á. Proofs of the Coexistence of Two Magnetic Contributions in Pure and Doped CaCu3Ti4O12 Giant Dielectric Constant Ceramics. J. Am. Ceram. Soc. 2009, 92, 2311–2318. [Google Scholar] [CrossRef] [Green Version]
- Brizé, V.; Autret-Lambert, C.; Wolfman, J.; Gervais, M.; Gervais, F. Synthesis and Microstructural TEM Investigation of CaCu3Ru4O12 Ceramic and Thin Film. J. Solid State Chem. 2011, 184, 2719–2723. [Google Scholar] [CrossRef]
- Ebbinghaus, S.G.; Weidenkaff, A.; Cava, R.J. Structural Investigations of ACu3Ru4O12 (A = Na, Ca, Sr, La, Nd)—A Comparison between XRD-Rietveld and EXAFS Results. J. Solid State Chem. 2002, 167, 126–136. [Google Scholar] [CrossRef]
- Subramanian, M.A.; Sleight, A.W. ACu3Ti4O12 and ACu3Ru4O12 Perovskites: High Dielectric Constants and Valence Degeneracy. Solid State Sci. 2002, 4, 347–351. [Google Scholar] [CrossRef]
- Shimakawa, Y. A-Site-Ordered Perovskites with Intriguing Physical Properties. Inorg. Chem. 2008, 47, 8562–8570. [Google Scholar] [CrossRef]
- Yanchevskii, O.Z.; V’yunov, O.I.; Belous, A.G.; Kovalenko, L.L. Dielectric Properties of CaCu3Ti4O12 Ceramics Doped with Aluminium and Fluorine. J. Alloys Compd. 2021, 874, 159861. [Google Scholar] [CrossRef]
- Tran, T.T.; Takubo, K.; Mizokawa, T.; Kobayashi, W.; Terasaki, I. Electronic Structure of CaCu3Ru4O12 Studied by X-Ray Photoemission Spectroscopy. Phys. Rev. B-Condens. Matter Mater. Phys. 2006, 73, 8–11. [Google Scholar] [CrossRef]
- Boonlakhorn, J.; Chanlek, N.; Manyam, J.; Srepusharawoot, P.; Krongsuk, S.; Thongbai, P. Enhanced Giant Dielectric Properties and Improved Nonlinear Electrical Response in Acceptor-Donor (Al3+, Ta5+)-Substituted CaCu3Ti4O12 Ceramics. J. Adv. Ceram. 2021, 10, 1243–1255. [Google Scholar] [CrossRef]
- Kobayashi, W.; Terasaki, I.; Takeya, J.I.; Tsukada, I.; Ando, Y. A Novel Heavy-Fermion State in CaCu3Ru4O12. J. Phys. Soc. Jpn. 2004, 73, 2373–2376. [Google Scholar] [CrossRef] [Green Version]
- Manik, S.K.; Pradhan, S.K. Microstructure Characterization of Ball-Mill-Prepared Nanocrystalline CaCu3Ti4O12 by Rietveld Method. Phys. E Low-Dimens. Syst. Nanostruct. 2006, 33, 160–168. [Google Scholar] [CrossRef]
- Miao, X.; Zhang, L.; Wu, L.; Hu, Z.; Shi, L.; Zhou, S. Quadruple Perovskite Ruthenate as a Highly Efficient Catalyst for Acidic Water Oxidation. Nat. Commun. 2019, 10, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Han, F.; Schwarz, B.; Knapp, M.; Ehrenberg, H.; Hua, W.; Hinterstein, M.; Li, G.; He, Y.; Wang, J.; et al. Dielectric Relaxation and Magnetic Structure of A-Site-Ordered Perovskite Oxide Semiconductor CaCu3Fe2Ta2O12. Inorg. Chem. 2021, 60, 6999–7007. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Q.; Li, Y.; Rehman, M.U.; Khan, W.Q. Sr and Zr Co-Doped CaCu3Ti4O12 Ceramics with Improved Dielectric Properties. Materials 2022, 15, 4243. [Google Scholar] [CrossRef]
- Li, M.; Cai, G.; Zhang, D.F.; Wang, W.Y.; Wang, W.J.; Chen, X.L. Enhanced dielectric responses in Mg-doped CaCu3Ti4O12. J. Appl. Phys. 2008, 104, 074107. [Google Scholar] [CrossRef]
- Boonlakhorn, J.; Chanlek, N.; Srepusharawoot, P.; Thongbai, P. Improved dielectric properties of CaCu3-xSnxTi4O12 ceramics with high permittivity and reduced loss tangent. J. Mater. Sci. Mater. Electron. 2020, 31, 15599–15607. [Google Scholar] [CrossRef]
- Boonlakhorn, J.; Thongbai, P.; Putasaeng, B.; Kidkhunthod, P.; Maensiri, S.; Chindaprasirt, P. Microstructural evolution, non-Ohmic properties, and giant dielectric response in CaCu3Ti4-xGexO12 ceramics. J. Am. Ceram. Soc. 2017, 100, 3478–3487. [Google Scholar] [CrossRef]
- Xu, D.; Zhu, Y.; Zhang, B.; Yue, X.; Jiao, L.; Song, J.; Zhong, S.; Ma, J.; Bao, L.; Zhang, L. Excellent dielectric performance and nonlinear electrical behaviors of Zr-doped CaCu3Ti4O12 thin films. J. Mater. Sci. Mater. Electron. 2018, 29, 5116–5123. [Google Scholar] [CrossRef]
- Xu, Z.; Qiang, H. Enhanced dielectric properties of Zn and Mn co-doped CaCu3Ti4O12 ceramics. J. Mater. Sci. Mater. Electron. 2017, 28, 376–380. [Google Scholar] [CrossRef]
- Xu, Z.; Qiang, H.; Chen, Y.; Chen, Z. Microstructure and enhanced dielectric properties of yttrium and zirconium co-doped CaCu3Ti4O12 ceramics. Mater. Chem. Phys. 2017, 191, 1–5. [Google Scholar] [CrossRef]
- Boonlakhorn, J.; Chanlek, N.; Manyam, J.; Srepusharawoot, P.; Thongbai, P. Simultaneous two-step enhanced permittivity and reduced loss tangent in Mg/Ge-Doped CaCu3Ti4O12 ceramics. J. Alloys Compd. 2021, 877, 160322. [Google Scholar] [CrossRef]
- Young, R.A. Rietveld Refinement; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Rodriguez-Carvajal, J. FullProf2k, Version 2.40-May 2005; LLB JRC Laboratory, Léon Brillouin (CEA–CNRS), CEA–Sarclay: Gif-sur-Yvette, France, 2005.
- Rodríguez-Carvajal, J. FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis. In Proceedings of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, 16–19 July 1990; p. 127. [Google Scholar] [CrossRef]
- Roisnel, T.; Rodríquez-Carvajal, J. WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis. Mater. Sci. Forum 2001, 378–381, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Garvey, R.G. LSUCRI Least Squares Unit Cell Refinement for the Personal Computer. Powder Diffr. 1986, 1, 114–116. [Google Scholar]
- Wang, Y.; Klenk, M.; Page, K.; Lai, W. Local Structure and Dynamics of Lithium Garnet Ionic Conductors: A Model Material Li5La3Ta2O12. Chem. Mater. 2014, 26, 5613–5624. [Google Scholar] [CrossRef]
- Takegami, D.; Kuo, C.Y.; Kasebayashi, K.; Kim, J.G.; Chang, C.F.; Liu, C.E.; Wu, C.N.; Kasinathan, D.; Altendorf, S.G.; Hoefer, K.; et al. CaCu3Ru4O12: A High-Kondo-Temperature Transition-Metal Oxide. Phys. Rev. X 2022, 12, 11017. [Google Scholar] [CrossRef]
- Liu, H.; Cao, Y.; Xu, Y.; Gawryluk, D.J.; Pomjakushina, E.; Gao, S.Y.; Dudin, P.; Shi, M.; Yan, L.; Yang, Y.F.; et al. Observation of Flat Bands Due to Band Hybridization in the 3d -Electron Heavy-Fermion Compound CaCu3Ru4O12. Phys. Rev. B 2020, 102, 1–7. [Google Scholar] [CrossRef]
- Sangwong, N.; Somphan, W.; Thongbai, P.; Yamwong, T.; Meansiri, S. Electrical Responses and Dielectric Relaxations in Giant Permittivity NaCu3Ti3TaO12 Ceramics. Appl. Phys. A Mater. Sci. Process. 2012, 108, 385–392. [Google Scholar] [CrossRef]
- Dulian, P.; Bąk, W.; Piz, M.; Garbarz-Glos, B.; Sachuk, O.V.; Wieczorek-Ciurowa, K.; Lisińska-Czekaj, A.; Czekaj, D. Mg2+ Doping Effects on the Structural and Dielectric Properties of CaCu3Ti4O12 Ceramics Obtained by Mech anochemical Synthesis. Materials 2021, 14, 1187. [Google Scholar] [CrossRef] [PubMed]
- Gunther, A.; Riegg, S.; Kraetschmer, W.; Wehrmeister, S.; Buttgen, N.; Scheidt, E.W.; Von Nidda, H.A.K.; Eremin, M.V.; Arkhipova, E.A.; Eremina, R.M.; et al. Electronic Correlations and Crystal-Field Effects in RCu3Ru4O12 (R=La, Pr, Nd) electronic correlations and crystal-field. Phys. Rev. B 2020, 102, 1–18. [Google Scholar] [CrossRef]
- Krohns, S.; Lu, J.; Lunkenheimer, P.; Brizé, V.; Autret-Lambert, C.; Gervais, M.; Gervais, F.; Bourée, F.; Porcher, F.; Loidl, A. Correlations of Structural, Magnetic, and Dielectric Properties of Undoped and Doped CaCu3Ti4O12. Eur. Phys. J. B 2009, 72, 173–182. [Google Scholar] [CrossRef]
- Marković, S.; Jovalekić, C.; Veselinović, L.; Mentus, S.; Uskoković, D. Electrical Properties of Barium Titanate Stannate Functionally Graded Materials. J. Eur. Ceram. Soc. 2010, 30, 1427–1435. [Google Scholar] [CrossRef]
Refined Parameters | Investigated Powders Space Group | ||
---|---|---|---|
CaCu3Ti4O12 | CaCu3Ti3RuO12 | CaCu3Ru4O12 | |
Lattice parameters | |||
a (Å) | 7.3954(2) | 7.4016(5) | 7.4209(6) |
V (Å3) | 404.46(8) | 405.50(5) | 408.66(5) |
Refined fractional coordinates and isotropic displacement parameters B (Å2) | |||
x | 0.0 | 0.0 | 0.0 |
y | 0.0 | 0.0 | 0.0 |
z | 0.0 | 0.0 | 0.0 |
B | 1.082(8) | 1.36(3) | 0.76(9) |
Cu | |||
x | 0.5 | 0.5 | 0.5 |
y | 0.5 | 0.5 | 0.5 |
z | 0.0 | 0.0 | 0.0 |
B | 1.974(3) | 0.974(3) | 0.76(6) |
Ti/Ru | |||
x | 0.25 | 0.25 | 0.25 |
y | 0.25 | 0.25 | 0.25 |
z | 0.25 | 0.25 | 0.25 |
B | 0.657(5) | 0.657(5) | 0.76 |
O | |||
x | 0.3043(8) | 0.3044(4) | 0.3063(7) |
y | 0.1805(8) | 0.1817(5) | 0.1839(7) |
z | 0.0 | 0.0 | 0.0 |
B | 0.775(3) | 0.942(5) | 0.76(3) |
Refined Parameters | Investigated Powders Space Group | ||
---|---|---|---|
CaCu3Ti4O12 | CaCu3Ti3RuO12 | CaCu3Ru4O12 | |
Interatomic distances (Å) | |||
Ca―O | 2.618(5) | 2.623(7) | 2.649(5) |
Cu―O | 1.960(4) | 1.985(4) | 1.985(4) |
Ti/Ru―O | 1.953(5) | 1.957(5) | 1.965(5) |
Agreement factors (%) | |||
Rwp | 16.0 | 13.7 | 14.50 |
RB | 10.9 | 12.6 | 9.75 |
Χ2 | 0.9 | 2.72 | 3.55 |
Frequency (kHz) | σ (S·cm−1) | ||
---|---|---|---|
CCTO | CCT3RO | CCRO | |
100 | 1.1 × 10−4 | 6.0 | 7.1 |
10 | 2.6 × 10−5 | 11.6 | 21.0 |
1 | 5.0 × 10−6 | 11.3 | 19.0 |
0.1 | 4.0 × 10−7 | 11.2 | 18.6 |
Temperature (°C) | Specific Electrical Resistivity (Ω·cm) | Specific Electrical Conductivity (S·cm−1) |
---|---|---|
177.0 | 4.85 × 105 | 0.22 × 10−3 |
137.3 | 2.17 × 104 | 0.48 × 10−4 |
98.9 | 9.39 × 104 | 0.11 × 10−4 |
67.6 | 2.72 × 105 | 0.35 × 10−5 |
38.9 | 8.96 × 105 | 0.12 × 10−5 |
23.0 | 1.47 × 106 | 0.72 × 10−6 |
Frequency (kHz) | Temperature (°C) | |||||
---|---|---|---|---|---|---|
23.0 | 38.9 | 67.6 | 98.9 | 137.3 | 177.0 | |
ε’ | ||||||
100 | 712.7 | 916.4 | 1330.2 | 1569.2 | 1753.9 | 1867.9 |
10 | 1295.9 | 1344.3 | 1507.3 | 1698.5 | 1849.9 | 2093.9 |
1 | 1597.9 | 1687.0 | 1875.2 | 2868.6 | 2519.8 | 3178.8 |
0.1 | 2050.9 | 2170.0 | 2140.3 | 3195.5 | 4249.7 | 4950.5 |
tgδ | ||||||
100 | 0.413 | 0.343 | 0.220 | 0.153 | 0.115 | 0.134 |
10 | 0.267 | 0.219 | 0.169 | 0.167 | 0.237 | 0.406 |
1 | 0.184 | 0.183 | 0.230 | 0.332 | 0.643 | 1.484 |
0.1 | 0.310 | 0.402 | 0.750 | 0.978 | 2.296 | 7.681 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veselinović, L.; Mitrić, M.; Mančić, L.; Jardim, P.M.; Škapin, S.D.; Cvjetićanin, N.; Milović, M.D.; Marković, S. Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate. Materials 2022, 15, 8500. https://doi.org/10.3390/ma15238500
Veselinović L, Mitrić M, Mančić L, Jardim PM, Škapin SD, Cvjetićanin N, Milović MD, Marković S. Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate. Materials. 2022; 15(23):8500. https://doi.org/10.3390/ma15238500
Chicago/Turabian StyleVeselinović, Ljiljana, Miodrag Mitrić, Lidija Mančić, Paula M. Jardim, Srečo Davor Škapin, Nikola Cvjetićanin, Miloš D. Milović, and Smilja Marković. 2022. "Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate" Materials 15, no. 23: 8500. https://doi.org/10.3390/ma15238500
APA StyleVeselinović, L., Mitrić, M., Mančić, L., Jardim, P. M., Škapin, S. D., Cvjetićanin, N., Milović, M. D., & Marković, S. (2022). Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate. Materials, 15(23), 8500. https://doi.org/10.3390/ma15238500