The Enhanced Thermal Stability of (Mg0.95Ni0.05)2TiO4 Dielectric Ceramics Modified by a Multi-Phase Method
Abstract
:1. Introduction
2. Materials and Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Freitas, A.E.; Manhabosco, T.M.; Batista, R.J.C.; Segundo, A.K.R.; Araújo, H.X.; Araújo, F.G.S.; Costa, A.R. Development and Characterization of Titanium Dioxide Ceramic Substrates with High Dielectric Permittivities. Materials 2020, 13, 386. [Google Scholar] [CrossRef] [PubMed]
- Aljaafari, A.; Sedky, A. Influence of Fine Crystal Percentage on the Electrical Properties of ZnO Ceramic-Based Varistors. Crystals 2020, 10, 681. [Google Scholar] [CrossRef]
- Yu, H.; Luo, T.; He, L.; Liu, J. Effect of ZnO on Mg2TiO4–MgTiO3–CaTiO3 Microwave Dielectric Ceramics Prepared by Reaction Sintering Route. Adv. Appl. Ceram. 2019, 118, 98–105. [Google Scholar] [CrossRef]
- Zhai, S.; Liu, P.; Fu, Z. Microwave Dielectric Properties of Low-Fired [Mg0.98(Li0.5Bi0.5)0.02]2SiO4–Ca0.8Sm0.4/3TiO3 Composite Ceramics. J. Mater. Sci. Mater. Electron. 2018, 29, 1298–1303. [Google Scholar] [CrossRef]
- Palmero, P. Structural Ceramic Nanocomposites: A Review of Properties and Powders’ Synthesis Methods. Nanomaterials 2015, 5, 656–696. [Google Scholar] [CrossRef]
- Tang, B.; Xiang, Q.; Fang, Z.; Zhang, X.; Xiong, Z.; Li, H.; Yuan, C.; Zhang, S. Influence of Cr3+ Substitution for Mg2+ on the Crystal Structure and Microwave Dielectric Properties of CaMg1-XCr2x/3Si2O6 Ceramics. Ceram. Int. 2019, 45, 11484–11490. [Google Scholar] [CrossRef]
- Yuan, S.; Gan, L.; Ning, F.; An, S.; Jiang, J.; Zhang, T. High-Q×f 0.95 MgTiO3–0.05CaTiO3 Microwave Dielectric Ceramics with the Addition of LiF Sintered at Medium Temperatures. Ceram. Int. 2018, 44, 20566–20569. [Google Scholar] [CrossRef]
- Gogoi, P.; Singh, L.R.; Pamu, D. Characterization of Zn Doped MgTiO3 Ceramics: An Approach for RF Capacitor Applications. J. Mater. Sci. Mater. Electron. 2017, 28, 11712–11721. [Google Scholar] [CrossRef]
- Ullah, A.; Iqbal, Y.; Mahmood, T.; Mahmood, A.; Naeem, A.; Hamayun, M. Kinetic Analysis on the Synthesis of Mg0.95Zn0.05TiO3 Microwave Dielectric Ceramic by Polymeric Precursor Method. Ceram. Int. 2015, 41, 15089–15096. [Google Scholar] [CrossRef]
- Huang, C.L.; Pan, C.L.; Hsu, J.F. Dielectric Properties of (1−x)(Mg0.95Co0.05)TiO3–xCaTiO3 Ceramic System at Microwave Frequency. Mater. Res. Bull. 2002, 37, 2483–2490. [Google Scholar] [CrossRef]
- Sohn, J.H.; Inaguma, Y.; Yoon, S.O.; Itoh, M.; Nakamura, T.; Yoon, S.J.; Kim, H.J. Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values. Jpn. J. Appl. Phys. 1994, 33, 5466. [Google Scholar] [CrossRef]
- Wakino, K. Recent Development of Dielectric Resonator Materials and Filters in Japan. Ferroelectrics 1989, 91, 69–86. [Google Scholar] [CrossRef]
- Isobe, M.; Ueda, Y. Synthesis, Structure and Physical Properties of Spinel Solid Solutions Mg2TiO4–MgTi2O4. J. Alloy. Compd. 2004, 383, 85–88. [Google Scholar] [CrossRef]
- Belous, A.; Ovchar, O.; Durilin, D.; Krzmanc, M.M.; Valant, M.; Suvorov, D. High-Q Microwave Dielectric Materials Based on the Spinel Mg2TiO4. J. Am. Ceram. Soc. 2006, 89, 3441–3445. [Google Scholar] [CrossRef]
- Belous, A.; Ovchar, O.; Durylin, D.; Valant, M.; Macek-Krzmanc, M.; Suvorov, D. Microwave Composite Dielectrics Based on Magnesium Titanates. J. Eur. Ceram. Soc. 2007, 27, 2963–2966. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Huang, C.L.; Ho, C.E. Microwave Dielectric Properties of (Mg1−xNix)2TiO4 (x=0.02–0.1) Ceramics. Int. J. Appl. Ceram. Technol. 2010, 7, E163–E169. [Google Scholar] [CrossRef]
- Petrova, M.A.; Mikirticheva, G.A.; Novikova, A.S.; Popova, V.F. Spinel Solid Solutions in the Systems MgAl2O4–ZnAl2O4 and MgAl2O4–Mg2TiO4. J. Mater. Res. 1997, 12, 2584–2588. [Google Scholar] [CrossRef]
- Shen, C.H.; Pan, C.L.; Lin, S.H. A Study of the Effect of Sintering Conditions of Mg0. 95Ni0. 05Ti3 on Its Physical and Dielectric Properties. Molecules 2020, 25, 5988. [Google Scholar] [CrossRef]
- Huang, C.L.; Liu, S.S. Dielectric Characteristics of the (1−x)Mg2TiO4–xSrTiO3 Ceramic System at Microwave Frequencies. J. Alloy. Compd. 2009, 471, L9–L12. [Google Scholar] [CrossRef]
- Huang, C.L.; Wang, J.J.; Chang, Y.P. Dielectric Properties of Low Loss (1–x)(Mg0.95Zn0.05)TiO3–xSrTiO3 Ceramic System at Microwave Frequency. J. Am. Ceram. Soc. 2007, 90, 858–862. [Google Scholar] [CrossRef]
- Huang, C.L.; Liu, S.S.; Chen, S.H. Dielectric Properties of a New Ceramic System (Mg0.95Zn0.05)2TiO4–CaTiO3 at Microwave Frequencies. Jpn. J. Appl. Phys. 2009, 48, 071402. [Google Scholar] [CrossRef]
- Huang, C.L.; Chen, J.Y. Low-Loss Microwave Dielectrics Using SrTiO3-Modified (Mg0.95Co0.05)2TiO4 Ceramics. J. Alloy. Compd. 2009, 485, 706–710. [Google Scholar] [CrossRef]
- Shen, C.H.; Pan, C.L. Dielectric Properties and Applications of Low-Loss (1−x)(Mg0.95Ni0.05)2TiO4-xSrTiO3 Ceramic System at Microwave Frequency. Int. J. Appl. Ceram. Technol. 2015, 12, E127–E133. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Katoh, M. Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method. IEEE Trans. Microw. Theory Tech. 1985, 33, 586–592. [Google Scholar] [CrossRef]
- Courtney, W.E. Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators. IEEE Trans. Microw. Theory Tech. 1970, 18, 476–485. [Google Scholar] [CrossRef]
- Hakki, B.W.; Coleman, P.D. A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range. IRE Trans. Microw. Theory Tech. 1960, 8, 402–410. [Google Scholar] [CrossRef]
- Silverman, B.D. Microwave Absorption in Cubic Strontium Titanate. Phys. Rev. 1962, 125, 1921–1930. [Google Scholar] [CrossRef]
Temperatures | a = b = c (nm) | (Mg0.95Ni0.05)TiO3 Ratio (%) | CaTiO3 Ratio (%) |
---|---|---|---|
1300 | 0.84005 ± 0.1033 | 17.4 | 11.6 |
1325 | 0.84005 ± 0.1033 | 17.2 | 13.4 |
1350 | 0.83986 ± 0.0972 | 17 | 13.5 |
1375 | 0.83456 ± 0.0995 | 14.9 | 13.8 |
1400 | 0.83456 ± 0.0995 | 14.7 | 13.8 |
1425 | 0.83456 ± 0.0995 | 14.4 | 14.1 |
x Values | a = b = c (nm) | (Mg0.95Ni0.05)TiO4 Ratio (%) | CaTiO3 Ratio (%) |
---|---|---|---|
0.06 | 0.84005 ± 0.1033 | 17.1 | 9.6 |
0.08 | 0.84005 ± 0.1033 | 17 | 13.5 |
0.09 | 0.83986 ± 0.0972 | 14.5 | 13.5 |
0.1 | 0.83456 ± 0.0995 | 13.3 | 13.7 |
0.12 | 0.83456 ± 0.0995 | 14 | 14.4 |
Atom (%) | |||||
---|---|---|---|---|---|
Spot | Mg | Ni | Ca | Ti | O |
A | 17.54 | 2.2 | 0 | 16.84 | 63.42 |
B | 24.27 | 2.25 | 0 | 19.51 | 53.97 |
C | 0 | 0 | 20.42 | 19.49 | 60.09 |
x Values | Density (g/cm3) | εr Values | Qf Values (GHz) | τf Values (ppm/°C) |
---|---|---|---|---|
0.06 | 3.44 | 18.6 | 131,000 | −20.7 |
0.08 | 3.48 | 19.2 | 108,200 | −4.8 |
0.09 | 3.51 | 19.6 | 90,000 | 1.3 |
0.1 | 3.53 | 20.1 | 75,000 | 13.9 |
0.12 | 3.56 | 20.9 | 58,000 | 30.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, C.-H.; Shen, T.-W.; Hsieh, T.-Y.; Lan, K.-C.; Hsu, S.-H.; Wang, C.-H.; Lin, Y.-T.; Wu, W.-F.; Tseng, Z.-L. The Enhanced Thermal Stability of (Mg0.95Ni0.05)2TiO4 Dielectric Ceramics Modified by a Multi-Phase Method. Materials 2023, 16, 2997. https://doi.org/10.3390/ma16082997
Shen C-H, Shen T-W, Hsieh T-Y, Lan K-C, Hsu S-H, Wang C-H, Lin Y-T, Wu W-F, Tseng Z-L. The Enhanced Thermal Stability of (Mg0.95Ni0.05)2TiO4 Dielectric Ceramics Modified by a Multi-Phase Method. Materials. 2023; 16(8):2997. https://doi.org/10.3390/ma16082997
Chicago/Turabian StyleShen, Chun-Hsu, Ting-Wei Shen, Tsai-Yu Hsieh, Kai-Chun Lan, Shen-Hsien Hsu, Ching-Hsuan Wang, Yu-Ting Lin, Wen-Fang Wu, and Zong-Liang Tseng. 2023. "The Enhanced Thermal Stability of (Mg0.95Ni0.05)2TiO4 Dielectric Ceramics Modified by a Multi-Phase Method" Materials 16, no. 8: 2997. https://doi.org/10.3390/ma16082997
APA StyleShen, C. -H., Shen, T. -W., Hsieh, T. -Y., Lan, K. -C., Hsu, S. -H., Wang, C. -H., Lin, Y. -T., Wu, W. -F., & Tseng, Z. -L. (2023). The Enhanced Thermal Stability of (Mg0.95Ni0.05)2TiO4 Dielectric Ceramics Modified by a Multi-Phase Method. Materials, 16(8), 2997. https://doi.org/10.3390/ma16082997