Research on Pavement Performance of Cement-Stabilized Municipal Solid Waste Incineration Bottom Ash Base
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Cement
2.1.2. Natural Aggregates
2.1.3. MSWI BA
2.2. Mixture Design
2.2.1. Cement Stabilized MSWI BA Macadam
2.2.2. Cement Stabilized MSWI BA
2.3. Samples Preparation
2.4. Mechanical Properties Test
2.4.1. Compaction Test
2.4.2. Unconfined Compressive Strength Test
2.4.3. Splitting Strength Test
2.4.4. Compressive Resilient Modulus Test
2.4.5. Frost Resistance Test
3. Results and Discussion
3.1. The Optimum Moisture Content and the Maximum Dry Density
3.2. Unconfined Compressive Strength
3.3. Splitting Strength
3.4. Compressive Resilient Modulus
3.5. Frost Resistance
4. Unconfined Compressive Stress–Strain Constitutive Model
4.1. Secant Modulus
4.2. Damage Variable
4.3. Constitutive Model
5. Test Road Construction
6. Energy Saving and Emission Reduction Analysis
7. Conclusions
- (1)
- With the increase in MSWI BA content, the optimum moisture content increases, the maximum dry density decreases, and the mechanical properties and frost resistance are all adversely affected. The pavement base of higher MSWI BA content should do antifreeze measures in winter.
- (2)
- With 4% cement dosage, the CBM-50 satisfies the requirements of expressways and first-grade highways under medium and light traffic. The CSB-100 meets the requirements of second- and below-order highways under medium and light traffic. The cement dosage and MSWI BA content could be adjusted according to the needs of practical application.
- (3)
- The established segmented constitutive model can effectively simulate the stress–strain relationship of a mixture in a compressive process, which provides a reliable reference for the design and mechanical behavior analysis of cement-stabilized MSWI BA base.
- (4)
- From incineration of municipal solid waste to MSWI BA to build a one-kilometer second-class highway base, we can reduce CO2 emissions by about 3.2 × 104 t and save standardized coal 8.5 × 103 t, which has positive significance for promoting carbon peaking, carbon neutrality and sustainable development of highway engineering construction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, J.X.; Li, H.; Liu, J.G. Curbing dioxin emissions from municipal solid waste incineration: China’s action and global share. J. Hazard. Mater. 2022, 435, 129076. [Google Scholar] [CrossRef] [PubMed]
- Bandarra, B.S.; Pereira, J.L.; Martins, R.C.; Maldonado-Alameda, A.; Chimenos, J.M.; Quina, M.J. Opportunities and Barriers for Valorizing Waste Incineration Bottom Ash: Iberian Countries as a Case Study. Appl. Sci. 2021, 11, 9690. [Google Scholar] [CrossRef]
- Woo, B.H.; Jeon, I.K.; Yoo, D.H.; Kim, S.S.; Lee, J.B.; Kim, H.G. Utilization of Municipal Solid Waste Incineration Bottom Ash as Fine Aggregate of Cement Mortars. Sustainability 2021, 13, 8832. [Google Scholar] [CrossRef]
- Shi, Y.F.; Li, Y.; Yuan, X.L.; Fu, J.H.; Ma, Q.; Wang, Q.S. Environmental and human health risk evaluation of heavy metals in ceramsites from municipal solid waste incineration fly ash. Environ. Geochem. Health. 2020, 42, 3779–3794. [Google Scholar] [CrossRef]
- Bandarra, B.S.; Silva, S.; Pereira, J.L.; Martins, R.C.; Quina, M.J. A Study on the Classification of a Mirror Entry in the European List of Waste: Incineration Bottom Ash from Municipal Solid Waste. Sustainability 2022, 14, 10352. [Google Scholar] [CrossRef]
- Zhu, Y.T.; Zhao, Y.; Zhao, C.; Gupta, R. Physicochemical characterization and heavy metals leaching potential of municipal solid waste incinerated bottom ash (MSWI-BA) when utilized in road construction. Environ. Sci. Pollut. Res. 2020, 27, 14184–14197. [Google Scholar] [CrossRef]
- Kleib, J.; Aouad, G.; Abriak, N.E.; Benzerzour, M. Production of portland cement clinker from French municipal solid waste incineration bottom ash. Case Stud. Constr. Mater. 2021, 15, e00629. [Google Scholar] [CrossRef]
- Faleschini, F.; Toska, K.; Zanini, M.A.; Andreose, F.; Settimi, A.G.; Brunelli, K.; Pellegrino, C. Assessment of a Municipal Solid Waste Incinerator Bottom Ash as a Candidate Pozzolanic Material: Comparison of Test Methods. Sustainability 2021, 13, 8998. [Google Scholar] [CrossRef]
- Bawab, J.; Khatib, J.; Kenai, S.; Sonebi, M. A Review on Cementitious Materials Including Municipal Solid Waste Incineration Bottom Ash (MSWI-BA) as Aggregates. Buildings 2021, 11, 179. [Google Scholar] [CrossRef]
- Li, X.; Guo, Y.; Sharma, R.; Singh, A.; Zhang, H.; Zhang, J.; Fu, Y. Utilization of Different Grain Size of Municipal Solid Waste Bottom Ash in High-Performance Mortars. Sustainability 2022, 14, 4263. [Google Scholar] [CrossRef]
- Zimar, Z.; Robert, D.; Sidiq, A.; Zhou, A.; Giustozzi, F.; Setunge, S.; Kodikara, J. Waste-to-energy ash for treating highly expansive clays in road pavements. J. Clean. Prod. 2022, 374, 133854. [Google Scholar] [CrossRef]
- Huang, Y.C.; Chen, J.; Shi, S.J.; Li, B.; Mo, J.L.; Tang, Q. Mechanical Properties of Municipal Solid Waste Incinerator (MSWI) Bottom Ash as Alternatives of Subgrade Materials. Adv. Civ. Eng. 2020, 2020, 9254516. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.J.; Xi, Y.; Gao, H.; Wang, J.J.; Wei, W.; Zhang, R. Porosity of municipal solid waste incinerator bottom ash effects on asphalt mixture performance. J. Clean. Prod. 2022, 369, 133344. [Google Scholar] [CrossRef]
- Shen, P.; Zheng, H.; Lu, J.; Poon, C.S. Utilization of municipal solid waste incineration bottom ash (IBA) aggregates in high-strength pervious concrete. Resour. Conserv. Recyc. 2021, 174, 105736. [Google Scholar] [CrossRef]
- Vaičienė, M.; Simanavičius, E. The Effect of Municipal Solid Waste Incineration Ash on the Properties and Durability of Cement Concrete. Materials 2022, 15, 4486. [Google Scholar] [CrossRef] [PubMed]
- Vaitkus, A.; Gražulytė, J.; Šernas, O.; Vorobjovas, V.; Kleizienė, R. An algorithm for the use of MSWI bottom ash as a building material in road pavement structural layers. Constr. Build. Mater. 2019, 212, 456–466. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Khan, M.; Nasser, M.S.; Al Saad, K.; Heng, O.E. Recent advances and applications of municipal solid wastes bottom and fly ashes: Insights into sustainable management and conservation of resources. Environ. Technol. Innov. 2020, 21, 101267. [Google Scholar] [CrossRef]
- Yan, K.Z.; Sun, H.; Gao, F.Q.; Ge, D.D.; You, L.Y. Assessment and mechanism analysis of municipal solid waste incineration bottom ash as aggregate in cement stabilized macadam. J. Clean. Prod. 2020, 244, 118750. [Google Scholar] [CrossRef]
- Ji, E.; Xu, F.; Wei, H.; Qian, W.; He, Y.; Zhu, P. An Investigation on Mineral Dissolution and Precipitation in Cement-Stabilized Soils: Thermodynamic Modeling and Experimental Analysis. Appl. Sci. 2022, 12, 6843. [Google Scholar] [CrossRef]
- Lu, Y.; Tian, A.R.; Zhang, J.H.; Tang, Y.S.; Shi, P.X.; Tang, Q.; Huang, Y.C. Physical and Chemical Properties, Pretreatment, and Recycling of Municipal Solid Waste Incineration Fly Ash and Bottom Ash for Highway Engineering: A Literature Review. Adv. Civ. Eng. 2020, 2020, 8886134. [Google Scholar] [CrossRef]
- GB 175-2007; Common Portland Cement. China Standard Press: Beijing, China, 2010.
- JTG F20-2015; Technical Guidelines for Construction of Highway Roadbases. China Communications Press: Beijing, China, 2015.
- JTG E42-2005; Test Methods of Aggregate for Highway Engineering. Ministry of Transport of the People’s republic of China: Beijing, China, 2005.
- JTG 3430-2020; Test Methods of Soils for Highway Engineering. Ministry of Transport of the People’s republic of China: Beijing, China, 2020.
- JTG/T F30-2014; Technical Guidelines for Construction of Highway Cement Concrete Pavements. China Communications Press: Beijing, China, 2014.
- JTG E51-2009; Test Methods of Materials Stabilized with Inorganic Binders for Highway Engineering. China Communications Press: Beijing, China, 2009.
- Wu, H.R.; Jin, W.L.; Yan, Y.D.; Xia, J. Environmental zonation and life prediction of concrete in frost environments. J. ZJU. Eng. Sci. 2012, 46, 650–657. [Google Scholar]
- Ghouleh, Z.; Shao, Y.X. Turning municipal solid waste incineration into a cleaner cement production. J. Clean. Prod. 2018, 195, 268–279. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, Y.; Guo, M.; Wang, X. Effect of freeze-thaw cycles on the internal structure and performance of semirigid base materials. Adv. Mater. Sci. Eng. 2017, 2017, 7802024. [Google Scholar] [CrossRef] [Green Version]
- JTG/T D31-06-2017; Technical Specifications for Design and Construction of Highway in Seasonal Frozen Soil Region. China Communications Press: Beijing, China, 2017.
- Fu, Q.; Zhao, X.; He, J.Q.; Zhang, Z.R.; Zeng, Q.H.; Niu, L.K.; Wang, Y. Constitutive Response of Hybrid Basalt-polypropylene Fiber-reinforced Concrete Based on Energy Conversion Principle. J. Chin. Ceram. Soc. 2021, 49, 1670–1682. [Google Scholar]
- Zhang, C.; Yang, C.; Bai, Y. Investigation of damage evolution and its model of rock-like brittle materials. Rock Soil Mech. 2021, 42, 2344–2354. [Google Scholar]
- Lemaitre, J. How to use damage mechanics. Nucl. Eng. Des. 1984, 80, 233–245. [Google Scholar] [CrossRef]
- Tan, Y.; Gu, Q.; Ning, J.; Liu, X.; Jia, Z.; Huang, D. Uniaxial Compression Behavior of Cement Mortar and Its Damage-Constitutive Model Based on Energy Theory. Materials 2019, 12, 1309. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.H.; Zhang, X.Q.; Zhang, D.C. Experimental studay on complete stress-strain curves of concrete. J. Build. Struct. 1982, 1, 1–12. [Google Scholar]
- Yan, X.L.; Liang, C.Y.; Xu, J.H.; You, Q.L.; Li, A. Elastoplastic Characteristics of Cement-stabilized Aggregate Bases. China J. Highw. Transp. 2019, 32, 29–36. [Google Scholar]
- Zhang, X.; Ren, K. Strength and damage characteristic of cement stabilized cinder macadam base. J. Traffic Transp. Eng. 2018, 18, 1–9. [Google Scholar]
- Chen, X.; Zhang, Z.; Dongqing, L.I. Study on Strength Characteristics and Damage Constitutive Model of Cemented Soil. J. Hunan Univ. Nat. Sci. 2019, 7, 109–119. [Google Scholar]
- Shi, Y.; He, F.L.; Wu, Y.M.; Deng, H.S. Study on damage constitutive model of layered rock under uniaxial compression. J. Hunan Univ. Nat. Sci. 2020, 48, 126–132. [Google Scholar]
- Yang, M.H.; Zhao, M.H.; Cao, W.G. Method for determining the parameters of statistical damage softening constitutive model for rock. J. Hydraul. Eng. 2005, 36, 345–349. [Google Scholar]
- Li, Y.; Zhang, S.; Liu, O. Potential for greenhouse gas reduction and energy recovery from MSW through different waste management technologies. J. Clean. Prod. 2020, 264, 121432. [Google Scholar] [CrossRef]
- Yaman, C.; Anil, I.; Alagha, C. Research on Greenhouse Gas Emission Characteristics and Emission Mitigation Potential of Municipal Solid Waste Treatment in Beijing. Sustainability 2022, 14, 8398. [Google Scholar] [CrossRef]
- Liu, L.; Wen, J.Y.; Wang, Z.S.; Li, Y. An optimizing model for GHG emission reduction from landfill gas based on generator sets layout. Renew. Energy Resour. 2014, 32, 1730–1736. [Google Scholar]
- Poranek, N.; Łaźniewska-Piekarczyk, B.; Czajkowski, A.; Pikoń, K. MSWIBA Formation and Geopolymerisation to Meet the United Nations Sustainable Development Goals (SDGs) and Climate Mitigation. Buildings 2022, 12, 1083. [Google Scholar] [CrossRef]
- Chen, D.Z.; Geng, C.J.; Sun, W.Z.; Shi, H.S. Energy saving and pollution alleviation by replacement of crushed rock with municipal solid waste incineration. J. Build. Mater. 2011, 14, 71–77. [Google Scholar]
Test Item | Experimentation Results | Specification | |
---|---|---|---|
Fineness (%) | 3.4 | ≤10 | |
Stability (mm) | 1.9 | ≤5 | |
Setting time (min) | Initial setting time | 225 | ≥180 |
Final setting time | 410 | ≥360, ≤600 | |
Compressive strength (MPa) | 3 days | 13.2 | ≥10 |
28 days | 37.1 | ≥32.5 | |
Flexural strength (MPa) | 3 days | 3.8 | ≥2.5 |
28 days | 7.2 | ≥5.5 |
Sieve Size (mm) | Percentage Passing (%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
31.5 | 26.5 | 19 | 16 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | |
1# | 100 | 71.2 | 20.1 | 10.1 | 5.2 | 0.6 | 0.4 | 0.3 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 |
2# | 100 | 100 | 100 | 59.0 | 33.4 | 9.5 | 2.3 | 1.6 | 1.5 | 1.3 | 1.2 | 0.9 | 0.4 |
3# | 100 | 100 | 100 | 100 | 100 | 100 | 21.9 | 5.1 | 3.4 | 3.0 | 2.8 | 2.4 | 1.2 |
4# | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 85.1 | 77.8 | 69.2 | 39.8 | 7.2 | 2.0 |
Sieve Size (mm) | Apparent Density (g/cm3) | Water Absorption (%) | Needle-like (%) | Crushing Value (%) | Organic Content (%) | Sulfate Content (%) |
---|---|---|---|---|---|---|
19~31.5 | 2.749 | 0.22 | 5.4 | — | — | — |
9.5~19 | 2.741 | 0.39 | 7.3 | 21.9 | — | — |
4.75~9.5 | 2.713 | 0.50 | 9.2 | — | — | — |
2.36~4.75 | 2.653 | 1.14 | — | — | 0.2 | 0.08 |
0~2.36 | 2.538 | 2.36 | — | — | ||
Specification | — | — | ≤18 | ≤35 | <2 | ≤0.25 |
Sieve Size (mm) | 0~2.36 | 2.36~9.5 | Specification |
---|---|---|---|
Apparent density (g/cm3) | 2.546 | 2.511 | — |
Water absorption (%) | 6.55 | 4.25 | — |
Liquid limit (%) | 42.8 | — | |
Plastic limit (%) | 31.9 | — | |
Plasticity index | 10.9 | ≤17 | |
Organic content (%) | 0.90 | <2 | |
Sulfate content (%) | 0.11 | ≤0.25 |
Chemical Composition | SiO2 | CaO | Al2O3 | Fe2O3 | Na2O | P2O5 | SO3 | K2O | MgO | CL | MnO | Others |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Content (%) | 39.44 | 31.61 | 9.61 | 7.53 | 2.33 | 2.30 | 2.26 | 1.68 | 1.72 | 0.84 | 0.17 | 0.52 |
Groups | Mixture Gradation | ||||
---|---|---|---|---|---|
1# | 2# | 3# | 4# | MSWI BA | |
CBM-0 | 25% | 10% | 30% | 35% | 0% |
CBM-25 | 30% | 10% | 20% | 15% | 25% |
CBM-38 | 25% | 20% | 17% | 0% | 38% |
CBM-50 | 30% | 15% | 5% | 0% | 50% |
CSB-50 | - | - | - | 50% | 50% |
CSB-75 | - | - | - | 25% | 75% |
CSB-100 | - | - | - | 0% | 100% |
Structural Layer | Highway Grade | Extremely Heavy and Special Heavy Traffic | Heavy Traffic | Medium and Light Traffic |
---|---|---|---|---|
Base | Expressways and first-grade highways | 5.0~7.0 | 4.0~6.0 | 3.0~5.0 |
Second- and below-order highways | 4.0~6.0 | 3.0~5.0 | 2.0~4.0 | |
Base course | Expressways and first-grade highways | 3.0~5.0 | 2.5~4.5 | 2.0~4.0 |
Second- and below-order highways | 2.5~4.5 | 2.0~4.0 | 1.0~3.0 |
Groups | a | b | c | k | d | F0 | h |
CBM-0 | 584953 | −256 | 0.0556 | 1668 | −1.37 | 0.0200 | 9.98 |
CBM-25 | 340786 | −100 | 0.0721 | 1511.1 | −1.79 | 0.0078 | 14.10 |
CBM-38 | 309963 | −369 | 0.1388 | 1530.6 | −2.55 | 0.0087 | 10.61 |
CBM-50 | 250277 | −333 | 0.1388 | 1384.5 | −2.69 | 0.0082 | 22.04 |
CSB-50 | 111859 | 445 | −0.082 | 857.9 | −0.29 | 0.0128 | 4.62 |
CSB-75 | 124537 | 178 | 0.0246 | - | - | 0.0175 | 1.87 |
CSB-100 | 23541 | 262 | 0.0478 | - | - | 0.0200 | 4.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, C.; Li, J.; Sun, S.; Han, H. Research on Pavement Performance of Cement-Stabilized Municipal Solid Waste Incineration Bottom Ash Base. Materials 2022, 15, 8614. https://doi.org/10.3390/ma15238614
Shi C, Li J, Sun S, Han H. Research on Pavement Performance of Cement-Stabilized Municipal Solid Waste Incineration Bottom Ash Base. Materials. 2022; 15(23):8614. https://doi.org/10.3390/ma15238614
Chicago/Turabian StyleShi, Chenglin, Jia Li, Shuang Sun, and Hong Han. 2022. "Research on Pavement Performance of Cement-Stabilized Municipal Solid Waste Incineration Bottom Ash Base" Materials 15, no. 23: 8614. https://doi.org/10.3390/ma15238614
APA StyleShi, C., Li, J., Sun, S., & Han, H. (2022). Research on Pavement Performance of Cement-Stabilized Municipal Solid Waste Incineration Bottom Ash Base. Materials, 15(23), 8614. https://doi.org/10.3390/ma15238614